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Public Health and Clinical Medicine, Umeå University, Umeå 901 87, Sweden; 70Laboratory of Human Carcinogenesis, Center for Cancer Research,

National Cancer Institute, NIH, Bethesda, MD 20892, USA; 71Department of Oncology, Department of Radiation Sciences, Umeå University, Umeå 901
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Margaret Tucker,1 Luis A. Pérez-Jurado,87,89,117 Cathy C. Laurie,108 Neil E. Caporaso,1

Meredith Yeager,1,2 and Stephen J. Chanock1,*

Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb)

structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals

(total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from

the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a

large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism

(n ¼ 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as

event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value ¼ 5.5 3

10�31) and is higher inmen (p value¼ 0.002) but lower in participants of African ancestry (p value¼ 0.003). In a subset of 47 individuals

from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase

in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable

genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in

the aging population.
Detectable mosaicism is the presence of two or more genet-

ically distinct populations of cells in an individual who has

developed from a single zygote.1 The clonal expansion of

acquired post-zygotic mutations, such as large-scale gains,

losses, and copy-neutral uniparental disomy, can result

in the co-existence of aberrant cellular populations with

normal germline DNA.2 Clonal mosaicism can also con-

tribute to diverse phenotypes depending on developmental

timing, the tissue involved, the genomic location of the

mutation, and the percentage of cellular populations

affected.3–5 Compared to constitutional defects in the

same regions, mosaic abnormalities can result in milder

phenotypes, as observed for neurofibromatosis type 1

(MIM162200) and trisomy 21 (MIM190685); interestingly,

these same mutations have been observed in apparently

healthy individuals.6–8 A spectrum of clinical phenotypes,

including Maffucci syndrome (MIM 614569),9,10 McCune-

Albright syndrome (MIM 174800),11 nevus sebaceus (MIM

162900),12 Ollier disease (MIM 166000),9,10 Proteus syn-

drome (MIM 176920),13 and mosaic RASopathies,14 have

been associated with mosaicism.

Until recently, estimates of the rates of humanmosaicism

involving large structural events were unavailable.15 Early

evidence demonstrated somaticmosaicism inmonozygotic

twins16 and differentiated human tissues17 but provided no

estimates of rates in human populations. The combination

of large datasets and improvedmethodology for analysis of

genome-wide SNP microarray data has enabled genome-

wide surveys of large structural mosaic events in blood

and buccal DNA.18,19 An initial population-based case-

control genome-wide association study (GWAS) of 1,991 in-

dividuals with bladder cancer reported autosomal mosaic

abnormalities (e.g., structural events >2 Mb) in blood or
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buccalDNA from1.7%of the overall study sample.18 Subse-

quent analyses of a larger set of GWASs involving 57,853

individuals, described as the total GWAS set I (TGSI),

presented evidence that clonal mosaicism was strongly

associated with greater age and weakly associated with

male gender and overall solid-tumor risk, in particular

lung and kidney cancer.20 A concurrently published study,

involving 50,222 individuals, from the Gene-Environment

Association Studies (GENEVA) Consortium observed an

association between mosaicism and age, although no sig-

nificant associations were observed with gender or solid

tumors.21 An additional study by Forsberg and colleagues

detected age-related structural changes in leukocyte DNA

from paired monozygotic twins and single-born subjects

in 3.4% of individuals aged 60 years or older but failed to

detect mosaic events in individuals aged 55 years or

younger.22 Other studies have subsequently confirmed

the presence of detectable autosomal mosaicism in older

populations,23,24 as well as demonstrated an age-specific

relationship with mosaicism on the Y chromosome.25

Furthermore, recent evidence indicates that somatic mosa-

icism might be an important contributor to unexpected

familial recurrences of genomic disorders.26

We confirmed the presence of clonal mosaic events

greater than 2 Mb in an independent sample set of can-

cer-affected individuals and control individuals and con-

ducted a meta-analysis of the events from our sample set

and the two prior investigations to refine our understand-

ing of the landscape of events. Study subjects from our new

sample set, hereafter referred to as the total GWAS set II

(TGSII), were drawn from published GWASs investigating

cancer-susceptibility risk and were analyzed in the Cancer

Genomics Research Laboratory of the National Cancer
rtment of Oral Biology School of Dental Medicine, University of Pittsburgh,
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Institute. TGSII includes 24,849 participants drawn from

46 studies on populations of European, Asian, and African

descent. Approval by the institutional review board for

each study was confirmed, and written informed consent

was obtained.

