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ABSTRACT	 The pathogenic fungus, Cryptococcus neoformans, is known to undergo 
phenotypic variation, which affects its virulence in the host. Recent investigations on 
C.  neoformans cells in humans have validated the concept that phenotypic variation is 
present and relevant for the outcome of chronic cryptococcosis. The C. neoformans capsule 
is not the only trait that varies among strains. An emerging variant is the “old cell phenotype” 
generated when C. neoformans undergoes replicative aging. This phenotype, which other 
than larger size also exhibits a thickened cell wall, inhibits phagocytosis and killing by 
antifungals in vitro. In concert with the finding that old cells accumulate in vivo, this emergent 
trait could have significant impact on cryptococcal virulence and infection, and contribute to 
treatment failure.
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Fungi, such as Saccharomyces cerevisiae and Schizosaccharomyces pombe have been invaluable model 
organisms in the study of aging [1–5], a field that has been far removed from fungal pathogenesis 
until recently. Recent studies in the fungal pathogens, Candida albicans and Cryptococcus neofor-
mans, have revealed that aging increases phenotypic variation within the pathogen population 
as it expands in the host environment over time [6–9]. Old C. neoformans cells have been shown 
to be biologically advantageous in vitro compared with young cells [6,8] and could constitute an 
unanticipated phenotypic variant that could potentially alter the virulence of C. neoformans during 
infection. This interesting phenomenon could be relevant to other eukaryotic and some prokaryotic 
pathogens where asymmetrical aging occurs, and where phenotypic variation emerges during host 
pathogen interaction.

Capsule induction is a major determinant of phenotypic variation
Several studies have demonstrated that during chronic infection with C. neoformans, phenotypic 
variants emerge [10–14]. Such ‘microevolution’ has been documented in serial isolates [15,16] and experi-
mental murine infection [17]. The most thoroughly investigated phenotypic trait is capsule size, which 
can be variable among strains and even within a cryptococcal population. Older studies have inversely 
correlated capsule volume and induction [18] with phagocytosis indices [19] and variable antibody 
binding [20]. Capsule growth in C. neoformans is tightly coordinated with cell cycle progression [21]. 
Accordingly, mutants of a G1-type cyclin, Cln1 [22] that exhibit a longer G

1
 phase also produce a 

larger capsule. Capsule size is regulated by several transcription factors, including Ada2, Rim101, 
and Gat201 [23,24]. In addition, capsule sizes can vary and depend on the microenvironment of 
infection. Polysaccharide capsules are more induced in C. neoformans residing in the lung compared 
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with the yeast found in the brain environment 
[25,26]. Size matters as successful phagocytosis 
is important for the ability of C. neoformans to 
transmigrate across the blood–brain barrier, and 
capsular changes have been documented to affect 
dissemination to the brain [27,28]. Consistent with 
that view, a recent large phenotypic analysis of 
C. neoformans strains derived from cerebrospi-
nal fluids (CSF) of humans with chronic cryp-
tococcal meningitis determined that strains with 
high levels of fungal uptake by macrophages 
in vitro were associated with higher CSF fun-
gal burden and decreased long-term patient 
survival. Interestingly, high-uptake strains were 
also hypocapsular and exhibited greater laccase 
activity and increased survival ex vivo in purified 
CSF [29].

Cell size independent of capsule size 
generates phenotypic variants
It must be noted that cell size variation is not 
only dependent on capsule induction but can 
also occur when the cell body size varies [6]. In 
fact, C. neoformans cells with a variable range of 
cell sizes have been observed in murine infection 
studies [30]. Recent investigations focused on rep-
licative aging in cryptococcal populations have 
shown that size variation also occurs during the 
process of replicative aging and can be observed 
in chronic rat and human cryptococcosis [8]. The 
cell size increase seen during aging proportionally 
affects the capsule and the cell body [31], and thus 
is not only due to an over-induced capsule. Size 
increase from replicative aging has been observed 
in other fungi as well [6,9]. It remains question-
able whether cell size is truly predetermined and 
correlated with overall life span as this was con-
cluded from investigations done with a S. cerevi-
siae mutant collection [32]. There it was found 
that the smaller the cell size at birth, the longer 
the replicative life span (RLS) of the mutant 
(greater number of replications per cell). A study 
done in our laboratory with 18 C. neoformans 
strains did not validate that finding and found 
no correlation with cell body size and life span 
(Figure 1A). Interestingly, this study indicated that 
cell size at death appeared to somewhat corre-
late with life span (Figure 1B). In Mycobacterium 
smegmatis, a rod-shaped bacterium that replicates 
asymmetrically, birth and elongation rates also 
did not correlate [33]. Birth size may thus not limit 
life span in pathogens per se and underlie differ-
ent selection pressures, especially in facultative 
intracellular pathogens like C. neoformans [34–38].

