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Abstract
Accurate deleteriousness prediction for nonsynonymous variants is crucial for distinguishing pathogenic mutations from
background polymorphisms in whole exome sequencing (WES) studies. Although many deleteriousness prediction methods
have been developed, their prediction results are sometimes inconsistent with each other and their relative merits are still
unclear in practical applications. To address these issues, we comprehensively evaluated the predictive performance of 18
current deleteriousness-scoring methods, including 11 function prediction scores (PolyPhen-2, SIFT, MutationTaster, Mutation
Assessor, FATHMM, LRT, PANTHER, PhD-SNP, SNAP, SNPs&GO andMutPred), 3 conservation scores (GERP++, SiPhy and PhyloP)
and 4 ensemble scores (CADD, PON-P, KGGSeq and CONDEL). We found that FATHMM and KGGSeq had the highest
discriminative poweramong independent scores and ensemble scores, respectively.Moreover, to ensure unbiased performance
evaluation of these prediction scores, we manually collected three distinct testing datasets, on which no current prediction
scores were tuned. In addition, we developed two new ensemble scores that integrate nine independent scores and allele
frequency. Our scores achieved thehighest discriminative power comparedwith all the deleteriousness prediction scores tested
and showed low false-positive prediction rate for benign yet rare nonsynonymous variants, which demonstrated the value of
combining information from multiple orthologous approaches. Finally, to facilitate variant prioritization in WES studies, we
have pre-computed our ensemble scores for 87 347 044 possible variants in thewhole-exome andmade thempublicly available
through the ANNOVAR software and the dbNSFP database.

Introduction

One of the greatest challenges in whole exome sequencing (WES)
studies is the ability to distinguish pathogenic mutations from a

large number of background variations. A common strategy is to
filter for novel nonsynonymous single nucleotide variants
(nsSNVs) that are found inpatients and computationally predicted
to be deleterious, which relies on the accuracy of the prediction
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methods (1). Multiple algorithms were developed for predicting
such deleteriousness based on different information of the vari-
ant, such as its sequence homology (2), protein structure (3,4)
and evolutionary conservation (5). These methods demonstrated
themselves to be useful, however, theyarenotdirectly comparable
with each other due to the difference in information and algo-
rithms they used for predicting deleteriousness. Therefore, it is
still unclear which one(s) to use for prioritizing nsSNVs in WES-
based studies of human diseases to minimize both false-positive
and false-negative prediction rates.While a few comparison stud-
ieshave beendone (6–10), the range ofmethodsunder comparison
and/or the size of benchmarkdataset often limited their scope and
generalizability for WES studies.

One of the keys to a fair comparison lies in unbiased testing
datasets. To ensure such fair comparison, we manually curated
three distinct testing datasets, on which no prediction methods
compared were tuned (Table 1). On these three testing datasets,
we performed a comprehensive comparative study of 18 deleter-
iousness prediction scoring methods, including 11 function pre-
diction scores [PolyPhen-2 (v2.2.2, released in Feb, 2013) (15), SIFT
(Human_db_37_ensembl_63, released inAugust, 2011) (16), Muta-
tionTaster (data retrieved in 2013) (8),MutationAssessor (release 2)
(2), FATHMM (v2.3) (17), LRT (November, 2009) (6), PANTHER (ver-
sion 6.1) (18), PhD-SNP (version 2.0.6) (19), SNAP (version 1.0.8)
(20), SNPs&GO (21) and MutPred (version 1.0) (22)], 4 ensemble
scores [CADD (23), PON-P (24), KGGSeq (version 0.2) (25) and CON-
DEL (26)] and 3 conservation scores [GERP++ (27), SiPhy (28)
(http://www.broadinstitute.org/mammals/2x/siphy_hg19/) and
PhyloP (phyloP46way_placental) (29) (http://hgdownload.soe.
ucsc.edu/goldenPath/hg19/phyloP46way/placentalMammals/)]
(Table 2) on their performance to prioritize nsSNVs in WES stud-
ies. Here function prediction scores refer to scores that predict
the likelihood of a given nsSNV causing deleterious functional
change of the protein; conservation scores refer to scores that
measure the conservativeness of a given nucleotide site across
multiple species and ensemble scores refer to scores that com-
bine information of multiple component scores. To facilitate
more accurate variant prediction, we also developed and evalu-
ated two ensemble-based approaches, support vector machine
(SVM) (30) and logistic regression (LR) (31), that integratemultiple
scoring methods for which whole-exome data are available.

Results
Curation of training and testing datasets

To compare the performance of the prediction methods, we con-
structed four datasets; one for training our SVM and LR model
and three for testing their performance against all the deleter-
iousness prediction methods. Quality of machine learning mod-
els, such as SVM and LR, can be influenced by selection of

component scores as well as the selection of parameters. To op-
timize the selection of component scores and parameters for our
SVM and LR model, we collected training dataset, on which we
performed feature selection and parameter tuning for our mod-
els. Training dataset is composed of 14 191 deleteriousmutations
as true positive (TP) observations and 22 001 neutralmutations as
true negative (TN) observations, all based on the Uniprot data-
base (11,12). Note that the TNobservations contain both common
[maximum minor allele frequency (MMAF) >1% in diverse popu-
lations of the 1000 Genomes project (32)] and rare (MMAF ≤1%)
variants to ensure the generalizability of our model. To reduce
potential bias in our comparison, we manually collected testing
datasets from three distinct contexts. Testing dataset I consists
of 120 TP observations that are deleterious variants recently
reported to cause Mendelian diseases, diseases caused by
single-gene defects, with experimental support in 57 recent pub-
lications (after 1 January 2011) from the journal Nature Genetics
and 124 TN observations that are common neutral variants
(MMAF >1%) newly discovered from participants free of Mendel-
ian disease from the Atherosclerosis Risk in Communities (ARIC)
study (32) via the Cohorts for Heart and Aging Research in Gen-
omic Epidemiology (CHARGE) sequencing project (14,33). Testing
dataset II is derived from the VariBench (13) dataset II, a bench-
mark dataset used for performance evaluation of nsSNV scoring
methods. Because VariBench dataset II contains mutations that
overlap our training dataset, we removed these mutations and
curated 6279 deleterious variants as our TP observations and
13 240 common neutral variants (MMAF >1%) as our TN observa-
tions. As rare variants may have different features compared
with common variants in the populations (34), a prediction
method that puts too much weight on those features may not
perform well in separating rare deleterious variants from rare
neutral variants. In order to evaluate the performance of predic-
tionmethods on rare variants,we also prepared testing dataset III
that contains 10 164 rare neutral mutations (singletons) from 824
European Americans from the cohort random samples of the
ARIC study (32) via the CHARGE sequencing project (14,33).
Note that as testing dataset I and III were collected from recently
available projects and publications and that testing dataset II was
used solely for benchmark in performance comparison studies,
they are unlikely to be used for tuning current prediction meth-
ods evaluated in our study. Even though prediction methods,
such as FATHMM, applied Varibench datasets (from which our
testing dataset II was derived), they only used the data for
performance evaluation purpose, not for model tuning (10).
Therefore, to our knowledge, our testing datasets are unbiased
benchmark datasets to ensure a fair comparison between differ-
ent prediction methods. A summary of the datasets is presented
in Table 1, and the complete datasets are available in Supplemen-
tary Material, Table S8.