TGSII genotyping was carried out on commercially avail-

able Illumina Infinium BeadArray human assays (Human-

Hap610, HumanHap660W, HumanHap1M, OmniExpress,

Omni1, Omni2.5, and Omni5). Assays, specimens, and

participants met the following criteria for inclusion: (1) in-

formation was available on the first cancer site, or individ-

uals were determined to be cancer free, (2) the minimum

genotype completion rate was 88%, (3) SDs were less

than 0.33 and 0.05 for the final corrected log2 R ratio

(LRR) and B allele frequency (BAF), respectively, and (4) ge-

netic identity was consistent across duplicate samples.

To assess copy-number changes and allelic imbalances,

we estimated LRR and BAF. LRR provides a metric for as-

sessing copy-number change via the calculation of log2
of the ratio of observed total signal intensities to expected

signal intensities for a SNP. LRR values greater than 0 indi-

cate mosaic copy gain, whereas values less than 0 indicate

loss. The BAF, a measure of allelic imbalance, is calculated

as the ratio of signal intensity between two alleles at each

SNP in relation to estimated genotype clusters; it is thus

a calculation of the frequency of the B allele for a biallelic

SNP with alleles A and B. BAF values for heterozygous SNPs

that deviate from 0.5 are indicative of mosaic copy-num-

ber changes or copy-neutral changes associated with ac-

quired uniparental disomy.

To improve accuracy, we used a quantile normalization

approach similar to that used by Staaf et al.27 and Diskin

et al.28 because LRR and BAF estimates from Illumina Ge-

nomeStudio software suffer biases from assay chemistry

and DNA concentration. For TGSI and TGSII, a mosaic-

alteration-detection algorithm incorporated into the

software package R-GADA (based on genome alteration

detection analysis) was used to detect clonal mosaic events

greater than 2 Mb in size from corrected LRR and BAF

values.19,29 The GADA segmentation algorithm detected

clonal mosaic regions by identifying breakpoints in Bdev

values with the use of sparse Bayesian learning and back-

ward elimination. The assigned event type was based on

the mean LRR value, and the mosaic proportion of

abnormal cells was estimated from the BAF values. The

detection algorithm has been previously validated with

laboratory techniques (e.g., single tandem repeat, multi-

plex ligation-dependent probe amplification, and fluores-

cent in situ hybridization)18 and is described in greater

detail in the methods and supplementary material of the

original Jacobs et al. analysis.20 Investigators blind to study

outcomes conducted a manual review to confirm events in

TGSI and TGSII. Common modifications included adjust-

ing boundaries of mosaic events or merging or separating

adjacent events.

To improve our understanding of the landscape of clonal

mosaic events, we first combined TGSI20 and TGSII, both
490 The American Journal of Human Genetics 96, 487–497, March 5
of which were analyzed with the identical pipeline

described above. Subsequently, we extracted events >2

Mb from the Laurie et al. study (GENEVA).21 GENEVA

used a circular-binary-segmentation algorithm with the

Bioconductor packages DNACopy and GWASTools. The

overall reproducibility between the GENEVA algorithm

and TGSI algorithm in detecting events >2 Mb was as-

sessed in 5,510 lung cancer samples included in both

GENEVA and TGSI. The comparability in called events

>2 Mb was 75%; 83 of the total 111 events were detected

by both algorithms, 20 were detected by TGSI only, and

8 were detected by GENEVA only. The 5,510 replicated

lung cancer samples and 235 individuals with inadequate

consent were removed from the GENEVA sample in the an-

alyses described herein. For more details on the detection

methods, please see the methods and supplementary ma-

terials in the previously published TGSI20 and GENEVA21

reports, which include laboratory confirmation of select

samples in TGSI.

