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Abstract
Machine learning, particularly kernel methods, has been demonstrated as a promising new tool to tackle the chal-
lenges imposed by today’s explosive data growth in genomics. They provide a practical and principled approach to
learning how a large number of genetic variants are associated with complex phenotypes, to help reveal the com-
plexity in the relationship between the genetic markers and the outcome of interest. In this review, we highlight
the potential key role it will have in modern genomic data processing, especially with regard to integration with
classical methods for gene prioritizing, prediction and data fusion.
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INTRODUCTION
Kernel methods are based on mathematical functions

that smooth data in various ways. Generally, there

are two major uses for kernel methods. One is kernel

density estimation, a nonparametric method to esti-

mate the probability density function of a random

variable. This differs from our discussion on kernel

methods that focuses on kernel machines and regres-

sion concepts, a nonparametric approach to estimate

the relation between an outcome ‘trait’ variable (e.g.

phenotype such as disease status or a quantitative

health measure) and high-dimension genomic data.

Some advantages of kernel methods, relative to trad-

itional regression models, are allowance for high-

dimension genomic data, nonlinear relations

between outcomes and genomic data, flexible ways

to include structured information and computational

sophistication. In the following sections, we discuss

ways to construct kernels for genomic data; how

kernel machine methods can be viewed in a more

popular regression framework; how kernel

methods can be used to test associations between

high-dimensional genomic data and a trait; how

kernel methods can be used to construct predictive

models; and how structured information, such as gen-

ome annotations, can be built into kernel methods.

KERNELS FORGENOMIC DATA
A basic ingredient for kernel machine learning is a

kernel function. A kernel function converts informa-

tion for a pair of subjects into a quantitative measure

representing their similarity with respect to genetic

information, with the requirement that the function

must create a symmetric positive semi-definite (psd)

matrix when applied to any subsets of subjects. The

psd requirement ensures a statistical foundation for

using the kernel in penalized regression models.

From a statistical perspective, the kernel matrix can

be viewed as a covariance matrix, a point we later

show how this aids in the construction of kernels.

For genome-wide association studies (GWAS), a

popular kernel is a weighted linear kernel. Single

nucleotide polymorphism (SNP) genotypes can be
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coded as G having values 0, 1 or 2 according to the

number of copies of the minor allele. For q SNPs, a

weighted linear kernel for subjects i and j, can be

expressed as Kij ¼
Xq

k¼1
wkGikGjk, where wk

weights each SNP, such as by the standard error of

the estimated minor allele frequency (MAF),

wi ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið1� piÞ

p
, or other types of functions

based on MAF [1], or based on functional informa-

tion. Because a common allele could be carried by

many subjects by chance alone, giving greater weight

to sharing of rarer SNP genotypes can increase the

strength of relation between the kernel matrix and

a trait [2]. Higher-order polynomials could also be

used for kernel functions, to capture nonlinear asso-

ciations of a trait with genotypes. For example, a

quadratic kernel that captures the additive effects of

alleles, the quadratic effects of alleles and first-order

SNP–SNP interactions can be represented as

Kij ¼ ð1þ
Xp

k¼1
wkGikGjkÞ

2. The ‘1’ in this

kernel is analogous to the intercept in regression

models. Higher-order polynomials could be used

to capture higher-order interactions. An exponential

type of kernel could be used, such as a Gaussian

kernel Kij ¼ exp ½�
Xq

k¼1
ðGik �GjkÞ

2=d�, corres-

ponding to radial basis functions. Another popular

kernel for genomic data, determined by ‘alike-

instate’, is based on whether genotypes match, Kij ¼Xp

k¼1
wkð2� jGik �GjkjÞ [1].

