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Cascading effects of artificial light at
night: resource-mediated control of
herbivores in a grassland ecosystem

Jonathan Bennie, Thomas W. Davies, David Cruse, Richard Inger
and Kevin J. Gaston

Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK

Artificial light at night has a wide range of biological effects on both plants and

animals. Here, we review mechanisms by which artificial light at night may

restructure ecological communities by modifying the interactions between

species. Such mechanisms may be top-down (predator, parasite or grazer con-

trolled), bottom-up (resource-controlled) or involve non-trophic processes,

such as pollination, seed dispersal or competition. We present results from

an experiment investigating both top-down and bottom-up effects of artificial

light at night on the population density of pea aphids Acyrthosiphon pisum in a

diverse artificial grassland community in the presence and absence of preda-

tors and under low-level light of different spectral composition. We found

no evidence for top-down control of A. pisum in this system, but did find evi-

dence for bottom-up effects mediated through the impact of light on flower

head density in a leguminous food plant. These results suggest that physio-

logical effects of light on a plant species within a diverse plant community

can have detectable demographic effects on a specialist herbivore.
1. Background
Light is a major abiotic force influencing the physiology, behaviour and repro-

duction of both plants and animals. Disruption of natural cycles of light by the

introduction of artificial light at night has been shown to have marked effects

on many species by altering their physiology or behaviour [1–3]. It is likely

that these impacts in turn alter rates of resource use, reproduction, mortality,

immigration and emigration at the level of populations [4] and may result in

changes in patterns of abundance and the distribution of species, the structur-

ing of ecological communities and in the functioning of ecosystems [5,6]. To

date, few studies have explicitly addressed these concerns and sought to docu-

ment whether such changes take place, what form they take and how severe

they can be (but see [5,7]).

Nevertheless, the global extent of artificial light at night raises concern that

such ecological impacts may be widespread. The responses of natural commu-

nities to anthropogenic pressures on the environment are often mediated by

interactions between species [8]. Direct effects on a single species can lead to

complex and far-reaching indirect effects on others and on the structure and

function of the ecosystem. Examples of such cascading effects exist across

marine, freshwater and terrestrial ecosystems [9–13]. Such biotic forces are

often characterized as top-down (predator or parasitoid controlled) or bottom-

up (resource-controlled) and may involve multiple trophic links [14–16].

Non-trophic interactions between species, such as pollination and seed dispersal

[17,18], and competition [19], also have the potential to restructure ecological

communities. It is widely recognized that both top-down and bottom-up controls

occur in many systems [20] and that the relative influence of these controls can be

context-dependent, varying with season [21,22], location [23,24] and ecosystem

type [25]. Both bottom-up and top-down regulation may be triggered by changes
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in the behaviour [9,26], in physiology [27] and/or the popu-

lation density, species composition or biomass within a

trophic level [28]—and their effects may be detectable through

changes at the community level in terms of shifts in species

composition [29], or changes in the density or abundance of

another species or group [30].

Many anthropogenic pressures on the environment affect

primarily top-down or bottom-up processes—for example,

the removal or introduction of top predators [13] or nutrient

inputs to vegetation [31]. Other pressures, such as climate

change, have the potential to influence top-down, bottom-up

and non-trophic interactions simultaneously [32,33]. Artificial

light at night likely falls into this latter category as direct

impacts of light are widespread across groups [1,2]. Detailed,

universally applicable predictions as to how indirect effects

will manifest are challenging to make, because the strength

of interactions varies with context. Here, we first review

what is known of the effects of artificial light at night on

top-down, bottom-up and non-trophic interactions. We then

investigate its potential for indirect, biotic effects (top-down

and bottom-up) on ecosystem structure and function using

a temperate grassland assemblage as a model ecosystem

(figure 1). Our findings demonstrate that artificial light controls

the abundance of a specialist herbivore indirectly by influen-

cing flowering (and so resource availability) in a leguminous

plant. The effects of artificial light at night on grassland systems

is non-trivial, particularly given the importance of roadside

grassland vegetation as a conservation resource in the agri-

cultural landscapes of temperate regions [34–37], and the

increasing spread of artificial lighting of roadside verges by

street lighting [38].
(a) Top-down effects
Changes in the abundance of parasites, predators and herbi-

vores can change the populations of hosts, prey species

and primary producers through top-down effects [39–41].