In the 24,849 individuals in TGSII, our method detected

341 clonal mosaic events across 255 autosomes in 168 in-

dividuals (Table S1). We detected 69 events (20%) with

mosaic copy gain, 90 events (26%) with mosaic copy

loss, and 163 events (48%) with copy-neutral acquired uni-

parental disomy. 19 events (6%) were complex in nature

and not amenable to distinct classification.

Detected events from our TGSII were combined with

TGSI, and then a meta-analysis with GENEVA was per-

formed on a sample set of a total of 127,179 individuals,

in whom 1,315 mosaic events were detected in 925 partic-

ipants; the overall rate of individuals with detected mosai-

cism was 0.73% (95% confidence interval [CI] ¼ 0.68–

0.78%). Of the 925 participants with detected events,

797 (86%) had only one event, and 128 (14%) harbored

multiple mosaic events. Compared to the Poisson expecta-

tion, which is that only seven individuals have multiple

events, a highly significant excess of individuals with mul-

tiple events was observed (p value ¼ 6.5 3 10�30).

Although complex rearrangements affecting multiple re-

gions of the genome could partially account for the excess,

differences inmosaic proportion of events in some individ-

uals suggest more complex mechanisms over long periods

of time as well.

Approximately half of the detected events were mosaic

copy-neutral uniparental disomy (48%), followed by

mosaic losses (34%) and mosaic gains (17%). To charac-

terize genomic location and potential recurring events,

we generated Circos plots.30 The majority of mosaic gains

were observed on chromosomes 8, 12, and 15, themajority

of mosaic losses were observed on chromosomes 13 and

20, and mosaic copy-neutral events were primarily

observed on chromosomes 9 and 14 (Figure 1). Detected

mosaic events clustered regionally on chromosomal arms

on the basis of their copy-number state (Table 1). Mosaic

copy-neutral events occurred primarily on the telomeric

ends of chromosomes; 33% included the p telomere, and

54% included the q telomere. Mosaic losses were
, 2015



Figure 1. Genomic Locations of the Combined 1,334 Events Overall and by Cancer Status
Green indicates mosaic copy gains, blue represents mosaic copy-neutral events, and red represents mosaic losses.
(A) All 1,334 events from the combined GENEVA, TGSI, and TGSII analysis.
(B) Events in cancer-free control individuals.
(C) Events in individuals with solid tumors.
commonly observed in interstitial chromosomal regions

that did not involve telomeres or centromeres. Of all of

the copy-number states, mosaic gains most commonly

involved whole chromosomes. Only 1.7% of events were

interstitial and spanned the centromere, suggesting that

for interstitial mosaic events, involvement of a centromere

could be uncommon.

It is notable that losses at certain regions, such as 20q

(chr20: 40,425,000–42,155,000; UCSC Human Genome

Browser hg18) and 13q14 (chr13: 49,590,000–49,983,100;

UCSC hg18), are observed in leukemias (e.g., myelogenous

and lymphoblastic leukemia, respectively).31–33 Clustering

of losses in these regions suggests that these events are

non-random. Moreover, aggregation of mosaic-event

locations on chromosomal arms by copy-number state

suggests common mechanisms. For example, copy-neutral

telomeric events could be due to mitotic recombination

followed by clonal expansion. Breakpoint analyses of

regions surrounding mosaic events might aid in under-

standing mechanisms responsible for event initiation,

but the current resolution of event boundaries in SNP

microarrays is limited as a result of insufficient probe

density. Further work is required to investigate the

different types of events that could lead to large structural

mosaicism.
Table 1. Distribution of Mosaic Copy-Number State by Chromosomal

Gain Neutral

Whole chromosome 60 (65%, 27%) 25 (27%, 4

Telomeric p 18 (7%, 8%) 205 (78%, 3

Telomeric q 67 (15%, 30%) 338 (75%, 5

Interstitial 73 (16%, 33%) 51 (11%, 8

Spans centromere 5 (22%, 2%) 10 (43%, 2

Total 223 (17%, 100%) 629 (49%, 1

Events classified as ‘‘whole chromosome’’ from the combined dataset span an en
telomere on the p or q arm, respectively, ‘‘interstitial’’ events do not include a telo
overlap a chromosome’s centromere. Event counts are indicated in parentheses (

The Ame
To identify characteristics associated with increased risk

of large clonal mosaic events, we evaluated age, gender,

ancestry, and cancer status. Age at time of DNA collection

was available for all GENEVA and TGSI participants, but for

TGSII participants, the date of diagnosis (for cancer sub-

jects) or the age at the time of participation (for control

subjects) was substituted when age at time of DNA collec-

tion was missing. Categorical variables were constructed

for the 5-year age groups of 50–54, 55–59, 60–64, 65–69,

and 70–74 and for 75 years or older, whereas individuals

under 50 years of age were considered the reference group.

