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1. The challenge
Daily, lunar and seasonal cycles of natural light have been key forms of environ-

mental variation across the Earth’s surface since the first emergence of life. They

have driven the development of biological phenomena from the molecule to the

ecosystem, including metabolic and physiological pathways, the behaviour of

individuals, geographical patterns of adaptation and species richness, and eco-

system cycles (e.g. [1–4]). Indeed, biological systems are arguably organized

foremost by light [5–7].

The natural patterns of light have over the last 100 years come to be greatly

disrupted through the introduction of artificial light into the night-time

environment: artificial light at night (ALAN). This derives from a diversity of

sources, including street lighting, advertising lighting, architectural lighting,

security lighting, domestic lighting and vehicle lighting. ALAN disrupts natural

patterns of light both via direct effects of illumination from these sources as well

as via skyglow (the scattering by atmospheric molecules or aerosols in the

atmosphere of ALAN that is emitted or reflected upwards; [8–10]).

On the ground this disruption of natural patterns of light takes two principal

forms [11]. First, light has been introduced in places, times and at intensities at

which it does not naturally occur. This has been firmly fixed in the public imagin-

ation through the creation from satellite and astronaut acquired night-time

imagery of pictures of the Earth which illustrate the extent of ALAN, of urbaniz-

ation and of major centres of human population (figure 1; e.g. [12,13]). Given the

nature of such images, it is challenging to use these to make some categorical

quantification of the extent of ALAN, although it is plainly much more wide-

spread than urban infrastructure alone, mainly because of the skyglow effect.

One estimate that accounted explicitly for the effects of skyglow was that 18.7%

of the global land area experienced ALAN [12], another based more directly on

satellite imagery that 11.4% of terrestrial and 0.2% of marine areas of the globe

experienced ALAN [11], and another that ALAN is increasing at around 6%

per annum with huge geographical variation (0–20%; [14]).

Second, ALAN is introducing light with a spectrum that is different from those

of sunlight, moonlight or starlight [11]. The spectrum of ALAN depends funda-

mentally on the kind of lighting device that is being used, ranging from narrow

(e.g. low pressure sodium) to broad bandwidths (e.g. high intensity discharge

and light-emitting diode—LED, [15]). The dominant technology tends to vary geo-

graphically, but can be locally quite heterogeneous. However, there is a general

trend towards the use of ‘whiter lighting0 sources, often with a strong component

in the blue portion of the spectrum (especially using LEDs; e.g. [16]).

Unlike many other anthropogenic changes that have been wrought on the

environment (e.g. in CO2, temperature, habitat change), those resulting from

ALAN are entirely unprecedented. There have been no natural analogues, at any

time scale, to the nature, extent, distribution, timing or rate of spread of ALAN [11,17].

The introduction of ALAN has provided significant and substantial benefits to

humankind [18,19]. However, if biological systems are fundamentally shaped by

light, and ALAN has changed the patterns of light in novel and extensive ways,

it seems logical to predict that ALAN will have numerous biological impacts.
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(a)
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Figure 1. Remote imagery of artificial light at night. (a) Monthly composite satellite image of night-time light from the Visible Infrared Imaging Radiometer Suite (VIIRS) day/night
band (DNB). NASA Earth Observatory image, using Suomi NPP VIIRS data provided by NOAA National Geophysical Data Center. (b) Photograph of the Iberian Peninsula at night from
the International Space Station showing Spain and Portugal. Image courtesy of the Earth Science and Remote Sensing Unit, NASA Johnson Space Center (http://eol.jsc.nasa.gov).
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This is not a new argument. Concerns as to the biological

impacts of ALAN have been expressed for a long time (e.g.

[20–23]). Numerous studies have also been published that

demonstrate such impacts (for recent examples, see [24–31]).

However, understanding the genuine severity of the problem

is both challenging and timely: with the large scale and rapid

introduction of LED lights and the use of ‘smart illumination0

[16], we now have the opportunity to adjust ALAN to reduce

any negative environmental impacts provided that there is a

good understanding of the effects of both intensity and spectral

composition of ALAN. This special issue is a step toward
addressing that research challenge, which takes several key

forms. In this introductory paper, we distinguish those

associated with light, with individual organisms and with

populations, communities and ecosystems.
2. Light
In the main, understanding of the patterns of ALAN has

come from analyses of satellite imagery (e.g. [12,32]), aerial

surveys (e.g. [33,34]) and ground-based measurements of

http://eol.jsc.nasa.gov
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direct illumination and skyglow ([8,35]; some produced from

citizen science data, e.g. [36]). These have proven invaluable

and will continue to provide significant insights. However, to

improve understanding of the biological impacts of ALAN,

such an approach has to be enriched in a number of ways.