Table 1. Description of the four datasets used in our study

Dataset Training dataset Testing dataset I Testing dataset II Testing dataset III

TP 14 191 120 6279 0
TN 22 001 124 13 240 10 164
Total 36 192 244 19 519 10 164
Source Uniprot database (11,12) Recent Nature Genetics publications

for TP variants
VariBench dataset II (10,13) without

mutations in training dataset
CHARGE database (14)

CHARGE database (14) for TN variants

TP: true positive, number of deleterious mutations that were treated as TP observations in modeling. TN: true negative, number of non-deleterious mutations that were

treated as true negative observations in modeling. Total: total number of mutations for each dataset (Total = TP + TN).
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Prediction scores

We obtained nine deleteriousness prediction scores, including
six function prediction scores (PolyPhen-2, SIFT, MutationTaster,
Mutation Assessor, FATHMM and LRT) and three conservation
scores (GERP++, SiPhy and PhyloP), for all variants in all datasets.
Additionally, we obtained nine more deleteriousness prediction
scores (PANTHER, PhD-SNP, SNAP, SNPs&GO, MutPred, PON-P,
KGGSeq, CONDEL and CADD) for testing dataset I and three
more scores for testing datasets II and III (KGGSeq, CONDEL and
CADD) (Table 2). Note that we were not able to harvest all 18 de-
leteriousness prediction scores for all four datasets, mostly due
to the accessibility of most of scores from web interface and the
speed of obtaining these scores for relatively large datasets.
Nevertheless, we still successfully obtained nine deleteriousness
prediction scores for all datasets that we used, which is already
the largest in scale for similar comparison studies.

To construct our own ensemble scores, we used these nine
scores (SIFT, PolyPhen-2, GERP++, MutationTaster, Mutation

Assessor, FATHMM, LRT, SiPhy and PhyloP) for all potential
human nsSNVs collected in the dbNSFP database, along with
the MMAF observed in diverse populations of the 1000 Genomes
project (32), as our component scores. After imputingmissing va-
lues for observations in training dataset, we employed SVM and
LR algorithms for computing these two ensemble scores and
evaluated three kernel functions (linear, radial and polynomial
kernel) for the SVM approach, all based on default parameters
(Table 3).

From univariate analysis of nine deleteriousness prediction
scores and MMAF of training dataset, we found that all of the
10 predictors showed significant difference in median scores be-
tween TP and TN groups, suggesting that all 10 predictors work
well in separating TP observation from TN observations (P < 0.01,
Wilcox rank sum test with Bonferroni adjustment) (Supplemen-
tary Material, Table S1 and Fig. S1). Moreover, all deleteriousness
prediction scores showed positive association with deleterious-
ness while MMAF showed negative association with deleterious-
ness (Supplementary Material, Table S1). This is consistent with

Table 2: Summary of deleteriousness prediction methods analyzed in our study

Name Category Score used for analysis Deleterious
threshold

Information used

SIFT Function prediction 1− Score >0.95 Protein sequence conservation among homologs
PolyPhen-2 Function prediction Score >0.5 Eight protein sequence features, three protein structure

features
LRT Function prediction Score * 0.5 (if Omega ≥1) or

1− Score * 0.5 (if Omega <1)
P DNA sequence evolutionary model

MutationTaster Function prediction Score (if A or D) or 1− Score
(if N or P)

>0.5 DNA sequence conservation, splice site prediction,
mRNA stability prediction and protein feature
annotations

Mutation Assessor Function prediction (Score-Min)/(Max −Min) >0.65 Sequence homology of protein families and sub-
families within and between species

FATHMM Function prediction 1− (Score-Min)/(Max −Min) ≥0.45 Sequence homology
GERP++ RS Conservation score Score >4.4 DNA sequence conservation
PhyloP Conservation score Score >1.6 DNA sequence conservation
SiPhy Conservation score Score >12.17 Inferred nucleotide substitution pattern per site
PON-P Ensemble score Score P Random forestmethodology-based pipeline integrating

five predictors
PANTHER Function prediction Score P Phylogenetic trees based on protein sequences
PhD-SNP Function prediction Score P SVM-based method using protein sequence and profile

information
SNAP Function prediction Score P Neural network-based method using DNA sequence

information as well as functional and structural
annotations

SNPs&GO Function prediction Score P SVM-based method using information from protein
sequence, protein sequence profile and protein
function

MutPred Function prediction Score >0.5 Protein sequence-based model using SIFT and a gain/
loss of 14 different structural and functional
properties

KGGSeq Ensemble score Score P Filtration and prioritization framework using
information from three levels: genetic level, variant-
gene level and knowledge level

CONDEL Ensemble score Score >0.49 Weighted average of the normalized scores of five
methods

CADD Ensemble score Score >15 63 distinct variant annotation retrieved from Ensembl
Variant Effect Predictor (VEP), data from the ENCODE
project and information from UCSC genome browser
tracks

Score indicates raw score for the corresponding function prediction/conservation score output. Max/Min indicates the max/min prediction score. Classification outcome

for deleterious threshold was used for qualitative prediction score analysis. P means that categorical prediction outcome given by the prediction method was used for

dichotomizing prediction outcomes.
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previous findings. Higher prediction score from deleteriousness
prediction tools indicates higher risk of deleteriousness, while
higher MMAFmeans that themutation is common and therefore
is oftentimes less likely to be deleterious.