We used reference populations from the HapMap project34

and the GLU (Genotype Library and Utilities) software

package to estimate continental-ancestry proportions for

each individual. Terms were fit for percentage of African

and Asian ancestry, whereas European ancestry served as

the referent. Indicator variables were used for adjusting an-

alyses for effects related to the individual contributing

studies. Sensitivity analyses using mixed models, case-con-

trol matching, and pooled analyses were also used to inves-

tigate the robustness of statistically significant findings. All

statistical analyses were performed in R version 3.0.1 on a

64-bit Unix platform.35

Increasing age is the variable most strongly associated

with clonal mosaicism (Figure 2). In logistic regression
-Arm Location

Loss Total

%) 8 (9%, 2%) 93 (100%, 7%)

3%) 40 (15%, 9%) 263 (100%, 20%)

4%) 44 (10%, 10%) 449 (100%, 35%)

%) 344 (74%, 77%) 468 (100%, 36%)

%) 8 (35%, 2%) 23 (100%, 2%)

00%) 444 (34%, 100%) 1,296 (100%, 100%)

tire chromosome, ‘‘telomeric p’’ and ‘‘telomeric q’’ are events that include the
mere or centromere, and ‘‘spans centromere’’ indicates interstitial events that
row percent, column percent).
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Figure 2. Proportion of Mosaic Individuals across 5-Year Age
Groups in the Combined GENEVA, TGSI, and TGSII Dataset by
Cancer Status
Affected individuals are in red, and cancer-free control individuals
are in blue. Error bars represent 95% CIs. An overall significant
relationship in the proportion of individuals with mosaic events
was observed with age (p value ¼ 1.1310�30).

Figure 3. Forest Plots of Associations with Clonal Mosaicism
Associations between clonal mosaicism and (A) age-group, (B)
gender, and (C) ancestry.
models adjusted for gender, ancestry, cancer subtype, and

contributing study, highly significant age effects were

observed in both a meta-analysis and a pooled analysis of

GENEVA, TGSI, and TGSII (Figure 3A). The effect of the

5-year age groups was significantly associated with detect-

able clonal mosaicism overall (p value ¼ 5.5 3 10�31),

showed no evidence of heterogeneity across the study

(p value ¼ 0.71), and remained significant when the anal-

ysis was restricted to a subset of cancer-free control indi-

viduals (p value ¼ 8.92 3 10�12). Compared to individuals

under 50 years old, individuals aged 75 years or older

had an approximate 6-fold increase in detection of large-

scale mosaic events (p value ¼ 2.22 3 10�16, 95% CI ¼
4.16–10.09).

Ourmeta-analysis strengthens the robust age association

previously observed in GENEVA and TGSI. Although the

inclusion of age at diagnosis as a substitute for age at the

time of DNA collection could have introduced measure-

ment error in individual TGSII participants, the TGSII

and overall pooled age association agree with the original

age estimates from the GENEVA and TGSI studies.

Although an association with age was observed, it is impor-

tant to note that our analysis does not provide insight into

whether the events were generated early in life and later

positively selected by rapid expansion of a second clonal

population or generated later in life as a result of decreased

cellular diversity and senescence.