Aggregation of predators has been shown to be able to

affect vegetation biomass in grassland systems [39], and pred-

ator functional composition can influence plant community

composition and ecosystem functions such as litter decompo-

sition and nitrogen mineralization [42]. Many studies show

that artificial light at night can affect the distribution, abun-

dance, behaviour and activity patterns of predators and

foragers in a number of ways. Light at night can cause aggre-

gation or locally increased populations of predators around

the light source [5,43–45]. Diurnal or crespuscular predators

may extend their activity into the night [46–49], effectively

increasing predation pressure. Some nocturnal predators

increase prey detection and capture rates under low levels of

artificial light [50,51]. By contrast, some nocturnal species

may avoid lit areas or reduce activity under lit conditions

[52]. Aggregation of predators can also cause a behavioural

response in the form of predator avoidance at lower trophic

levels [26].

In a study in roadside grassland, predatory carabid

beetles have been observed in higher abundance under

high-pressure sodium street lighting compared with darker

patches between the lights [5]. Although the street lighting

was not found to affect the abundance of any grazing taxa

sampled, greater numbers of predatory individuals suggests

ramifications for the activity and/or density of prey species,

and potentially on the plants on which they feed (figure 1a).
(b) Bottom-up effects
Artificial light at night can impact directly on plants [53,54].

In addition to conversion of sunlight into energy via photo-

synthesis (to which the relatively low light levels experienced

by plants under artificial light at night probably make a very

minor contribution), plants respond to their natural light

environment through photoreceptors, the best understood of

which are the phytochrome family. Phytochrome has several

physiological roles and is used by plants to receive information

concerning time of year (day length) and shading by other

plants and to trigger responses in terms of germination, vege-

tative development and phenology [55,56] and growth form,

particularly allocation to reproductive and vegetative growth

[57]. Phytochrome exists in two interchangeable forms, Pr,

which preferentially absorbs light in the red portion of the spec-

trum, and Pfr, which preferentially absorbs in the far-red. The

ratio between red and far-red wavelengths of light in particular

is thus detected by phytochrome and is used by plants to infer

information about their environment. Hence red lights are used

in horticulture to control flowering and shoot elongation

[58,59]. Even low levels of light typical of street lighting,

and/or brief periods of exposure during the hours of darkness,

are often sufficient to produce a response [54]. Street lighting

has long been observed to alter the phenology of urban trees

[54,60], can delay, inhibit, advance or promote flowering [53]

and may even alter the flowering and vegetative growth of

crops [54,61]. If such effects are widespread in natural and

semi-natural vegetation under artificial lighting, they may

lead to bottom-up, resource-mediated effects (figure 1b) on her-

bivores. Bottom-up effects may be driven not only by the

quantity of resources for herbivores and detritivores [62], but

also by restructuring habitat and affecting the availability,

quality and diversity of food resources [63,64]. Bottom-up

effects can span several trophic levels—for example, Koricheva

et al. [30] found that grassland plant diversity affected not

only herbivore populations (particularly specialist and sessile

herbivores, such as wingless aphids) but also influenced

predator activity.

(c) Non-trophic interactions
Perhaps the most well-known environmental effect of artificial

light at night is the attraction of moths and other aerial invert-

ebrates [44,65–69]. The behaviour of bats is also strongly

influenced by artificial light [45,70–74]. Both groups can be

important nocturnal pollinators of plants, and frugivorous

bats can be important seed dispersers. The effect of artificial

light on pollinating and seed dispersing species could result

in reduced or enhanced recruitment among plants leading

to changes in vegetation composition (figure 1c) [75], but

with few exceptions [6] the effects of artificial lights on these

ecosystem services has not been studied.

Competition between species for resources is another

biotic interaction that may be influenced by artificial light

at night. Artificial light at night can itself be viewed as a

resource [2] and expand or restrict the availability of time

for activities such as hunting or foraging. Species have evol-

ved to differentiate their activity time along temporal

gradients of daylight and darkness giving rise to niche parti-

tioning of the 24 h cycle [76,77]. Artificial light may alter the

balance between species in favour of those that are able to

use the ‘night light niche’ [46,49,77] with indirect consequences

for their competitors.
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Figure 1. Some potential impacts of artificial night-time light on a grassland ecosystem. (a) Top-down trophic effects may occur if aggregation, population growth or
greater foraging efficiency of consumers leads to higher resource exploitation, and potential cascading effects to lower trophic levels. (b) Bottom-up trophic effects may
occur if light-induced changes in the physiology, abundance or composition of primary producers ( plants) alter the provisioning of resources to higher trophic levels.
(c) Non-trophic effects may occur if other links between species—such as pollination or competition within a trophic level—are modified by artificial light.
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(d) Testing for trophic effects
Here, we report data from an experimental study of artificially