First, more attention needs to be paid to differences in the

nature and relative importance of the three main sources of

ALAN, namely direct illumination, light scattered by cloud

cover and light scattered from a clear sky [37]. While

ALAN is perhaps most commonly envisaged in terms of

direct illumination (e.g. typical diagrammatic representations

of ALAN focus on the immediate illumination from one or

more streetlights), the atmospheric scattering of light, and

the resultant skyglow, is likely also to be very important.

This is particularly so because while direct illumination

may extend metres to hundreds of metres and is readily

blocked by obstacles, skyglow may extend kilometres to hun-

dreds of kilometres [17] and is little influenced even by

terrain blocking [37]. Indeed, much more needs to be

known about the nature of skyglow, exploiting the compu-

tational tools that are now available [37].

Second, more attention needs to be paid to the spectra of

ALAN. ALAN tends to be mapped in terms of the intensity

of illumination, commonly with respect to human vision.

However, biological processes (e.g. photosynthesis, circadian

clocks, vision) vary markedly in the components of spectra to

which they are most sensitive. Of concern here is not simply

the spectrum of direct illumination but also of skyglow, and

how the two interact. For example, in urban areas clouds

have a much bigger impact on the proportion of red than

blue light redirected towards the surface [38]. Relative to

white or blue light sources, reddened sources are believed

to reduce skyglow owing to the stronger Rayleigh scattering

at short wavelengths [10,39].

Third, and perhaps most critically, too little is presently

known about what ALAN is actually experienced by organ-

isms, and how this varies. In the absence of better

information, it has commonly to be assumed that the average

levels of ALAN in an area are those experienced by the

organisms that occur there. However, particularly given the

spatial resolutions at which it is mapped, animals can often

behaviourally avoid the typically more heterogeneous pat-

terns of ALAN through the spatial and temporal habitat

and movement choices that they make. In one of the few

examples we are aware of to date, Dominoni & Partecke

[40] show that urban blackbirds do actually experience

longer subjective day lengths as a consequence of ALAN.
3. Individual organisms
The vast majority of studies of the biological impacts of ALAN

concern the effects on individual organisms. These span studies

of gene expression (e.g. [41,42]), physiology (e.g. [43–46]),

foraging [24,47–50], daily movements [51–55], migratory be-

haviour (e.g. [56,57]), reproductive behaviour (e.g. [58–62])

and mortality (e.g. [63,64]). There is almost a complete lack of

published examples in which no effect was documented (but

see [35]), suggesting either that biological impacts are quite per-

vasive or the potential for a severe ‘file drawer0 problem (see

[65]) in the literature. Although a file drawer problem of some

degree would not be surprising, the truth most probably lies

somewhere in between.
What is lacking at this point is a well-developed under-

standing of how the biological impacts of ALAN change with

variation among individual organisms, life stages, spatial-

temporal contexts and with the form of the ALAN. With respect

to the organisms, key challenges are to determine: (i) how

intraspecific responses to ALAN vary among and within classes

of individuals (e.g. sex, age, body size); (ii) how responses to

ALAN vary among a wide array of different species—much

reliance is presently placed on studies of birds and mammals

[66], with almost no knowledge about effects on microorgan-

isms (but see [67]) and plants (but see [68]), and little known

about invertebrates (with the exception of moths; but see [69]

for a review, and [68,70,71]); (iii) how responses to ALAN by

laboratory organisms or humans extrapolate to organisms in

the wild—particularly notable is the evidence of significant

stress and disease impacts in laboratory or domestic situations

[72], and the limited studies of these effects in wild organisms;

and (iv) how metabolic, physiological and behavioural

responses to ALAN influence organismal fitness—studies are

beginning to uncover such fitness consequences [62].