The effect of gender was also significant. Mosaic events

were more frequently observed in males than in females

(0.98% versus 0.56%, respectively; Figure 3B). Removing
492 The American Journal of Human Genetics 96, 487–497, March 5
sex-specific cancers (e.g., endometrial and prostate can-

cers) and adjusting for ancestry, 5-year age group, cancer

subtype, and contributing study, we found a significant

association with male gender (odds ratio [OR] ¼ 1.44,

95% CI ¼ 1.15–1.81, p value ¼ 0.002) and no evidence

of heterogeneity of effect across the study (p value ¼
0.88). In the 37,942 cancer-free control individuals, the
, 2015



Table 2. Solid-Tumor Associations with Clonal Mosaicism

n OR 95% CI p Value

Overall 46,831 1.29 1.11–1.50 0.0008

Bladder 4,995 1.29 0.90–1.85 0.168

Breast 2,814 1.06 0.53–2.10 0.869

Endometrium 872 2.66 1.16–6.12 0.021

Esophagus 1,910 0.89 0.34–2.34 0.821

Glioma 1,729 0.78 0.30–2.06 0.622

Kidney 1,565 1.81 1.06–3.11 0.031

Liver 13 10.40 1.32–81.9 0.026

Lung 13,015 1.54 1.21–1.97 0.001

Ovary 543 2.60 0.93–7.28 0.069

Pancreas 3,923 0.83 0.53–1.29 0.404

Prostate 10,456 1.27 1.00–1.60 0.046

Skin 1,949 0.96 0.43–2.13 0.911

Stomach 2,278 1.52 0.70–3.28 0.292

Testis 649 1.77 0.24–13.0 0.573

Combined analysis of solid-tumor associations adjusted for gender, ancestry, 5-year age group, and contributing study. ‘‘n’’ denotes total sample size. ORs and
95% CIs are reported for solid tumors overall and by cancer subtype.
gender association was of similar magnitude but margin-

ally not significant (OR¼ 1.39, p value¼ 0.06), most likely

as a result of the reduced number of individuals with

events (n ¼ 303). The elevated rates of mosaic events

observed in males could be partially attributable to higher

male-specific rates of hematologic malignancies, a set of

malignancies previously found to be associated with clonal

mosaicism.20,21,23 Further work will be required for under-

standing the scope and implications of this observation.

An association between genotype-inferred ancestry

(defined as the percentage of continental origin from

Africa, Asia, or Europe) and clonal mosaic events was also

evident (Figure 3C). Logistic regression analyses adjusted

for gender, 5-year age group, cancer subtype, and study

indicated that relative to individuals of European ancestry,

individuals of African ancestry were at a reduced risk (OR¼
0.38, 95% CI ¼ 0.21–0.71, p value ¼ 0.003). Heterogeneity

testing detected no heterogeneity (p value ¼ 0.66), and the

effect retained significance when the analysis was

restricted to cancer-free control individuals (OR ¼ 0.23,

95%CI¼ 0.09–0.60, p value¼ 0.003). No significant differ-

ence was observed between Asian and European ancestry.

Mechanisms relating to ancestry-specific differences in

rates of clonal mosaicism are poorly understood, and

further work is needed for better understanding this

relationship.

We further investigated the associations between clonal

mosaicism and risk of solid (non-hematological) tumors

overall and of tumor subtypes as per the previous TGSI

finding.20 Analyses adjusted for gender, ancestry, 5-year

age group, and contributing study indicated that
The Ame
solid tumors were associated with clonal mosaicism in

blood or buccal tissue (OR ¼ 1.29, 95% CI ¼ 1.11–1.50,

p value ¼ 8.1 3 10�4). Additional cancer-specific analyses

were performed for all solid-tumor subtypes present in

our study (Table 2). Endometrial, kidney, liver, lung, and

prostate cancers suggested preliminary evidence of sig-

nificant associations with clonal mosaicism; however,

only lung cancer maintained statistical significance after

correction for multiple testing. Interestingly, all solid-

tumor subtypes showing preliminary evidence of an asso-

ciation with mosaicism had ORs greater than 1, but the

sample sizes per tumor were small, and the estimates

were unstable for the risk effects measured. Circos plots

showing mosaic-event location for cancer-free control

individuals and for individuals with solid tumors are

displayed in Figures 1B and 1C. No differences in event

clustering or copy-number state were observed among

the individuals with solid tumors. Lung cancer was the

primary contributor to the overall cancer association,

and it is notable that lung cancer is a smoking-related

cancer; however, previous data suggest that smoking is

not significantly associated with autosomal mosaicism

in blood tissue.20,21 Potential mechanisms linking clonal

mosaicism in blood to solid-tumor risk might include

poor overall genome maintenance unable to repair

genomic alterations or immunologic dysfunction in

mosaic immune cells and the subsequent poor clearance

of pre-cancerous cells from solid tissues. Further studies

are required to determine whether detectable clonal mosa-

icism could be a useful biomarker in screening individuals

for increased risk of developing solid tumors. This is in
rican Journal of Human Genetics 96, 487–497, March 5, 2015 493