assembled plant and invertebrate communities under realistic

conditions. We test whether artificial light at night affects

population densities of a specialist herbivore, the pea aphid

Acyrthosiphon pisum, and whether these effects are mediated

by (i) top-down processes of exploitation, by controlling the
presence or absence of predators, the ladybird Adalia bipunctata
and carabid beetle Pterostichus melanarius; or (ii) bottom-up

processes, by measuring the availability of a resource, the flow-

ering shoots of the leguminous plant Lotus pedunculatus.
Several feasible pathways exist for effects of artificial light on

this system. Day length is known to be critical in the control

of flowering in L. pedunculatus [78], and thus artificial light
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Figure 2. (a) Elevation view of a mesocosm, showing sand substrate and mesh cage with LED strip controlled by a daylight sensor on top of the cage. (b) Example
of vegetation within a mesocosm in July 2013. (c) Photograph of the experiment at night.
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could alter the availability of resources for A. pisum. Both pred-

ator species in the experiment use visual cues to locate prey and

therefore light may affect their behaviour [79,80]; in other

ladybird species, photoperiod and wavelength of light affect

reproductive performance [81]. Finally, photoperiod has direct

effects on reproduction in A. pisum itself [82]. We found no

evidence for top-down predator-mediated control of A. pisum
in our system, but did find evidence for bottom-up effects,

demonstrating that physiological effects of light on a plant

species within a diverse plant community can have detectable

demographic effects on a specialist herbivore.
2. Material and methods
The data presented here are generated from the first year of a

long-term experiment to examine the effects of artificial light at

night on trophic interactions in model grassland ecosystems.

Fifty-four experimental grassland ‘mesocosms’ were established

outdoors in July 2012 at the University of Exeter’s Penryn

Campus (508100 N, 5870 W). Each mesocosm consists of a 1 m �
0.5 m � 0.2 m trough, lined with woven plastic textile for drainage

and filled with coarse builder’s sand, and mounted on wooden

planks 0.75 m above the ground (figure 2). A wooden frame 1 m

tall and lined with fine anti-thrip mesh, with a zip for access

for maintenance and measurements, was mounted on top of

the trough to isolate the invertebrate community. Seventy-two

individual plants, representing four individuals from each of

18 common grassland species (grown in spring from seed

gathered from wild plants in 2011) were planted in a randomized

grid pattern 5 cm apart within the central section of each mesocosm

in July 2012 (see the electronic supplementary material for details of

plant species). A standard nutrient solution was applied to each

mesocosm during July 2012 to establish initial plant growth.

Two different artificial light treatments were applied to

mesocosms, each consisting of a strip of light-emitting diodes

(LEDs) mounted on a wooden bar across the top of the meso-

cosm and facing downwards. The ‘white’ treatment consisted

of ‘cool white’ LEDs, with a spectrum similar to those in com-

mercial LED street lighting systems, a peak in the blue portion

of the spectrum (around 445 nm) and a broad secondary peak
between around 500 and 650 nm. The stated correlated colour

temperature (CCT) of the white LED strip is 6000 K (stated

here for comparison with other white LED sources—it should

be stressed that the CCT of light sources that are not black-

body emitters is an estimation of their appearance to human

vision and is a poor description of either the physical properties

or biological effects of the light source [83]). The ‘amber’ treat-

ment consisted of a virtually monochromatic LED strip with a

single narrow peak in the orange portion of the spectrum, at

around 588 nm, aiming to simulate the peak emittance of mono-

chromatic low-pressure sodium (LPS) lighting (589.3 nm), which

was formerly in widespread use in the UK and elsewhere, and is

still the most common form of lighting in many regions. LED

lights were used to simulate LPS lighting as unlike LPS gas-

discharge lamps they emit negligible heat and would not affect

the temperature of the mesocosms. The LED strips were cut to

a length so that both lighting treatments provide an illuminance

of approximately 10 lx at the unshaded sand surface and 15 lx at

20 cm height at a perceived brightness similar to human vision to

that measured on a lit grassland road verge under street lights

[84,85]. Light treatments are powered by a 12-V battery and trig-

gered by light-detecting photocells mounted on top of the frame,

to switch on at sunset (less than 70 lx) and off at sunrise (more

than 110 lx). In addition, unlit ‘control’ treatments reproduced

the mounting bar and structure of the lit treatments but had no

LED strips.