With respect to the ALAN itself, the challenges are to deter-

mine: (i) the form of dose (intensity)-response relationships for

a range of biological impacts of ALAN—almost exclusively,

studies to date have contrasted predominantly two ALAN

treatments (ALAN versus no ALAN), preventing determi-

nation of thresholds and the overall shapes of dose-response

functions; and (ii) the form of spectral-response relationships

for a range of biological impacts of ALAN—again, as with

dose-response relationships, the state-of-the-art experiments

are employing just a few spectral treatments [68,71,73] or typi-

cal light sources for outdoor lighting with different colour

spectra (see [74,75]). Understanding of both dose-response

and spectral-response relationships, and their interaction, will

be critical to providing the best advice on how to limit the

negative biological impacts of ALAN.
4. Populations, communities and ecosystems
While ALAN has been widely documented to have effects on

the physiology and behaviour of individual organisms, the

extent to which this translates into impacts on populations,

communities and ecosystems remains poorly understood.

The principal problem here is simply that the number of

studies that have been conducted is extremely small (see

[27,67,68,71,76,77]).

A challenge in determining the influence of ALAN on

populations is that while it can potentially influence each of

the key demographic parameters (births, deaths, immigration,

emigration), it is difficult to study each of these effects for a

single study species [78]. Those species for which births and

deaths are relatively easy to measure are commonly those for

which immigration and emigration are hard to determine,

and vice versa.

Although there are documented examples of the impacts of

ALAN on prey influencing their predators, and of impacts on

predators influencing their prey (e.g. [50,79,80]), the manner

in which such influences ramify through communities remains

poorly understood [11]. Bennie et al. [68] report experimental

evidence of bottom-up, but not top-down, effects in simple

plant–herbivore–predator communities.

To predict the ecological consequences of ALAN in natural

systems reliably, it is critical to have a better understanding of
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longer term processes that moderate the susceptibility of popu-

lations, communities and ecosystems to an illuminated

environment. Much of the available knowledge is based on

short-term experiments within one generation time (often

days to weeks) that do not allow the consideration of response

mechanisms, such as acclimation, adaptation, physiological,

behavioural and even evolutionary compensatory mechanisms

linked to environmental context and seasonal timing. For

example, an illumination period of more than 1 year was

necessary to cause a clear change in an ALAN-naive freshwater

microbial community [67].

Although largely unknown, it has to be expected that

effects on ecosystem functions and services do occur [7,11].

In the tropics, for example, nocturnal seed dispersers such

as bats are crucial for ecosystem functioning. It was found

that natural forest succession and connectivity of forest

patches may suffer owing to ALAN through a reduction in

nocturnal seed disperser activity in illuminated areas [29].

Another example is microbial communities living in aquatic

sediments. These are highly diverse and play an impor-

tant role in the global carbon cycle. Hölker et al. [67] report

ALAN-induced changes in the species composition of such

sediment communities. This has implications for ecosystem

functions (here carbon mineralization) and could even

shift the system from negative to positive net ecosystem

production at night.

To determine the effects of ALAN on populations, com-

munities and ecosystems most effectively, it is necessary to

establish replicated field experiments. The first such exper-

iments report findings in this special issue—the ECOLIGHT

experiment [68], the ‘Verlust der Nacht0 experiment [67]

and the LightOnNature experiment [71]. Early evidence is

suggesting that there may be marked between-year variation

in the influences of ALAN, emphasizing the importance of

developing or maintaining long-term experiments including

several generations of key species.
5. Conclusion
Over just the last few years there has been an explosion of

research interest in the biological impacts of ALAN (albeit the

topic has deep historical roots; for reviews see [69,81–83]).

This has been fuelled by (i) several policy reports that have

highlighted its likely importance among the plethora of anthro-

pogenic influences on the environment (e.g. [84–86]); (ii) the

need to cut energy costs by altering public lighting systems

and the associated potential for environmental gains [87,88];

(iii) the wide-scale change to LED lighting and calls for

the design of eco-friendly spectral composition of lamps

[14,66,89] and arguably, (iv) the serendipitous contemporaneous

emergence both of major independent funded research pro-

grams experimentally addressing ecological impacts of ALAN

[67,68,71] and of the interdisciplinary ‘Loss of the Night

Network0 funded by the EU COST program. The resultant

body of research work has mapped out the potential breadth

of biological impacts of ALAN, has highlighted many important

targets for future work and has begun to identify ways in which

practical steps can be taken to reduce environmental concerns.

This special issue contributes further to that trajectory.
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