Other types of kernels are possible, such as

kernels based on the probability density of attributes,

called Fisher kernels [3–5] or marginalized

kernels [6]. See Schaid [7] for more details and

examples. A useful kernel for a wide range of gen-

omic attributes that accounts for missing data is

the general coefficient of similarity proposed by

Gower [8]. Gower’s general measure of similarity

is a weighted average over observed attributes,

Sij ¼
Xq
k¼1

sijkwðxik; xjkÞ=
Xq
k¼1

dijkwðxik; xjkÞ, where sijk

is the similarity score for subjects i and j for attribute

k, dijk ¼ 1 for an informative or noninformative

comparison (a noninformative comparison is when

data for an attribute are missing for either subject),

and the weight wðxik;wjkÞ can depend not only on

the attribute k, but also on the observed attributes for

subject i and j, for example, giving greater weight for

matches on rare levels than on common levels.

Advantages of this general coefficient are that it

allows for different types of attributes (dichotomous,

categorical and quantitative), it allows use of weights

when summing over attributes and it is psd if there

are no missing data.

KERNELMACHINE AND
ASSOCIATION TEST: FROMA
REGRESSION PERSPECTIVE
The balance of making high-dimensional kernels and

then using them to model the association of traits

with genomic information lies in the ways that stat-

istical models are constrained, such as by penalized

nonparametric regression models, support vector

machines or a Bayesian perspective. For a review

of the ties among these popular statistical approaches

see Schaid [9]. Fortunately, there is a solid mathem-

atical statistical theory that supports the wide utility

of kernel methods and penalized regression, called

‘Reproducing Kernel Hilbert Space’, RKHS

[10, 11].

To provide an intuitive explanation of penalized

nonparametric regression with least squares kernel

machines, consider the usual ordinary least squares

regression setup, Y ¼ Xb1 þGb2 þ e, where Y is

a vector of traits for n subjects, X is an n� p para-

metric design matrix to account for covariates (e.g.

age, gender), b1 is a p dimensional vector, Gis an n
�q matrix for q SNP genotypes, b2 is a q dimensional

vector for the association of genotypes with the trait

and eis a vector of residual errors. For high dimen-

sional data (q > n), this model cannot be fit without

further constraints. One approach is to retain the

parametric covariate matrix X, but replace the para-

metric genetic part, Gb2, with a nonparametric func-

tion, f ðGÞ, and assume constraints on f. This is where

the kernel matrix and the theory of RKHS help. The

kernel matrix K is used to constrain the fit of the

model by defining a function space that contains

possible values of the function f. It can be shown

that f ¼ Ka, where a is a vector of parameters to

estimate. The nonparametric function can be fit by

minimizing, with respect to a, the penalized func-

tion lossðaÞ ¼ ðY � Xb1 � KaÞ
0

ðY � Xb1 � KaÞ
þla

0

Ka, which is a sum of squared residuals with

the penalty la
0

Ka. The tuning parameter, l, bal-

ances the model goodness-of-fit with complexity.

When l ¼ 0, the model interpolates the genetic

data. In contrast, as l!1, the genetic data drop

out, resulting in the usual least squares regression

on only the covariates X.

Determining an optimal tuning parameter, l,

requires cross-validation for complex models.
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However, for quantitative traits and least squares

kernel machines, the penalized model can be con-

veniently fit with standard software for mixed

models as follows. By assuming f has a multivariate

normal distribution, f � Nðmean ¼ 0; var ¼ s2
KKÞ,

and e � Nð0;s2
e IÞ, the resulting maximum likeli-

hood estimators (alternatively restricted maximum

likelihood estimators) ŝ2
K and ŝ2

e map to the

tuning parameter as l ¼ s2
e=s

2
K . Hence, when the

genomic information explains little of the trait vari-

ation, s2
K << s2

e , resulting in large values of l, so

the genomic information essentially drops out of the

model. In contrast, when genomic information ex-

plains much of the trait variation, s2
K >> s2

e , result-

ing in small values of l, the kernel function plays a

large role in smoothing the fit of the data. For further

details see [12–14].