These three light treatments (white, amber and control) were

implemented in a cross factorial design with three levels of commu-

nity complexity—plants only, bitrophic and tritrophic, with each

light-trophic treatment combination replicated six times. The

plants-only treatments contained the grassland plant species and

were treated at regular intervals with a biodegradable insecticide

(pyrethrin) and molluscicide (ferric phosphate pellets) to prevent

the establishment of invertebrate populations. Both the bitrophic

and tritrophic treatments received introductions of 20 individuals

each of the pea aphid A. pisum and the slug Deroceras reticulatum
in May and June 2013. In addition, the tritrophic treatments

received introductions of four individuals (one male, three

females) of the predatory ground beetle P. melanarius in August

2013 and nine unsexed individuals of the ladybird A. bipunctata
in May to June of 2013. Six replicates of each light and trophic treat-

ment combination (nine possible light/trophic combinations) were
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allocated randomly to mesocosms evenly distributed within a

field, separated from each other by at least 4 m and offset to mini-

mize light spillage between mesocosms. Typical recorded ambient

light levels at full moon at the site were around 0.11 lx under clear

sky conditions and 0.04 lx when the moon was obscured by cloud;

due to the proximity of the site to a university campus and subur-

ban areas, some degree of skyglow from the surrounding area is

expected. To the level of detection of the light meter (+0.01 lx),

light levels measured in control mesocosms at night did not

differ measureably from ambient levels measured outside at the

site with treatments switched off.

Here, we present data on the density of inflorescences of the

leguminous plant L. pedunculatus, within the mesocosms and

the observed population density of A. pisum, which is a specia-

list herbivore of legumes and was found almost exclusively on

L. pedunculatus in the mesocosms. Exhaustive counts of the

number of flower heads of each species (classified into three pheno-

logical classes) and 3-min timed counts of aphids within each

mesocosm were carried out at bi-weekly intervals from April to

September. It was not possible systematically to monitor the popu-

lations of predators within the mesocosms due to difficulty in

locating the animals within the dense vegetation; however, individ-

uals of both species were recorded within the tritrophic treatments

throughout the study period, suggesting that populations were

maintained for the duration of the results reported here.
Inflorescence and aphid count data were analysed separately

using general linear mixed effects models using glmmADMB

[86] in the R statistical package (v. 3.1.0; R Core Team 2014)

with light treatment, survey date and trophic treatment (presence

or absence of predators for both aphid and inflorescence counts,

and presence or absence of herbivores for inflorescence counts)

included as fixed factors, and plot identity as a random effect

(intercept) to allow for repeated measurements at the same plot

at different time steps. Poisson, negative binomial, zero-inflated

Poisson and zero-inflated negative binomial (ZINB) models were

fitted to each dataset. Alternative models consisting of full combi-

nations of fixed factors and interaction terms were tested, and

significance values are reported here for the best model in each

case, with model quality assessed by Akaike information criterion

(AIC) values (electronic supplementary material).
3. Results
Lotus pedunculatus inflorescence counts were best characterized

by a repeated measures ZINB model incorporating interacting

effects of time and herbivory (but not presence of predators)

and an effect of light treatment. The presence of herbivores

and both the amber and white light treatments significantly
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decreased flower density in L. pedunculatus relative to controls

with a greater effect in the amber treatment ( p ¼ 0.035 for her-

bivory, p ¼ 0.002 for amber light and p ¼ 0.042 for white light).

The addition of the presence or absence of predators as a fixed

factor, or further interactions between light treatments, herbiv-

ory and survey date gave no additional explanatory power to

the model (see the electronic supplementary material).