We next evaluated the extent of collinearity in the training
data, because high levels of collinearity may affect the stability
of prediction models and inflate variance of parameter estima-
tion. From the results, only PolyPhen-2 HVAR and PolyPhen-2
HDIV, two scores from PolyPhen-2 trained on different datasets,
raised our concern, because they have the highest collinearity
and therefore may affect the stability of our prediction models
(Pearson correlation coefficient = 0.946). To further examine
their effect on model stability, we applied stepwise model selec-
tion. Results suggested that we include both PolyPhen-2 HVAR
and HDIV into final prediction models. As for LR model, reduced
model generated from the model selection procedure included
both scores (Supplementary Material, Table S6). As for SVM
model, to increase stability of our final models, we applied regu-
larization on linear, radial and polynomial SVM models. From
5-fold cross-validation results, we chose parameter cost = 1 to
penalize L2 normofweights of all predictors to ensure robustness
of our final models (Supplementary Material, Fig. S5).

Comparison of quantitative predictions

We compared the quantitative predictions of the deleteriousness
prediction methods from five different aspects. First, to estimate
the relative contribution of each prediction score in our SVM and
LR models, we applied multiple LR on these nine prediction
scores and MMAF. The results showed that when evaluated by
the estimated coefficients in our LR model, all deleteriousness
prediction scores (except for SIFT andMutationTaster), conserva-
tion scores andMMAF were statistically significant predictors for
estimating deleteriousness of the mutation in our training data-
set at α = 0.05 significance level, after adjusting for remaining
scores in the multiple LR model. This suggests that although

most of the function prediction scores have already taken certain
conservation measures into account, independent conservation
scores can still bring additional information to the ensemble
score. Among all significant deleteriousness prediction scores,
FATHMM contributed the most to estimating deleteriousness.
The adjusted odds of a mutation being deleterious is 4.6 times
higher than being neutral for 0.1 increase of FATHMM score
when remaining scores in the multiple LR model remain con-
stant (P < 0.001, Wald-test) (Supplementary Material, Table S2).

Second, we compared the predictive performance of individ-
ual deleteriousness prediction scores altogether, including func-
tion prediction scores and conservation scores, using area under
the curve (AUC) score from receiver operating characteristic (ROC)
plots and true negative rate (TNR, or specificity) as measure-
ments. We found that FATHMM performed the best in all three
testing datasets, as expected. The probability of a TP observation
having a higher predicted deleterious score than a TN observa-
tion is the highest for FATHMM. In testing dataset I, the probabil-
ity of a TP observation having a higher predicted FATHMM score
than a TNobservation is 0.87 [AUC = 0.87, 95% confidence interval
(CI): 0.82–0.92], which was statistically significantly better than
the worst performing prediction score, PANTHER (AUC = 0.65,
95% CI: 0.58–0.72). FATHMM also achieved the highest perform-
ance in testing dataset II (AUC = 0.91 for FATHMM, 95% CI: 0.9–
0.91) (Fig. 1). In testing dataset III that contains only rare neutral
variants, normalized FATHMM median score is the second low-
est, indicating a relatively high tendency of correctly classifying
TN variants. Note that even though PolyPhen-2 HVAR has a
lower normalized median score, it did not achieve as high speci-
ficity as FATHMM (shown below). Therefore, FATHMM demon-
strated itself to be consistently the best performing individual
deleteriousness prediction method for separating deleterious
variants from neutral variants in its quantitative predictions.

Third, within all individual deleteriousness prediction meth-
ods, we compared function prediction methods with conserva-
tion methods. We found that function prediction methods tend
to perform better than conservation scores, especially in separat-
ing common neutral mutations from deleterious mutations.
From ROC plots that grouped function prediction scores and con-
servation scores, we found that the average probability of a TP
variant having a higher predicted deleterious score than a TN
variant is statistically significantly higher for function prediction
scores than for conservation scores. Indeed, the average probabil-
ity of a TP variant having a higher predicted deleterious score
than a TN variant is 0.73 for function prediction scores (AUC =
0.73, 95% CI: 0.72–0.75) in testing dataset I and is 0.71 (AUC = 0.71,
95% CI: 0.7–0.71) in testing dataset II, while for conservation pre-
diction scores the probabilities are only 0.66 (AUC = 0.66, 95% CI:
0.62–0.71) and 0.6 (AUC = 0.6, 95% CI: 0.6–0.61) in these two data-
sets (Supplementary Material, Fig. S3).

Fourth, we compared existing ensemble methods, both with
themselves and with their individual component scores. We
found that KGGSeq performed the best and it was the only exist-
ing ensemble scores that outperformed all of its component
scores. The probability of a TP variant having a higher KGGSeq
score than a TN variant is 0.85 in testing dataset I (AUC = 0.85,
95% CI: 0.81–0.90) and is 0.89 in testing dataset II (AUC = 0.89,
95% CI: 0.89–0.90). Not only did it achieve the highest perform-
ance among all existing ensemble scores, it also outperformed
all its component scores (SIFT, PolyPhen-2, LRT, MutationTaster
and PhyloP) for separating deleterious variants from common
neutral variants. For example, in testing dataset II, the probability
of a TP variant having a higher predicted deleterious score than a
TN variant is 0.89 (AUC = 0.89, 95% CI: 0.89–0.90) for KGGSeq,

Table 3. Missing values for four datasets (%)

Dataset Training
dataset
(%)

Testing
dataset I
(%)

Testing
dataset II
(%)

Testing
dataset III
(%)

SIFT 6.91 2.87 3.83 3.96
PolyPhen-2 3.79 2.87 0.55 0.02
LRT 10.49 13.93 7.97 11.33
MutationTaster 0.04 0.41 0.10 0.11
Mutation
Assessor

1.51 3.69 2.23 2.67

FATHMM 4.05 5.73 3.48 6.69
GERP++ 0 0 0 0.01
PhyloP 0 0 0 0
SiPhy 0 0 0 0.285
PON-P NA 13.93 NA NA
PANTHER NA 47.95 NA NA
PhD-SNP NA 6.56 NA NA
SNAP NA 9.02 NA NA
SNPs&GO NA 15.98 NA NA
MutPred NA 7.37 NA NA
KGGSeq NA 0.82 0.05 0.82
CONDEL NA 0.41 0.0003 0.32
CADD 0 0 0 0

(%), The percentage of missing values for each prediction scores for the

corresponding dataset. NA, not available.
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Figure 1. ROC curves for existing prediction scores and our ensemble scores. These two plots illustrated performance of quantitative prediction outcomes for existing

prediction scores and our ensemble prediction scores evaluated by the ROC curve and AUC score for the ROC curve. Higher AUC score indicates better performance.