The link of least squares learning machines with

linear mixed models provides a Bayesian view of the

nonparametric function of genetic data, by treating f as

a random vector with mean 0 and covariance matrix

s2
KK, which is closely aligned with using identity-by-

descent to model genetic variance components [15].

This view has served well to devise statistical methods

to test the association of traits with high-dimensional

genomic data. Noting that the structured variance

matrix for the nonparametric function of the SNP

genotype data has the form s2
KK, the association of

a trait with the genomic information can be based on

testing whether s2
K ¼ 0. Based on generalized linear

mixed models, score statistics can be easily computed.

For a regression model with fixed effects as adjusting

covariates in a matrix X, the residuals from fitting this

model, ðY � Xb̂Þ, are used to test their association

with a genomic kernel by a quadratic form statistic,

Q ¼ ðY � Xb̂Þ
0

KðY � Xb̂Þ. For quantitative traits,

this Q is often divided by 2ŝ2
e [12, 13], but not for

binary traits in a method called SKAT (SNP-set/

sequence kernel association test) [1].

The distribution of the quadratic form kernel stat-

istic, Q, is not standard; it is a mixture of independ-

ent chi-squares with mixing weights that depend on

the eigenvalues of the kernel matrix (and the projec-

tion matrix from a regression model of adjusting

covariates). Several approaches have been used to

compute P-values. One is based on using the first

two moments of the null distribution of Q to ap-

proximate a scaled chi-square distribution [13, 16],

an exact method is based on Davies method of in-

verting the characteristic function of the chi-square

mixture [17], and another is based on a saddle-point

method by Kounen [18]. Our unpublished simula-

tions suggest that Davies and Kounen methods pro-

vide similar results, but the scaled chi-square method

can be inaccurate for small P-values.

An advantage of viewing the kernel matrix as a

prior structured covariance matrix is that it can be

used to construct statistics that can be optimized over

a range of scenarios. For example, ignoring adjusting

covariates, Lee et al. [19] emphasizes that viewing the

regression Y ¼ Gb2 þ e with b2 � Nð0;s2
KKÞ pro-

vides a robust score statistic when the direction of

genetic effects (signs of b) are unspecified and pos-

sibly in opposite directions. Yet, when the direction

of effects are all in the same direction (same sign),

it would be more powerful to create a ‘burden’

scored for each subject by creating a weighted sum

of the SNP genotypes for each subject, and use that

sum in a regression equation. This burden test can be

constructed as a kernel that imposes high correlation

among the bs. With this concept, they were able to

construct an optimal statistic that ranges from a

global SKAT test to the burden test, based on a

kernel matrix that includes a correlation coefficient

for the bs.

The benefits of using kernel methods to construct

tests for association of a trait with genomic data have

been realized for rare genetic variants [17], with ex-

tensions to gene–gene interactions [20, 21] and

family-based studies that must account for pedigree

relationships [18, 22, 23]. Because kernel methods

for association testing focus on relatively small gen-

omic regions, expanding kernel approaches to testing

large genomic regions, as well as complex genomic

structured data based on gene pathways, remains a

significant challenge. Kernels that include too much

irrelevant [1] genomic information will likely dilute

the association signal. As discussed in subsequent sec-

tions, kernels for prediction might provide robust

predictions, yet without identifying the underlying

regions most strongly associated. Hence, there is a

trade-off between predictions based on broad gen-

omic kernel methods, versus attempting to identify

the causal regions that ‘drive’ the association.

BUILDING EFFICIENT PREDICTIVE
MODELS FROM LARGE-SCALE
GENOMIC DATA
One important goal in genomic data analysis is to

predict phenotypes—such as disease risk or continu-

ous traits—for different individuals based on known

Kernel methods in Genomics 185
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genomic information. The problem can be forma-

lized as supervised machine learning. A common

practice is to build the prediction model based on

top-ranked markers from GWAS and a few known

susceptibility loci from previous studies. This cherry-

picking strategy shows poor performance in most

cases. It attributes to the fact that top genetic variants

usually explain a small proportion of phenotypic

variation, and genetic studies are inclined to suffer

from low replicability. Alternatively, one can train a

prediction model based on all genome-wide markers

as well as all other available information (features)

such as epigenetic markers. Kernel machine (KM)

methods provide an efficient solution for this strategy

by facilitating feature selection/weighting and pre-

diction in a unified framework.