Acyrthosiphon pisum counts were best characterized by a

repeated measures negative binomial model incorporating

interactions between survey date and light treatment; again

the addition of the presence or absence of predators as a factor

did not increase model parsimony. The interaction term

between light and survey date showed a significant decrease

in aphid numbers under amber lights only in mid-August

( p ¼ 0.006), after peak flowering of Lotus (figure 3); at the

same date, the aphid counts under white light were lower, but

not significantly so at a 95% significance threshold ( p ¼ 0.072).
4. Discussion
The mesocosm experiment provides evidence for a potential

‘bottom-up’ mechanism by which artificial night-time light at
levels typical around human settlements can both directly

affect growth form and reproductive effort in plants, and

indirectly affect herbivore density. Flowering in L. pedunculatus
plants in artificial grassland communities peaked in early July

2013 and fell in late July and August, partly due to a period of

dry weather. Unsurprisingly, the presence of herbivores sup-

pressed the density of flower heads throughout the year, but

in both the presence and absence of herbivores flowering was

also suppressed by monochromatic amber light at night at a

peak wavelength similar to LPS street lighting and to a slightly

lesser extent by white LED lighting. Previous studies have

shown that L. pedunculatus is a long-day plant, and individuals

of northern European origin failed to produce flowers when

introduced to lower latitudes in northern New Zealand

where summer days are not sufficiently long [78]. However,

links between spectra, intensity and physiological triggers

can be complex [54] and in this experiment low intensity

light appears to inhibit, rather than induce flowering.

The number of aphids recorded showed no effect of light

in July, but showed significantly suppressed numbers under

the amber light treatment in mid-August. In spring and early

summer, A. pisum within the mesocosms fed mainly on vege-

tative shoots of L. pedunculatus and other legumes, but by
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August L. pedunculatus had effectively ceased vegetative

growth, and flower heads and developing seed pods of this

species provided the main source of nutrition for these sap-

feeding insects. We conclude that the seasonal suppression

of the aphid population under the amber light treatment in

mid-August is most likely caused by resource limitation for

this species due to suppression of flowering.

Although we were not able to test for a direct effect of light

on predator numbers, we found neither an effect of predator

presence/absence on aphid numbers, nor an interaction effect

between predation and light treatment. The lack of explanatory

power of predator presence in predicting A. pisum counts

suggests that top-down effects of A. bipunctata on the density

in this species were weak compared with bottom-up effects,

and that aphid numbers were primarily resource-controlled.

The most significant effects detected here were shown for

the ‘amber’ light treatment, which was designed to simulate

traditional LPS lighting. Responses for the ‘white’ light treat-

ment, with a spectral distribution similar to those of modern

commercial LED street lighting, were intermediate between

the amber and control treatments (figure 3). The clearer effects

of amber light are consistent with the response of phytochrome

to the ratio between photons absorbed by the Pr and Pfr forms

(figure 4). The peak emittance at around 590 nm is absorbed

preferentially by phytochrome in its Pr state, converting it to

the physiologically active Pfr state. For a given perceived

brightness (as measured in photometric units such as lux or

lumens), the white LED treatment emits fewer photons

within the peak absorbance of Pr. Much concern as to the

health and environmental effects of artificial light focuses on

the expansion of ‘whiter’ light across a wider range of wave-

lengths and on light produced at the lower end of the visible

spectrum, largely because blue light (as produced by LEDs)

controls melatonin levels and circadian rhythms in humans

and other animals [87], and light at low wavelengths is more

effective at attracting flying invertebrates [68]. However, this

study demonstrates that artificial light at the higher wave-

lengths that plants respond to via the phytochrome pathway

may have ecologically significant effects, not only on the
physiology of plants themselves, but via bottom-up biotic

interactions to animal populations.
5. Conclusion
Many direct effects of night-time artificial light on plant and

animal species have been documented, and there is a growing

body of evidence concerning the physiological and behavioural

impacts of light pollution. However, it is unknown at present to

what extent artificially lit ecosystems differ in their structure

and dynamics to natural systems. There is a pressing need

for an understanding of the ecosystem level effects of light pol-

lution. This study found evidence for bottom-up control of a

sessile, specialist herbivore, mediated by control of flowering in

its foodplant presumably through the phytochrome pathway.

A near-monochromatic amber light source had a greater

effect on this pathway than a white LED source at a similar

luminous flux. However, there is clearly also scope for top-

down and non-trophic effects of light in temperate grassland

systems, with the relative strength of these pathways potentially

dependent on the intensity, spectral composition and spatial

pattern of light. Untangling the importance and scale of

such effects will require both experimental manipulations and

field observations.
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