Figure 4. Relationship betweenMosaic Event Size and Detected
Rate
Counts of detected mosaic events from the combined analysis are
plotted in 10-Mb bin sizes. An inverse exponential trend, repre-
sented by the dotted line, was fit to the counts (R2 ¼ 0.81). Fitted
coefficients (b) and 95% CIs are displayed in the plot.
contrast to hematological malignancies, in which detect-

able mosaicism in blood could be an early indicator of

leukemic and pre-leukemic clones.20,21,23

An association between rate and event size was noted:

smaller events were observed to have higher rates

than larger events (Figure 4). An inverse exponential rela-

tionship fit the trend well (R2 ¼ 0.81). This association

was also present in the substrata of mosaic gains, copy-

neutral events, and losses. This suggests that smaller auto-

somal events are more frequent and that larger autosomal

events are relatively more rare. Event size was also investi-

gated across copy-number states (Figure 5A). With a me-

dian event size of 60.8 Mb, mosaic copy gains, on average,

were largest. Mosaic copy-neutral events and mosaic losses
494 The American Journal of Human Genetics 96, 487–497, March 5
had median sizes of 39.8 and 17.0 Mb, respectively. The

larger average size of mosaic gains and copy-neutral events

might highlight the detrimental nature of induced mono-

somy and reduced copy number of mosaic losses and pro-

vide insight into understanding which mutational events

undergo clonal selection. By restricting our analysis to

events larger than 2 Mb in size to reduce the false-positive

rate of our detection algorithm, we most likely missed

many smaller mosaic events, frommosaic point mutations

to events several kilobases in size. Extrapolating our obser-

vations to smaller events suggests that the copy-number

distribution of these events is most likely skewed toward

mosaic losses. This could prove to have great importance

in both disease risk and heterogeneity of disease pheno-

types. Although the association between event rate and

size was present in every strata of copy-number state, the

overall association might be skewed by the abundance of

small copy losses in likely driver regions of hematologic

cancers, such as losses at 13q14 and 20q. Further refine-

ments in genotyping technologies and detection algo-

rithms targeted at detecting smaller mosaic events in

next-generation sequencing should refine our understand-

ing of the landscape of detectable clonal mosaicism.

Mosaic proportion, namely, the percentage of cells with

large structural events that differ from germline DNA, was

distinct across event copy-number state (Figure 5B).Mosaic

copy gains and copy losses were observed, on average, to

have higher mosaic proportions (medians of 0.35 and

0.33, respectively), whereas mosaic copy-neutral events

had a lower median proportion of 0.19. The range of the

mosaic proportions provides insight into the detectable

range of our methodology. Copy-neutral mosaic events

can be detected in the range 0.06–0.95, whereas mosaic

copy gains can be detected in the range 0.10–0.90.

The relationship between age and mosaic proportion

was also investigated (Figure 6). A significant positive as-

sociation between age and mosaic proportion was

observed for copy-neutral events (p value ¼ 1.2 3 10�4),

suggesting that on a population level, mosaic proportion
Figure 5. Event Size and Mosaic-Propor-
tion Distribution across Copy-Number
State
Violin plots of combined sample event size
(A) and mosaic proportion (B) in relation-
ship to mosaic copy gains, copy-neutral
uniparental disomies, and copy losses.
Boxplots with white circles denoting the
median and thick black boxes representing
the interquartile range are encapsulated
in kernel density plots of the distribution
of event length. Numbers below and above
the violin plots of mosaic proportion
(B) indicate the minimum and maximum
detected range observed for each respec-
tive event’s copy-number state.
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Figure 6. Characterization of Changes in
Mosaic Proportion with Age
Mosaic proportion is stratified across event
copy-number state (columns) and age cate-
gory (x axis) from the combined analysis.
Points represent estimates of the mean,
and error bars indicate 95% CI around
the mean. Best-fit regression lines are
plotted with dotted lines, and p values
are shown for slopes that are significantly
different from 0.
might gradually increase with age. To further assess the