Top plot used testing dataset I as benchmark dataset and bottom plot used testing dataset II as benchmark dataset (see Table 1). 95% CI indicates 95% confidence

interval computed with 2000 stratified bootstrap replicates.
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which is statistically significantly higher than all its component
scores (AUC = 0.78, 95% CI: 0.77–0.79 for SIFT; AUC = 0.76, 95% CI:
0.76–0.77 for PolyPhen-2 HDIV; AUC = 0.77, 95% CI: 0.78–0.8 for
PolyPhen-2 HVAR; AUC = 0.67, 95% CI: 0.66–0.67 for LRT; AUC =
0.71, 95% CI: 0.7–0.71 for MutationTaster and AUC = 0.67, 95% CI:
0.66–0.68 for PhyloP). In testing dataset I, KGGSeq also performed
better than all its component scores (AUC = 0.85, 95%CI: 0.81–0.9),
but some of the differencewas not statistically significant. On the
other hand, other existing ensemble scores achieved only inter-
mediate performance compared with its component scores.
For example, the probability of a TP variant having a higher pre-
dicted deleterious score than a TN variant is 0.77 for CONDEL
(AUC = 0.77, 95% CI: 0.76–0.78) in testing dataset II, which was
statistically lower than its component score Mutation Assessor
(AUC = 0.8, 95% CI: 0.8–0.81). In testing dataset I, CONDEL also
achieved intermediate performance (AUC = 0.79, 95% CI: 0.73–
0.85), which is worse than two of its component scores but the
difference was not statistically significant (Fig. 1).

Moreover, we have found that ensemble scores that integrate
component scores that are specific to protein features may
perform better than ensemble scores that integrate a large
amount of unfocused component scores. For example, KGGSeq,
which integrated five component scores (SIFT, PolyPhen-2, LRT,
MutationTaster and PhyloP), performed better than CADD,
which integrated more than 40 component scores (including de-
leteriousness prediction scores such as SIFT, PolyPhen-2, GERP++
and many more whole genome annotation information such as
reference allele, GC content andmethylation level, which are be-
yond the scope of our comparison) in both testing datasets.
Nevertheless, our results show that integration of several deleter-
iousness prediction tools may be helpful in identifying deleteri-
ous mutations from common neutral mutations. Therefore, we
developed our own ensemble scores LR and SVM that integrated
10 component scores to test this hypothesis and the results are
discussed below.

Fifth, we compared our two ensemble methods, both with
each other andwith all other existing deleteriousness prediction
methods. Our two ensemble scores both integrated nine deleter-
iousness prediction scores including SIFT, PolyPhen-2, GERP++,
MutationTaster, Mutation Assessor, FATHMM, LRT, SiPhy and
PhyloP aswell as theMMAF (to allow for the contribution of allele
frequency to deleterious mutation discovery), but they used
slightly different algorithms (LR for LR score and SVM with
three different kernel functions for three SVM scores) to inte-
grate their component scores. From our results, our ensemble
scores not only outperformed all its components, but also out-
performed all other deleteriousness prediction methods evalu-
ated. Indeed, the probability of a TP variant having a higher
predicted LR score than a TN variant is 0.92 in testing dataset I
(AUC = 0.92, 95% CI: 0.88–0.96) and in testing dataset II (AUC =
0.94, 95% CI: 0.93–0.94), both followed by radial SVM (AUC = 0.91
with 95% CI: 0.87–0.95 for testing dataset I and AUC = 0.93 with
95% CI: 0.92–0.93 for testing dataset II), indicating excellent sep-
aration of TP and TNvariants. Both LR score and radial SVM score
have significantly larger AUCs comparedwith FATHMM (the best
individual deleteriousness prediction score tested) and KGGSeq
(the best existing ensemble score tested) in testing dataset I
(P-values < 0.02, one-sided test with 2000 bootstrap) and testing
dataset II (P-values of 2:20 × 10�16, one-sided test with 2000
bootstrap). In testing dataset III with only neutral variants, LR
achieved the lowest median score (0.195) among all normalized
deleteriousness scores, indicating the highest tendency of
correctly classifying TN observations (Supplementary Material,
Figs S2 and S4).

Comparison of qualitative predictions

Formany function prediction tools, such as SIFT, MutationTaster
and PolyPhen-2, categorical predictions are available in addition
to quantitative function scores. For conservation scores, we de-
termined their optimal cutoffs for their qualitative predictions
based on their ROC curves for the training data (see Materials
andMethods section). Therefore, we dichotomized such categor-
ical prediction outcomes and compared their performance using
a series of differentmeasurements, such asMatthews correlation
coefficient (MCC), true positive rate (TPR, or sensitivity) and TNR,
for testing datasets I and II, which contained both TP and TN ob-
servations. As testing dataset III contained only TN observations,
we applied TNR as the sole measurement for qualitative predic-
tion performance. Our results showed that existing deleterious-
ness prediction methods tend to have unstable performance in
different testing datasets and on different measurements of
qualitative outcomes. For example, the best agreement between
binary prediction from deleteriousness prediction tools and the
actual observation was achieved by MutationTaster in testing
dataset I (MCC = 0.7), which did not retain in testing dataset II
(MCC = 0.4 for MutationTaster, which is the 10th among the 17
scores compared). Similar results were also observed when
using TPR and TNR asmeasurement. For example, while KGGSeq
correctly classified the most TP variants in testing datasets I
(TPR = 0.96) and II (TPR = 0.98), it failed to maintain its predictive
power in correctly classifying TN variants (TNR = 0.52 and 0.35
for these two datasets, respectively) (Fig. 2). Indeed, its TNR
became even lower when evaluated on testing dataset III (0.22)
(Supplementary Material, Fig. S4).

On the other hand, our ensemble scores remained to be high
performing methods by various performance measurements in
all three testing datasets. For example, LR achieved the second
best agreement between binary prediction from deleteriousness
prediction tools and the actual observation in testing dataset I
(MCC = 0.68) and the best agreement in testing dataset II (MCC =
0.71), all followed by radial SVM (MCC = 0.66 for testing dataset I,
MCC = 0.7 for testing dataset II). Similar results were also ob-
served when using TPR and TNR asmeasurements. For example,
in testing datasets I and II, LR correctly classified >80% of TP var-
iants (TPR = 0.8, 95% CI: 0.76–0.84 for testing dataset I, TPR = 0.86,
95% CI: 0.855–0.865) and >85% of TN variants (TNR = 0.89, 95% CI:
0.86–0.92 for testing dataset I, TNR = 0.85, 95% CI: 0.845–0.855 for
testing dataset II) (Fig. 2). In classifying rare neutral variants, LR
and SVMwith radial kernel also achieved excellent performance.
They correctly classified the most TN variants in testing dataset
III (TNR = 0.84 for LR, 95%CI: 0.83–0.85, TNR = 0.85 for SVM, 95%CI:
0.84–0.86), statistically significantly higher than the third best
tool, FATHMM (TNR = 0.79, 95%CI: 0.78–0.80) (SupplementaryMa-
terial, Fig. S4). This implies that large-scale ensemble methods
may be able to take advantage of different deleteriousness pre-
diction tools and achieve a more balanced qualitative prediction
performance than individual tools.