For the disease risk prediction, the binary classifier

such as the support vector machine may be readily

used. This well-developed method basically seeks to

find the optimal hyperplane that separates the data

into two classes with the maximum margin, where

nonlinear classification is attained by using the kernel

trick. The SVM (support vector machine) methods

offer two appealing advantages in prediction using

high-dimensional genomic data. First, it is able to

deal with all markers simultaneously without apply-

ing initial marker selection or pruning. Second, it

takes into account potential complex relationship

among markers, although it was observed that mod-

eling interaction may not substantially improve pre-

diction [24]. However, SVM is inherently a black

box approach that provides only a classification

rule, and it is hard to extract further information

from the results. Its application in genomic predic-

tion has been limited despite some promising results

[25]. The kernel logistic regression (KLR) [26] is an

alternative classifier with more desirable features. As a

kernelized version of logistic regression, KLR not

only offers a natural estimate of probability but also

integrates nicely with other probabilistic approaches.

In addition, it is easy to extend to multiclass predic-

tion. In fact, the hinge loss function used in the SVM

has a similar shape with the KLR’s loss, which is

more smoothed, and the two methods are expected

to yield similar prediction performance. The differ-

ences observed in their applications are more likely

to come from parameter tuning and kernels rather

than any inherent differences in the methods.

However, the original KLR does not scale well

with large data sets. There are few fast and sparse-

driven versions of KLR available, and not yet seen in

genomic prediction. The KLR is also closely related

to another method called logistic kernel machine

[27]. Despite the similar model setup, the latter was

mainly geared toward facilitating gene testing and

discovery.

Many strategies can be adopted to improve the

whole-genome risk prediction. The first is by ex-

ploiting the block structure that underlies the gen-

omic data. A natural way to incorporate this feature

is to train the predictive model based on multiple

kernel learning (MKL) [28, 29], which will be fur-

ther discussed in the following section. Alternatively,

a two-step procedure can be carried out by training

the KLR at the gene region or pathway level, fol-

lowed by building an ensemble predictive model

based on the individual gene estimates [30]. This is

another example of the flexibility of KLR compared

with other determinist classifiers. To further improve

the prediction accuracy, sparsity can be enforced at

each stage. Given all the estimates from the gene

level, L1-Regularization (penalized on absolute

values of coefficients) is easy to incorporate (using

packages such as glmnet) at the second step. The

implementation of sparse KLR in the first step is,

however, more involved and it is not yet available

in standard software. A computationally more feas-

ible alternative is to use kernelized feature extraction

techniques, e.g. through the ‘kpca’ function in the

‘kernlab’ package. The nonlinear relationships are

then embedded into lower dimension of the feature

space, represented by the dominating eigenvectors of

the kernel matrix. Based on the reduced space, a

further regularized logistic regression at the gene

level can be trained more efficiently—in its primal

form. The relationship between the two-step and

MKL method is closely comparable with that be-

tween the adaptive Lasso and group Lasso problem.

Besides giving a risk score, both strategies help gain

insights into the contribution to the response from

specific genes. Driven partially by the missing herit-

ability problem, predicting complex quantitative

traits (or genetic values) with the aid of genetic mar-

kers is attracting attention in human genetics as well

[31]. KM-based methods have been recently pro-

posed as promising new tools as alternative to trad-

itional best linear unbiased prediction methods that

originate for animal and plant breeding [10, 32, 33].