Titan cells
Murine infection studies described yet another 
cell phenotype, namely large-bodied cells termed 
‘titan cells’, which are much larger than old cells 
that emerge in the process of replicative aging 
[6,8,39]. Titan cells can occur within 24 h of pul-
monary murine infection [40], whereas old cells 
occur after weeks of meningeal rat infection [8]. 
Titan cells grow to cells that are 5–10 times larger 
than the cell size of the inoculum and demonstrate 
larger capsules [40]. Both titan [39,40] and old cells 
[8] are either not at all or not easily phagocytosed 
by macrophages, and show increased resistance to 
oxidative stress. Notably, titan cells are polyploid, 
and it is not clear at this point whether old cells 
are polyploid as well. Interestingly, genome dupli-
cation can occur in fungi without cell division 
as observed in S. cerevisiae [41]. Regardless of the 
differences in these cellular morphologies, both 
types may be important to cryptococcal disease, 
depending on the time and site of infection. Titan 
cells likely result in phenotypic variants early on, 
whereas old cells require many replications and 
can only emerge over time.

The thickness of the cell wall can increase 
phenotypic variability
Cell walls of fungi are important defense barriers 
and also targets of antifungal medication. They 
contain immunologically relevant epitopes, and 
therefore their components are vital to immune 
responses, and importantly, can also contribute 
to altered virulence [42–46]. A less studied aspect 
of the C. neoformans cell wall is the generation of 
bud scars, which are left on the mother cell after 
a bud separates [47]. In aging S. cerevisiae, the cell 
wall becomes weakened with the accumulation of 
these bud scars [48]. By contrast, in aging C. neo-
formans, bud scars heal as the cell wall is rear-
ranged during budding [49,50]. In fact, the cell wall 
has been documented to thicken with age, and 
its thickness can permit differentiation between 
old mother cells and their young daughter cells 
(Figure 2). A thickened cell wall in older cells could 
conceivably explain a lower effective fungicidal 
activity (EFA <0.5 log), which is observed in some 
cryptococcosis patients that are treated with anti-
fungals and correlates with poor outcome [51,52]. 
Particularly, the thickened cell wall may keep 
polyenes and azoles from interacting with ergos-
terol in the fungal cell membrane, and echinocan-
dins from interacting with glucans in the fungal 
cell wall. In fact, old C. neoformans cells show 
increased resistance to the polyene amphotericin 
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Figure 1. Birth size of Cryptococcus neoformans cells from various clinical isolates does 
not strongly correlate with the cell’s replicative life span (RLS). (A) The size at birth of 359 
C. neoformans cells did not correlate with their respective median RLSs (Spearman’s r = -0.006). 
(B) Death size of 235 C. neoformans cells appeared to correlate with their respective median RLSs 
(Spearman’s r = 0.3).
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B (AMB) and the azole fluconazole as demon-
strated in time killing assays [6,8], which are not 
dependent on growth. Similar resistance was 
observed in old C. albicans cells when exposed 
to variable concentrations of the echinocandin 
caspofungin [6]. Already in C. neoformans cells 
that have undergone only 10 replications, killing 
assays have demonstrated enhanced resistance 
[6,8]. This finding in combination with the fact 
that AMB has poor penetration in the central 
nervous system warrants more studies directed 
toward drug resistance in C. neoformans. Here, 
it is noteworthy to acknowledge that phenotypic 
differences, such as cell wall thickness, between 
young and old cells would not be detected with in 
vitro minimum inhibitory concentration assays, 
which are dependent on growth. These assays are 
performed with young exponentially growing 
pathogen populations [53] and present selection 
pressures that are very different from fungal cells 
grown over weeks and months in vivo [8].

Phenotypic switching elicits hypervirulent 
variants of C. neoformans
Phenotypic switching is defined as the spontane-
ous emergence of colonies that have an altered 
colony morphology [54], and this phenomenon 
is observed at a higher frequency than somatic 
mutation and can revert to the unaltered or 
parent type [53,55–57]. Therefore, phenotypic 
switching constitutes a controlled epigeneti-
cally driven process that allows C. neoformans 
to change ‘phenotypes’ without the risk of 
mutation. Phenotypic switch variants exhibit 

enhanced virulence in murine infection models 
and, therefore, are selected in the host environ-
ment [14,56–60]. This is not unique to C. neofor-
mans, and in fact, phenotypic switch variants 
in C. glabrata also similarly exhibit enhanced 
virulence [61,62].