Parameter tuning and feature selection for ensemble
approaches

All the analyses described above on ensemble approaches (LR
and SVM) used default parameters. To assess whether these
parameters can be optimized to achieve substantially better
performance, we performed 5-fold cross validation on training
dataset. Based on the AUC values of ROC curves for different par-
ameter cocktails (SupplementaryMaterial, Fig. S5), we found that
the performance of default parameter for SVMwith linear, radial
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Figure 2. Sensitivity and specificity plots for existing prediction scores and our ensemble scores. These two plots illustrated the performance of qualitative prediction

outcomes of existing prediction scores and our ensemble prediction scores, evaluated by sensitivity and specificity. Higher sensitivity/specificity score indicates better

performance. Top plot used testing dataset I as benchmark dataset and bottom plot used testing dataset II as benchmark dataset (see Table 1). The tegend table

showed various qualitative prediction performance measurements for each prediction tool. MCC is a correlation coefficient between the observed and predicted

binary classification, ranging from −1 to 1, where 1 indicates perfect prediction, −1 indicates total disagreement between prediction and observation.

MCC ¼ ðTP × TN� FP × FNÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞðTP + FNÞðTN + FPÞðTN + FNÞp� �� �
; where TP, TN, FP and FN denotes true positive, true negative, false positive and false negative,

respectively. ACCdenotes accuracy; ACC ¼ ððTPþTN)=ðTPþ FPþ TNþ FN)). TPR denotes true positive rate, or sensitivity; TPR ¼ ðTP=ðTPþ FNÞÞ. TNRdenotes true negative

rate, or specificity; TNR ¼ ðTN=ðTNþ FPÞÞ. FPR denotes false-positive rate; FPR ¼ ðFP=ðTNþ FPÞÞ . FNR denotes false-negative rate; FNR ¼ ðFN=ðTPþ FNÞÞ. PPV denotes

positive predictive value; PPV ¼ ðTP=ðTPþ FPÞÞ. NPV denotes negative predictive value; NPV ¼ ðTN=ðTNþ FNÞÞ. FDR denotes false discovery rate; FDR ¼ ðFP=ðFPþ TPÞÞ.
For each qualitative prediction performance measurement, top three performance scores were highlighted. The brighter the highlight color, the better the performance.
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and polynomial kernel was rather similar to that of other param-
eter settings, indicating that LR and SVM have already reached
optimal performance using default settings so that the uses of
default settings for these two models were justified. To examine
whether ourmodel can be further enhanced using different com-
binations of prediction scores, we applied stepwise feature selec-
tion and generated a reducedmodel, which lacksMutationTaster
score. From step-wise feature selection, all prediction scores ex-
cept for MutationTaster (SIFT score, PolyPhen-2 HDIV, PolyPhen-
2, LRT, Mutation Assessor, FATHMM, GERP++, PhyloP, SiPhy and
MMAF) were chosen to be the optimal feature combination with
Akaike information criterion (AIC) of 16483.91 (Supplementary
Material, Table S6). To compare the performance of this reduced
model with our finalmodel, which contains all prediction scores,
we calculated the accuracy and AUC value of the ROC curve of
both models. Results showed that these two models share the
same accuracy (accuracy = 0.91 for both reduced model and our
final model) and that there is no statistical significant difference
between the reducedmodel and our final model (AUC = 0.97, 95%
CI: 0.968–0.971 for both models) (Supplementary Material,
Table S7). Thus, the only difference in predictive performance be-
tween our final model and the reduced model with the optimal
feature combination lies in the inclusion of MutationTaster.
MutationTaster comprises unique features, such as splice site
analysis, protein length analysis and direct or indirect protein
feature analysis, which could potentially enhance our model in
the future when more training data are available. Therefore, to
allow for information of unique feature analysis from Mutation-
Taster, we included it into our final model, which achieved the
optimal performance as with the reduced model with the
optimal combination of prediction scores.

Discussion
In this study, we evaluated the predictive performance of 18 ex-
isting predictionmethods and 2 newensemble predictionmeth-
ods on 3 manually curated testing datasets. Among the existing
methods, FATHMM achieved the highest discriminative power
as evaluated by AUC values of ROC curve. However, our two en-
semblemethods that incorporated nine deleteriousness predic-
tion scores and MMAF, achieved the highest discriminative
power and outperformed popular tools such as SIFT, GERP++
and PolyPhen-2. Our results demonstrated the value of combin-
ing information from multiple deleteriousness prediction
methods. To facilitate variant prioritization in exome sequen-
cing studies, we also merged mutations all but testing dataset
III, generated our whole-exome ensemble-based prediction
scores using LR and SVM algorithms and made the prediction
scores for 87 347 044 possible variants in the whole-exome
publicly available in ANNOVAR (35) software and dbNSFP data-
base (36,37).

Collinearity is an indicator of redundancy of prediction
method pairs. To estimate such redundancy and avoid numeric-
al instability of our model, we performed collinearity analysis
on current 18 scoring methods and MMAF. Results show that
PolyPhen-2 HDIV and PolyPhen-2 HVAR scores have the highest
linear correlation. PolyPhen-2 HDIV and PolyPhen-2 HVAR
are positive correlated with each other; every 1 increase of
PolyPhen-2 HDIV score is associated with 0.946 increase
of PolyPhen-2 HVAR score (Pearson correlation coefficient =
0.946 evaluated on testing dataset I, Supplementary Material,
Fig. S10). Such strong association potentially owes to the fact
that they share the same algorithm. Indeed, the only difference
between these two scores lies in their training datasets. While

PolyPhen-2 HDIV uses alleles encoding human proteins and
their closely related mammalian homologs as TN observations,
PolyPhen-2 HVAR applies common human nsSNVs as TN obser-
vations. Therefore, algorithm redundancy exists between these
two prediction scores and was captured by Pearson Correlation
Coefficient statistic. On the other hand, the least linear correl-
ation was observed between MMAF and SIFT. SIFT score and
MMAF are negative correlated with each other; every 1 increase
of SIFT is associated with 0.030 decrease of MMAF, indicating lit-
tle redundancywithin this pair of scoringmethods (Pearson cor-
relation coefficient = −0.030 evaluated on testing dataset I,
Supplementary Material, Fig. S10).