These new developments, focused on regularization

tuning and general kernel choice, can also be further

improved by taking the genomic block structure into

consideration.
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It should be noted that, however, using KM-based

methods and finer modeling does not necessarily

drastically improve the prediction. The performance

in real data analysis is always limited by factors such as

the sample size and information content embedded

in the collected data, as well as the true pattern

underlying the biological mechanism. On the other

hand, without thwarting the performance, the kernel

approximation can be applied to significantly reduce

the computational cost. Such approximation can be

achieved by lower-dimension basis extraction as

discussed above, or reversely by reconstructing the

kernel based on the low-rank spectrum. Most ker-

nel-based methods, such as the original KLR [26],

have a computational complexity of order O(n3).

This is prohibitive when we have large-scale training

samples. The low-rank spectral reconstruction of a

kernel can be performed by the Nyström method,

which can speed up many regression-oriented algo-

rithms when used together with the matrix inver-

sion lemma [34, 35]. The approximation quality

of these methods is protected by a reasonable and

key assumption that the genomic data, like most of

other large data, live in a lower dimension space

and the spectra of the kernel matrices often decay

quickly.

A schematic diagram of kernel machine methods

for large-scale genomic data described in this article

is shown in Figure 1. Kernel methods enable us to

perform powerful association testing at gene-region/

pathway level and efficient prediction of phenotype

at genome-wide level. The cluster structure of

genome is naturally modeled in the framework,

which can further incorporate transcriptome and

phenome structures as implemented in the structured

mapping (we discuss below). Kernel functions and

the kernel trick are used to map genomic data into

an implicit high-dimensional space, in which a linear

model can be adequate. From this perspective, the

genomic data space can be conceptualized as three

distinct layers of space: the original input data space

(X), the transformed feature space (H) created by the

kernel functions and the reduced kernel space

(through kernel approximation). The methods we

discuss in this article, such as the least-square KM,

SVM/KLR, feature vector machine (FVM) and

sparse additive models (SpAM)/MKL, allow efficient

exploration of data pattern for model fitting in the

feature space H. These methods are the kernel coun-

terpart of the liner mixed model, logistic regression,

lasso and group lasso, respectively. Methods that

work in the reduced kernel space allow building

efficient predictive models and play important roles

in the large-scale data fusion.

MKLANDGENOMIC DATA FUSION
Instead of selecting a fixed single kernel, MKL uses

multiple candidate kernels to map the data into the

other space and achieves better performance by

finding an optimal weight for each base kernel.

As the paradigm is originally proposed as an ex-

tension to the single kernel SVM, MKL has com-

monly been framed as a supervised classifier. In

Gene/Genome based testing and prediction

Structured Mapping (S2M2R)

Genomic data space

“kernel trick”

Kernel PCA 

Kernel approx.

Φ

Gene-based scan

Genome structure

Transcriptome and 

Phenome structure

Transcriptome and

Phenome structure

Least Square KM
SVM; KLR
FVM
SpAM; MKL

LMM
Logistic regression
Lasso
Group lasso

Figure 1: A schematic diagram of kernel methods and machine learning techniques in genomic data analysis.
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essence, MKL seeks to construct a composite

kernel as a liner combination of different kernels,

and model complexity can be controlled by apply-

ing various regularizations on the combination co-

efficients (kernel coefficients). It can be used to

learn which data source or feature cluster is more

informative for the classification/prediction. This

step can be optimized together with the base

kernel parameters simultaneously in a quadratically

constrained linear programing [28]. A common ap-

proach is to impose L1-norm constraint on the

kernel coefficients. Hence, solving the feature se-

lection problem under such setting will be equiva-

lent to group lasso. Therefore, MKL is a hybrid

method that effectively integrates feature selection

and kernel selection, which is done by shrinking

some regression coefficients and kernel coefficients

to zero. It is thus a promising tool for the learning

with structured genomic data as discussed above

and for the integration of data from different

sources—with each kernel being a feature cluster

and a data type, respectively.