evolution of mosaic events over time, we analyzed serial

samples from the Prostate, Lung, Colon, and Ovary Pre-

vention Trial (PLCO). Two to four DNA samples collected

at least 1 year apart were analyzed for PLCO individuals

with detectable clonal mosaicism in TGSI and TGSII. In

total, we tracked large structural mosaic events for 58 au-

tosomes (Figure 7) detected in 47 individuals. The set

included 24 events with mosaic loss, 27 with copy-neutral

loss of heterozygosity, and 7 with gain. Although exam-

ples existed where events had stable or decreasing mosaic

proportion over time, most events were observed to in-

crease in mosaic proportion. Fitting a linear mixed model

with a zero intercept and a random effect for each event,

our analysis suggests that with each year increase in age,

the overall fraction of mosaic proportion increases on

average by approximately 1.44% (p value ¼ 3.3 3 10�7).

Significant increases in mean mosaic proportion were

seen over time in the strata of mosaic losses and mosaic

copy-neutral events, but because of limited sample size

(n ¼ 7), the increase was not significant for mosaic gains.

Together, these observations suggest that most detectable
Figure 7. Changes in Percentage of Mosaicism of Serial Samples o
(A) Lines (red for copy loss, blue for copy neutral, and green for co
males, and circles represent females) for each mosaic chromosome
increasing age.
(B) Events are plotted with zero origin and a mixed model for a su
estimated average change in mosaic proportion per year (1.44%, p v
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mosaic events confer some form of selective advantage

that enables cellular clones to increase in frequency over

time in relation to cells with normal karyotypes.

A few limitations relating to the available data are worth

considering. The studies used for analysis were primarily

designed as GWASs of cancer (GENEVA, TGSI, and TGSII)

and other traits (GENEVA), and study participants were

drawn from cohort and case-control studies. Rate estimates

of mosaicism, as provided by the combination of individ-

uals included in these studies, could imperfectly represent

underlying population prevalence. However, the con-

sistency of effect estimates across GENEVA, TGSI, and

TGSII suggests that our findings are robust. Additionally,

although incomplete, adjustment for factors such as age

group, gender, ancestry, cancer subtype, and contributing

study minimized confounding effects. Because additional

bioinformatics methods are needed to detect mosaicism

on the sex chromosomes and because there is poor com-

mercial array coverage of the Y chromosome, this report

focused on detectable autosomal mosaicism. Another

group has reported a similar association between Y mosai-

cism and increasing age.25
ver Time
py gain) connect DNA-collection time points (triangles represent
(n ¼ 58) to track changes in the percentage of mosaicism with

bject with zero random-effect fit (solid black line), showing the
alue ¼ 3.3 3 10�7).
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Our analysis is distinctive in that it involves a meta-

analysis of 127,179 individuals and thus provides a more

comprehensive portrait of the landscape of large structural

mosaic genetic alterations. Our meta-analysis allowed for a

more precise age effect, strengthened prior evidence of a

gender effect, and found evidence of an ancestry effect.

Additionally, we found evidence indicating that the

number of mosaic events increases as event size decreases,

suggesting that our detected events might represent the

tip of the iceberg in relation to many smaller mosaic

events that most likely exist and are currently undetected.

Furthermore, we were able to analyze serial samples over

multiple collection time points to show an overall increase

in mosaic percentage as age increases.

The investigation of human clonal mosaicism can

provide new insights into aging, as well as shed light on

possible precursors of disease. Our results suggest that

genome maintenance, particularly in relation to aging,

could have pleotropic consequences, although it is not

clear whether all mosaic events are necessarily deleterious.

The long-held assumption that germline DNA remains

static during the course of life is under reconsideration,

which is particularly important for the comparative study

of cancer genomes. As the detection of smaller mosaic

events across tissue types improves, we can refine our

understanding of the landscape of mosaic events across

the spectrum of genetic events. In turn, this could repre-

sent an important step toward the investigation of how

our once ‘‘stable’’ germline DNA might slowly erode into

a complex mosaic over time and contribute to disease

heterogeneity.
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