Besides predictive performance, ease of use and speed are
also important aspects for application of a function prediction
method. For large-scale WES on Mendelian diseases, it is neces-
sary to performqueries on tens of thousands of variants in a rela-
tively short period of time. Some authors of deleteriousness
prediction methods provide software tools or web servers, on
which batch queries are performed. Based on our experience,
currently SIFT, PolyPhen-2, MutationTaster, Mutation Assessor
and KGGSeq have the highest ease of use and speed among all
methods tested, which allows for direct batch queries using gen-
ome coordinates. To facilitate querying multiple predictions for
large number of nsSNVs, Liu et al. developed a database compil-
ing prediction scores from six prediction algorithms (SIFT, Poly-
Phen-2, LRT, MutationTaster, Mutation Assessor and FATHMM)
and three conservation scores (PhyloP, GERP++ and SiPhy) for
all possible nsSNVs in human genome. With the dbNSFP tool,
users no longer need to use individual software tools or web
servers; instead they can obtain all scores easily from dbNSFP.
We have also made all dbNSFP scores available directly in the
ANNOVAR software, so that users can perform automated quer-
ies on all function prediction scores rapidly (<1 min for a typical
exome). We have now incorporated the SVM and LR scores into
the ANNOVAR tool and dbNSFP, and we believe that these data
sources will benefit researchers working on exome sequencing
studies.

Missing values is another concernwhen applying a prediction
method to large-scale WES data. Some methods tend to restrict
their predictions to well-annotated proteins or transcripts,
which may improve the prediction accuracy for non-missing
scores, but they suffer from higher rate of missing values. For ex-
ample, PON-P has a higher missing rate than their component
scores because it depends on the availability of all component
scores. Based on the datasets we used for training and testing,
we observed some scores (PANTHER, SNPs&GO, PON-P and LRT)
with relatively high (>10%) rate of missing values (Table 3). To re-
duce such bias caused by missing values, we used imputed
scores for computing our SVM and LR scores if some component
scores are missing.

Our study also suggested that we increase the predictive
power of the prediction tools by integrating them through ma-
chine learning algorithms, such as LR and SVM. Both LR and
SVM scores have enhanced performance than all existing pre-
diction tools, indicating that current prediction tools may pro-
vide orthogonal information that can be integrated using such
ensemble-based approaches for better performance. Such per-
formance may be further enhanced if we could update our
SVM and LR models dynamically, with more component scores
andmore accurate TP/TN observations, as other machine learn-
ing applications. However, due to the computation cost and the
technical challenge of dynamically implementing many of the
existing deleteriousness prediction methods online or locally
for large numbers of mutations, we were not able to realize
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this function. Nevertheless, we were still optimistic that in the
future, when most of the existing deleteriousness prediction
tools come up with whole exome prediction scores, like the
CADD team, or when they come up with an interface/software
package that can handle large dataset easily, there may be pos-
sibilities of realizing such dynamic update of our ensemble
scores. Moreover, even though LR performed better than SVM
in our study, we caution that this does not necessarily suggest
that LR is superior for this type of tasks. LR is relatively a simpler
algorithm and therefore may be better when the data are sim-
pler and do not require kernel transformation. More complex
machine learning algorithms, such as SVM, Random Forest
and Neural Network, can better handle data in large-scale and
withmulti-collinearity, which already appeared to some extend
in our intermediate level training data (SupplementaryMaterial,
Fig. S6). In the future when the input scores are more complex
and more correlated, more complex machine learning algo-
rithms may be preferred over LR. For example, if we would like
to integrate information such as phenotypic information
(38,39), pathway information (40) and protein interaction (41),
we may consider those more complex machine learning
algorithms.

A problem associated with every comparison study is the
quality of the datasets. We used various ways to make sure that
our four datasets are of high quality. For training dataset, we se-
parated the deleterious mutations in Uniprot database according
to the genetic model of the underlying disease (dominant, reces-
sive or unspecified) and conducted independent analysis, with
the initial hypothesis that the mutations identified from reces-
sive disease have higher reliability.With no significant difference
observed among the three groups, we combined them as a single
deleterious mutation set to increase estimation accuracy. We
also limited the neutral mutations in testing dataset I to the
nsSNVs that were observed more than ten times (as reported in
dbSNP) with 1% or higher MMAF in the population. As for neutral
mutation set for testing dataset II, we require mutations to have
MMAF>1%or being observed >22 times in dbSNP. ThisMMAF cut-
off may help to eliminate variants that were due to sequencing
error or potentially deleterious variants with low MMAF (34).
However, as rare and common variants may have different fea-
tures, a method that performs well with relatively common
(MMAF >1%) neutral mutations may not perform well with rare
neural mutations. Therefore, we collected singleton nsSNVs
from 824 exomes with strict control of the mapping quality and
individual phenotypes as a test set for rare neural variants. Our
results showed that our ensemble scores outperformed all
other scores evaluated with higher TNR (i.e. lower false-positive
rate). Another issue associated with dataset is the overlap be-
tween our testing datasets and the original training datasets of
the prediction scoringmethods compared. If a predictionmethod
is tested using a dataset, which overlaps its training dataset, then
it is likely that its performance evaluation will be biased. In order
to avoid this issue, we manually collected all three testing data-
sets, on which no current prediction scoring method is likely to
be trained. For example, testing dataset I has TP observations
manually collected from recent publications of Nature Genetics
and TN observations from recently available data from CHARGE
project. Applying these testing datasets helps us provide a rela-
tively unbiased evaluation of performance of current prediction
scoring methods.