When choosing and designing appropriate algo-

rithms in solving MKL, it is important to con-

sider factors that control kernel sparsity, feature

selection in base kernels and the involved

computational complexity. In the genomic data ap-

plications, the number of data types (such as gene

expression, DNA methylation and CNV (copy-

number variation) data) is often limited. However,

in each data type a large number of base kernels can

be constructed based on feature sets that are grouped

by biological functions (such as pathway in-

formation and interaction networks) or by statistical

scoring. Therefore, it is desirable to control

the number of active kernels by choosing regulariza-

tion schemes that encourage the sparsity of

kernel coefficients. This is particularly important in

building predictive models because a large propor-

tion of irrelevant kernels will substantially reduce the

prediction performance. To further improve the pre-

diction performance, a feature screening step can be

performed per kernel before applying MKL. Seoane

et al. [36] recently proposed a feature selection MKL

scheme and showed that the predictive accuracy can

be improved by using kernels, which exclusively use

those genes that are known members of particular

pathways. Overall, the applications of MKL in gen-

omic data are currently limited but will increase

alongside the publicly available large-scale and

Omics data sets such as the TCGA (The Cancer

Genome Atlas) initiative (cancergenome.nih.gov)

[37].

A closely related concept called kernel-based data

fusion [38] or kernel fusion has attracted increased

attention in the recent years. Both data fusion and

the MKL are facilitated by the nice closure property

in kernel algebra: the sum or weighted sum of ker-

nels is another valid kernel. In conjunction with the

kernel trick, kernel matrices generated from hetero-

geneous data can thus be transformed into a global

kernel with unified feature space. Kernel fusion

methods also allow an easy integration of data with

different types and structures in function prediction.

These methods, together and other machine learning

approaches, provide novel tools for gene function

prediction and annotation, which can be further

embedded in gene prioritizing [39, 40]. The concept

of data fusion is, however, rather broad defined to

include all the analyses that integrate data from dif-

ferent ‘views’. In this article, we have focused our

discussion primarily on association test and prediction

learning tasks. See Yu et al. [41] for a detailed intro-

duction of kernel-based data fusion and its applica-

tion in Bioinformatics, including both supervised and

unsupervised methods.

STRUCTUREDASSOCIATION
MAPPING
The main statistical paradigm for structured associ-

ation mapping is a new statistical formalism for

GWAS known as the sparse structured multivariate

and multitask regression (S2M2R) [42] or the struc-

tured input/output regression. This emerging para-

digm departs significantly from the traditional

test-statistics-based [43] or PCA-based [44] methods,

which do not strongly leverage various structural in-

formation present in the genome, phenome and

transcriptome to improve the accuracy of identifying

candidate causal variations in the DNA at a full-

genome scale. S2M2R complements such inadequacy

by exploiting a wide spectrum of omic structures

available with the data as exemplified below using

a principled mathematical formalism that enjoys

strong statistical guarantees and efficient computa-

tional algorithms, rather than using ad hoc heuristics

of unknown asymptotic properties.

An important source of genome structural infor-

mation is genome annotations that include known

transcription factor binding sites, exon regions, trans-

posable element locations and conservation scores.
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These data can be considered as prior knowledge

about SNPs that can be used to guide the search

for disease susceptibility loci. For example, SNPs

in highly conserved regions are more likely to be

true association SNPs, as conserved regions are

often functionally important. Taking advantage of

genome annotation, adaptive multitask lasso

(AMTL), which is an instance of S2M2R, finds

genome-transcriptome or genome–phenome associ-

ations [45]. AMTL defines different penalties to

SNPs according to genome annotation (SNPs with

small penalties are more likely to be selected), and

simultaneously incorporates L1/L2 penalty to per-

form multitask learning on correlated traits.