One interesting observation is that hyperviru-
lent switch variants, which result from pheno-
typic switching, appear to exhibit a shortened 
replicative life span [8]. Specifically, this means 
that phenotypic switching results in a significant 
loss of the average number of total replications 
that the switch variant can undergo when com-
pared with the parent (Figure 3). This finding 
underscores the fact that life span is regulated 
and not fixed and that phenotypic switching may 
be epigenetically linked to replicative aging. Also 
aging of yeast cells promotes an increased rate 
of switching to hypervirulent variants in C. neo-
formans [6]. Most likely, this is the result of age-
induced genomic instability [63,64], which may 
also affect heteroresistance [65] and chromosomal 
loss [66–68], both of which have been shown to 
inf luence cryptococcal virulence. Therefore, 
hypervirulent variants are by no means the pre-
dominant mechanism of generating phenotypic 
variants.

Selection of phenotypic variants 
& cryptococcal cells with the ‘old 
phenotype’ (cells of advanced replicative 
age)
C. neoformans switch variants, such as the hyper-
virulent mucoid variant that arises from smooth 
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Figure 3. Replicative life span appears to be regulated in phenotypic switch variants. (A) RLS of 
the hypervirulent variant (MC) was significantly shortened compared with the parent type (SM) of a 
serotype D strain RC-2. This RLS was not recovered when MC was reverted back to SM. (B) RLS of the 
hypervirulent variant (C) was significantly shortened compared with the parent type (S) of a serotype 
A strain SB4. This RLS was not recovered when C was reverted to S. 
C: Serrated; MC: Mucoid; RLS: Replicative life span; S: Smooth; SM: Smooth.

Figure 2. The thickness of the Cryptococcus 
neoformans cell wall increases with division. A 
representative image showing that the cell wall 
of an old C. neoformans mother cell is relatively 
thicker than its young daughter cell.
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parent cells, affect a small proportion of the path-
ogen population. However, novel phenotypes can 
be very stable, are thus inherited by progeny yeast 
cells, and selected in the setting of the host envi-
ronment. Specifically, it is the significant changes 

in the capsular polysaccharide that affect viscosity 
and biophysical characteristics of the polysaccha-
ride in these variants and confer an advantage 
while promoting their selection [6]. In fact, despite 
slower doubling times that are observed both in 
older cells [8] and in hypervirulent switch variants 
[14,59], these variants still persist and dominate the 
pathogen population [6,56]. These doubling time 
differences hint at the fact that rapid reproduction 
might be traded in fungi for other advantages. In 
S. cerevisiae, mutations that extend life span have 
been shown to cause defects in reproduction and 
fitness [69]. Unlike the switch variants, the trait of 
being old is not passed on to the progenies, which 
are young with every replication. The exception 
to this are long-lived S. cerevisiae mutants where 
the life span is inherited [69], or extremely old cells 
that give rise to progeny with a 30% reduced life 
span [70]. Therefore, the fact that old cells are 
observed during chronic infection suggests that 
immense selection pressures that kill off the pre-
dominantly young population are operative in the 
host environment. Data suggest that host immune 
cells, which include macrophages, as well as anti-
fungal treatment, such as AMB, constitute some 
of the selection pressures in vivo [8].

Conclusion & future perspective
The ability of C. neoformans to generate phe-
notypic variants could help explain differences 
in the outcome of infection, which still has a 
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significant mortality [71]. Recent data correlated 
capsular size to raised intracranial pressure and 
lowered inflammatory response in patient spinal 
fluid [72] and found that the pathogen popula-
tion size was more heterogeneous in vivo than in 
vitro. This heterogeneity was in agreement with a 
pathogen population that had undergone micro-
evolution and persisted despite various selection 
pressures during chronic infection. More inves-
tigations that focus on the actual in vivo evolved 
pathogen population have to be pursued. Now 
methods are available that will permit us to deter-
mine the age of individual C. neoformans cells in 
an in vivo specimen. Future studies are planned to 
test the intriguing hypothesis that aging of cells 
within a pathogen population is an unanticipated 

emergent phenotypic trait that contributes to 
cryptococcal virulence and resilience.
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EXECUTIVE SUMMARY
●● 	Phenotypic variation in C. neoformans has been established to be imperative to the ability of the pathogen to persist 

during chronic infection.

●● 	Despite extensive studies of this phenomenon, cryptococcosis remains a formidable threat for parts of the world.

●● 	In order to better understand what causes the generation of variants and promotes their selection during infection, 
newer approaches need to be taken.

●● 	Studies on the epigenetic regulation of capsular induction, cell size, cell wall thickness, aging and phenotypic 
switching may provide insight into the unique and unanticipated emergence of phenotypic variants that contribute to 
cryptococcal persistence, resilience and ultimately virulence.
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