Thusberg et al. previously published a nice comparison of
nine deleteriousness prediction methods. Although seven out
of nine of their compared methods (PolyPhen-2, SIFT, PANTHER,
PhD-SNP, SNAP, SNPs&GO and MutPred) overlap our study, there

are major differences between their study and ours. First, we
included many more up-to-date methods into comparison. For
example, we included recently publishedmethods such asMuta-
tion Assessor, FATHMM and CADD. Second, our comparison has
a larger diversity. While they focused exclusively on the function
prediction methods that use information of amino acid substitu-
tions, we not only included methods based on such amino acid
substitutions and but also methods that are based on DNA se-
quence information (such as conservation scores) and ensemble
scores. Third, while Thusberg et al. only compared binary predic-
tions, we compared both the continuous prediction scores and
the binary predictions. Finally, we constructed new ensemble-
based methods (i.e. LR and SVM) that take advantage of the
characteristics of multiple algorithms in a single application.
Nevertheless, we also evaluated the same datasets provided by
Thusberg and present the results in Supplementary Material,
Figure S7.

In summary, we have performed a comparative study of
several popular prediction algorithms for nsSNVs in response
to the demand of developing a practical guideline for their use
in WES-based human disease studies. Using 3 independent test-
ing datasets, we evaluated 18 existing deleteriousness prediction
methods on their quantitative and qualitative prediction per-
formance and demonstrated the potential of ensemble ap-
proaches (LR and SVM). We recommended the regular use of
such ensemble methods in prioritizing disease-causing nsSNVs
to boost the predictive power.

Materials and Methods
Training and testing datasets

We manually collected four datasets of nsSNVs based on the
Uniprot database, previous publication in Nature Genetics,
CHARGE sequencing project and VariBench dataset (Table 1).
Training dataset included 14 191 deleterious mutations, which
were annotated as causingMendelian disease and 22 001 neutral
mutations, which were annotated as not known to be associated
with any phenotypes, all based on Uniprot annotation. Consid-
ering that some algorithms may have used a part of the nsSNVs
in the Uniprot set as training data, we constructed our first inde-
pendent testing dataset, testing dataset I, to reduce potential
bias associatedwith the Uniprot data. It included 120 deleterious
mutations recently reported in the journal Nature Genetics that
belong to 54 different genes and cause 49 diverse diseases, and
124 neutral mutations newly discovered from the CHARGE
sequencing project. To ensure the quality of these deleterious
mutations, we used mutations that were reported to cause
Mendelian diseases with experimental supports and were pub-
lished after 1 January 2011. To ensure the quality of the neutral
mutations, we applied the following criteria when selecting
them: (i) with a MMAF >1% in 2269 exomes from the ARIC
study via the CHARGE sequencing project (14); (ii) not reported
in the 1000 Genomes Project or Uniprot and (iii) with Hardy–
Weinberg exact test, P-value > 0.01. The 1% threshold for MMAF
was chosen tominimize the contamination of potential Mendel-
ian disease-causingmutations in the neutral control set. To pro-
vide high quality benchmark datasets, on which novel variant
scoring methods can be evaluated, Thusberg et al. curated Vari-
Bench datasets, seven different datasets of high quality variants,
whose effects were experimentally verified. These seven data-
sets cover variants with different properties, such as variants af-
fecting protein tolerance, variants affecting transcription factor
binding sites and variants affecting mRNA splice site. Because
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our study is mostly related to variants affecting protein toler-
ance, we chose this dataset as benchmark dataset. Original TN
observations from this dataset contain 17 393 nsSNV extracted
from dbSNP database build 131. Original TP observations from
this dataset contain 14 610 missense variations obtained by
manual curation from the PhenCode database downloaded in
June, 2009, IDBases and from 16 individual LSDBs. Because
57.02% of TP observations and 23.87% of TN observations overlap
our training dataset, we removed these variants from VariBench
dataset and constructed our second independent testing data-
set, testing dataset II, and curated 6279 deleterious variants as
our TP observations and 13 240 common neutral variants
(MMAF >1%) as our TN observations. In addition to the first two
testing datasets that contain only common variants as TN obser-
vations, we also prepared testing dataset III that contains only
10 164 singleton neutral mutations (MMAF <0.1%). We collected
the rare neutral nsSNVs from 824 European Americans from co-
hort random samples of the ARIC study(30) via the CHARGE se-
quencing project (14). We retained only nsSNVs that have only
one alternative allele observed in the sample (i.e. singletons).
We further removed nsSNVs that have been reported in the
1000 Genomes Project or the NHLBI’s Exome Sequencing Project,
to make sure those nsSNVs are truly rare and novel. To reduce
the artifacts that are due to mapping errors, we further filtered
out any nsSNVs that reside outside the strict mask of the 1000
Genome Project and that with an ENCODE (42) mappability
score smaller than 1. To reduce interpretation complication,
we removed nsSNVs that correspond to multiple transcripts as
to RefSeq, Ensembl and Uniprot. After the above filtering steps,
we retained 10 164 rare nsSNVs. As this number is too large to in-
terrogate all the prediction methods, we only compared the
methods that are relatively easy to scale up for large number of
queries, which include SIFT, PolyPhen-2, LRT, MutationTaster,
Mutation Assessor, FATHMM, CONDEL, KGGSeq and our two en-
semble scores.

Training dataset was used for modeling LR and SVM and test-
ing datasets I and II were used for evaluating the performance of
all deleteriousness predictionmethods on separating deleterious
mutations from common neutral mutations and testing dataset
III was used for evaluating the performance on distinguishing
rare neutral mutations.

Additionally, to compare the performance of all deleter-
iousness prediction tools with the result from Thusberg et al.,
we derived two additional testing dataset, additional testing
dataset I and additional testing dataset II, from benchmark
dataset from his team (Supplementary Material, Table S4).
The results are shown in Supplementary Material, Figures S7
and S8.

Deleteriousness prediction methods

We compared the predictive performance of all prediction meth-
ods (Table 2). Despite their differences in the use of prediction
features, training data and statistical models, the premise of
most algorithms was that nsSNVs, which are evolutionarily con-
served and/or lead to critical protein structure changes, are likely
to be deleterious. Each method assigns a quantitative prediction
score measuring the likelihood of an nsSNV being deleterious
as well as qualitative prediction such as ‘benign’ or ‘damaging’
based on some algorithm-specific threshold for the prediction
score, except for SiPhy, GERP++ and PhyloP, which only provide
a prediction score.