Related clinical traits or gene expressions as re-

vealed in a phenotypic network or a gene-expression

clustering tend to be influenced by a common and

small subset of SNPs. Biologically, this might be the

case when a mutation in a genetic regulator affects

expression levels of multiple genes in a common

pathway. Such structural information present in the

transcriptome or phenome introduces constraints

on the gene expression matrix or phenotype matrix

(instead of on the genotype matrix as seen in the

genome structure case) of the S2M2R problem, as

leveraged by the GFlasso [46] and the Tree-

lasso[47] algorithms in analyzing GWAS underlying

correlated Asthma traits and clustered expression

traits in yeast, respectively. Such structure bearing

networks or clustering can be obtained using well-

known machine learning techniques based on

correlation or partial correlation or from known

gene–gene or protein–protein interactions that are

experimentally validated.

FEATURE-WISE KERNELIZED
LASSOAND SPARE ADDITIVE
MODELS
Functional influences can be generated by

multiple SNPs in a complex nonadditive fashion,

and such nonadditive effects can be difficult, if pos-

sible, to be detected through linear regression-based

approaches. Recent advancements in kernel-aided

nonparametric regression hold the key to capture

such complex effects. A recent paper [48] showed

that there exists a deep connection between regular-

ized regression-based and margin-based (SVM) pre-

dictive modeling learning, in which a lasso regression

formulation can be recast into an SVM formulation.

Therefore, kernel tricks can be easily introduced.

With particular choices of kernel functions,

nonredundant genetic variations with strong statis-

tical dependence on phenotypes can be found in

terms of kernel-based independence measures such

as the Hilbert–Schmidt independence criterion.

Specifically, suppose we are given a response

vector y 2 R
n and a covariate matrix

X ¼ x 1ð Þ;:::;x nð Þ� �T
¼ x1; :::;xp
� �

2 R
n�p;

where x ið Þ 2 R
n is i-th sample vector (i-th row of X)

and xj 2 R
n is the vector of j-th feature for all sam-

ples (j-th column of X). The lasso optimization

problem is as follows:

min
b2Rp

1

2
ky�Xbk þ l kbk1;

where b 2 R
p is the regression coefficient vector and

l is the regularization parameter. Owing to the

sparse property of l1 norm, the regression coefficients

for some features become exactly zeros, hence

achieving variable selection in linear models. It has

been shown [48] that the above formulation of lasso

problem is equivalent to

min
b2Rp

1

2
bTXTXb

s:t: jxT
j y�Xb

�
j �

l
2
; j ¼ 1; . . . ; p

�

By recognizing that the above problem only de-

pends on the inner product between feature vectors

xj (columns of X), one can use the ‘kernel trick’ on

the feature space (rather than the sample space in

standard applications of kernel methods) to allow

for nonlinear correlation of features. More specific-

ally, the feature vectors xj and the response vector y
are transformed by a nonlinear function c : R

n
!R

d

and the problem (6) becomes

min
b2Rp

1

2
bTKb

s:t: jK xj; y
� �

�
Xp
k¼1

bkK xj; xk
� �

j �
l
2
; j ¼ 1; . . . ; p

where K u; vð Þ ¼ c uð ÞTc vð Þ and Kjk ¼ K xj;xk
� �

.

The above quadratic problem formulation, called

the FVM, can be used to identify dominating

variables that are nonlinearly correlated with the

response. However, the nonlinear dependency rela-

tionships of the response and those selected variables

are largely not characterized explicitly.
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Even with the methods for detecting nonadditive

or interactive effects of SNPs, it is still inadequate to

deal with the scenario where there exists nonlinear

effect of individual SNP on the phenotype of inter-

est, for example, a longitudinal effect on the pheno-

type that can be obvious in time series of certain

clinical traits or gene expression traits. To estimate

the potential nonlinear dependency of the response

variables on the explanatory variables, a more direct

approach is to use additive models [49]

E½YjX1; . . . ;Xp� ¼
Xp
j¼1

fj Xj
� �

;

where f1; . . . ; fp are one-dimensional smooth com-

ponent functions (one for each variable) that can

capture the nonlinear relationships of the response

and features. To perform (nonlinear) variable selec-

tion in additive models, the so-called SpAM [29] was

proposed to impose a sparsity constraint on the index

set of nonzero component functions via regulariza-

tion in function spaces:

min
f1;...;fp

1

2
E Y �

Xp
j¼1

fj Xj
� � !2" #

þ l
Xp
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E f 2

j Xj
� �h ir

;

where the expectation is over joint distribution of

X1; . . . ;Xp;Y
� �

. The second term is the regulariza-

tion functional penalty that behaves like an l1 ball

across different components to encourage functional

sparsity. An iterative procedure based on a cyclic co-

ordinate descent algorithm was developed to solve

the above optimization problem. The advantage of

the SpAM approach is that it is symbolically almost

identical to the lasso formulation. Therefore, it is

feasible to incorporate structural information as dis-

cussed in the previous section to further improve

its statistical power, as demonstrated in Group

SpAM [50].

The widely used MKL [29] methods, as discussed

earlier, is typically for learning a kernel Gram matrix

in a predictive model, and therefore cannot be dir-

ectly used for feature selection problems (i.e. the

kernel-induced transformation is over all genome

variations, and the selection is made over the choice

of kernel transformations, not over variables in the

genomic inputs). Under certain choice of the kernel

function such as an element-wise additive basis, it can

be shown that MKL is equivalent to SpAM [51].

Alternatively, it is also possible to apply the kernel

for feature transformation as in FVM, instead of for

data transformation, so that transformed features (i.e.

genome variations) can be put under selection.

DISCUSSION
We conclude by briefly discussing the main advan-

tages and the necessity for future research in applying

kernel machine methods for large-scale genomic data

analysis. First, KM methods are readily integrated

with other probabilistic approaches, and most of

them can be formulated and easily understood by

viewing them from a regression perspective.

Although conceived as a data-driven technology,

KM also incorporate knowledge-driven factors,

such as the choice of kernels and weights, and the

structure of genomic information portrayed by pub-

lically available annotation. Second, they are compu-

tationally friendly. The kernel trick allows an

efficient search in the higher dimensional space,

while the related estimation problems are often cast

as convex optimization problems that can be solved

by many established algorithms and packages. As dis-

cussed above, the block structure of the genomic

data should be taken into account to achieve both

computational efficiency and statistical efficiency.

Lastly, and most emphatically, all the KM and ma-

chine learning methods should not work as a black

box, but rather an open and extensible framework

that adapts nicely to many tasks in processing modern

genomic data. It is most meaningful to build an in-

tegrative analysis pipeline that performs gene discov-

ery and prediction, as well as data fusion across

different platforms and sources. One main limitation

of kernel methods is the high computational cost

involved in the learning, which is at least quadratic

(and often higher) in the numbers of training sam-

ples. With the volume of genomic data growing

more rapidly than ever, additional research on

topics such as the kernel approximation (e.g. the

Random Fourier and Nyström approximation [34,

52, 53]) for genetic designs need to be conducted to

further improve the scalability to sample size and

dimensionality. Another drawback stems from the

fact that it is difficult to predefine an optimal

kernel function (functions) for a specific application

given the complex data structure and data types (e.g.

data generated from different platforms) in

genomics. Therefore, methods that facilitate MKL
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and ensemble learning [54] should also be con-

sidered in the future to enable the scalability to

data sources and heterogeneity. How best to use

prior knowledge to structure the genomic informa-

tion for increased power will become increasingly

important as biological annotation improves in qual-

ity and quantity.

Key Points

� Kernel machine learning methods provides promising tools for
large-scale and high-dimensional genomic data processing.

� KM methods can also be viewed from a regression perspective
and can be integrated with classical methods for gene prioritiz-
ing, prediction and data fusion.

� Need to further improve the scalability to sample size, dimen-
sionality and data heterogeneity.
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