In order to compare the performance of the quantitative
scores of these prediction methods, we obtained all the

prediction scores (Supplementary Material, Table S5). Among
them, PolyPhen-2, SIFT, MutationTaster, Mutation Assessor,
FATHMM, LRT, SiPhy, GERP++ and PhyloP were obtained from
the dbNSFP database version 2.1; PON-P, PANTHER, PhD-SNP,
SNAP and SNPs&GO were obtained via the PON-P webserver;
MutPred, Condel (ensemble score of SIFT, PolyPhen-2 and Muta-
tion Assessor) and KGGSeq were obtained manually through
their own webservers or software package. Due to the limitation
of the PON-Pwebserver that each batch query can only submit up
to 10 variants, we only obtained PON-P, PANTHER, PhD-SNP,
SNAP and SNPs&GO scores for testing dataset I. It is noted that
the prediction scores obtained from dbNFSP database underwent
transformation from original prediction scores (Table 2).We plot-
ted the ROC curve for each of these prediction scores, together
with MMAF and ensemble scores, and computed their AUC
value of the ROC curve as cumulative statistics to evaluate their
performances. As for testing dataset III that contains only TN ob-
servation, we were not able to plot the ROC curve. Therefore, we
rescaled all the transformed prediction scores with suggested
binary cutoff from their continuous prediction score into 0–1
scale with 0.5 being the binary cutoff of deleteriousness. We cal-
culated the median of all prediction scores and demonstrate our
results in Supplementary Material, Figure S2.

We also compared the performance of qualitative cate-
gorization of these prediction methods. We dichotomized
prediction scores according to their current dichotomizing
threshold recommended in the literature (36,37) for those
providing dichotomizing thresholds. Note that there are three
categorical outcomes for LRT, D (Deleterious), N (Neutral) and
U (Unknown). In order to rule out the influence of unknown
prediction outcomes and more accurately assess its perform-
ance, we discarded the mutations with U prediction outcome
and calculated its qualitative prediction performance measure-
ments such as MCC, TPR and TNR. Note that MCC is a balanced
measurement of qualitative prediction outcome and it ranges
from −1 to 1 (43). For the remaining prediction methods with
no available dichotomizing thresholds, such as SiPhy, GERP++
and PhyloP, we calculated the thresholds as the points that
were closest to the left-upper corner in their ROC curves with
training dataset and used these thresholds for dichotomization
with all testing datasets. We compared their sensitivity and
specificity at the dichotomous thresholds for testing datasets I
and II and demonstrate the results in Figure 2. As for testing da-
taset III that contains only TN observations, we calculated TNR
for all deleteriousness prediction scores and demonstrate the
results in Supplementary Material, Figure S4. We also dichoto-
mized our ensemble-based scores according to their standard
dichotomizing threshold (0 for SVM and 0.5 for LR) and incorpo-
rated them into qualitative comparison with other prediction
methods.

Missing scores

As for mutations whose prediction scores contained certain
missing values (Table 3), we used BPCA fill program, a tool de-
signed to impute large dataset with correlated columns or rows
with good performance in previous studies, to impute these
missing values for each of suchmutation, by borrowing informa-
tion from its available scores. The imputation was conducted for
PolyPhen-2, SIFT, MutationTaster, Mutation Assessor, FATHMM,
LRT, SiPhy, GERP++ and PhyloP using all non-missing scores for
all potential nsSNVs in human exome collected in the dbNSFP
database v2.1. We reported the overall missing value percentage
before and after imputation in Supplementary Material, Table S3.
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Because there was <3% missing rate for all the prediction tools
after imputation, the small percentage of mutations with miss-
ing values was discarded in our comparison analysis without
risking selection bias. These imputed scores were used to com-
pute two ensemble-based scores using SVM and LR algorithms.
Note that to avoid the effect of imputed score on performance
evaluation in testing phase, mutations with any missing values
were excluded to ensure that comparison of all deleteriousness
prediction scores was done using only output scores from the
prediction methods.

SVM and LR

In order to analyze the advantage of incorporating various pre-
diction scores, we used two models, SVM and LR, to compute
the ensemble-based scores. We harvested output scores from
all of the prediction methods for all mutations in all of our data-
sets, combined them with MMAF from various populations and
integrated them into input files for constructing LR and SVM,
with linear kernel, radial kernel and polynomial kernel using R
package e1071 (44). Performance for each model under each spe-
cific setting was tested on testing datasets I and II and was eval-
uated using R package ROCR (45). Because testing dataset III
contains only TN observations, we applied manually calculated
TNR for evaluating its performance.

To assess whether the parameters of our SVM model can be
optimized to generate substantially better performance, we per-
formed 5-fold cross validation on training set for different par-
ameter cocktails. For linear SVM, cost of 0.01, 0.1, 1 (default), 10
and 100 were evaluated for performance. For polynomial SVM,
degree of 2, 3 (default), 4, 5 and 6 with default parameter for
cost were analyzed. For radial SVM, different combinations of
gamma of 0.01, 0.1, 1, 10, 100 and 1/11 (default) and cost of
0.01, 0.1, 1 (default), 10 and 100 were evaluated. Default para-
meters for all SVMs were chosen as a result. Moreover, in order
to assess the relative contribution of each prediction score to
the performance of LR and SVM, we tested several modified
SVM and LR models with one prediction score deleted from the
original models and plotted average ROC curve and AUC value,
as shown in Supplementary Material, Figure S9. In addition, in
order to test whether our model can be further improved by
using different combinations of prediction scores, we applied
step-wise model selection using Akaike Information Criterion
(AIC) statistic as a criterion. The resulting model from step-
wise model selection is shown in Supplementary Material,
Table S6 and is comparedwith our finalmodel in Supplementary
Material, Table S7.

To assess the model assumption and evaluate pair-wise re-
dundancy of prediction scores, we checked themulti-collinearity
between all pairs of predictors using R and demonstrate the
results in Supplementary Material, Figure S6.

ROC curves

We used ROC curves and their AUC values to compare the
performance of the quantitative individual prediction scores
and the ensemble-based scores. For each prediction/ensemble
score we evaluated, we varied the threshold for calling deleteri-
ous nsSNVs from the minimum value to the maximum value of
this score. And for each threshold, we computed corresponding
sensitivity (TP/(TP + FN)), and specificity (1 – FP/(FP + TN)) for
this score, with respect to its proportions of true positive
and true negative nsSNVs at this threshold, where TP, FP, FN
and TN corresponds to true positive, false positive, false

negative and true negative predictions, respectively. Having
values for each point value for each score, the corresponding
ROC curvewas therefore obtained by plotting sensitivity against
1 – specificity at each threshold for this score. On the other hand,
for qualitative prediction evaluation, we computed the point
estimates of sensitivity and specificity instead, using dichoto-
mized prediction/ensemble score. The ROC plot and sensitivity
against specificity plot were generated using R package ROCR
and the 95% CI using 2000 bootstrapwas generated using R pack-
age pROC (46).
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Supplementary Material is available at HMG online.
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