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Dominance Genetic Variation Contributes Little
to the Missing Heritability for Human Complex Traits

Zhihong Zhu,1 Andrew Bakshi,1 Anna A.E. Vinkhuyzen,1 Gibran Hemani,1,2 Sang Hong Lee,1

Ilja M. Nolte,3 Jana V. van Vliet-Ostaptchouk,3,4 Harold Snieder,3 The LifeLines Cohort Study,5

Tonu Esko,6,7,8,9 Lili Milani,6 Reedik Mägi,6 Andres Metspalu,6,10 William G. Hill,11 Bruce S. Weir,12

Michael E. Goddard,13,14 Peter M. Visscher,1,15 and Jian Yang1,15,*

For human complex traits, non-additive genetic variation has been invoked to explain ‘‘missing heritability,’’ but its discovery is often

neglected in genome-wide association studies. Here we propose a method of using SNP data to partition and estimate the proportion of

phenotypic variance attributed to additive and dominance genetic variation at all SNPs (h2
SNP and d2SNP) in unrelated individuals based on

an orthogonal model where the estimate of h2
SNP is independent of that of d2SNP. With this method, we analyzed 79 quantitative traits in

6,715 unrelated European Americans. The estimate of d2SNP averaged across all the 79 quantitative traits was 0.03, approximately a fifth of

that for additive variation (average h2
SNP ¼ 0.15). There were a few traits that showed substantial estimates of d2SNP, none of which were

replicated in a larger sample of 11,965 individuals. We further performed genome-wide association analyses of the 79 quantitative traits

and detected SNPs with genome-wide significant dominance effects only at the ABO locus for factor VIII and von Willebrand factor. All

these results suggest that dominance variation at common SNPs explains only a small fraction of phenotypic variation for human com-

plex traits and contributes little to the missing narrow-sense heritability problem.
Introduction

Phenotypic variation of most traits related to human

health (e.g., obesity and blood pressure) is due to many

genes and their interplay with environmental factors.1

These traits are called ‘‘complex traits’’ to differentiate

them from Mendelian traits. In 1918, Fisher reconciled

biometrical and Mendelian modeling of complex traits

and partitioned total genetic variance into sources of vari-

ation due to additive, dominance (allelic interaction

within locus), and epistatic (allelic interaction between

loci) effects.2 Fisher’s subsequent work predicted that for

fitness and fitness-related traits, the amount of additive

genetic variation in the population should be small

because of natural selection.3 Yet despite nearly a century

of theoretical and empirical work since 1918, the quanti-

fication and relative importance of non-additive genetic

variation remains controversial. In humans, additive and

non-additive variance components are usually estimated

by comparing resemblance between close relatives, for

example in twin studies, and there have been many

efforts to estimate non-additive genetic variance in twin

studies.4–8 Such estimates, however, can be biased due to

confounding with common environmental effects within

families.
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In theory, the total genetic variance can be partitioned

into the variance components due to additive, dominance,

additive-by-additive, additive-by-dominance, and domi-

nance-by-dominance epistatic variation as well as many

higher-order terms.9,10 In practice, however, even with

data from large pedigrees, it is difficult to estimate all these

genetic variance components, not only because of the par-

tial confounding in coefficients of relatedness for these ge-

netic components but also because the coefficients for the

higher-order epistatic variance are small and therefore the

sampling errors of their estimates are large.11 Further, the-

ory shows that rather small proportions of non-additive

variance due to dominance and multi-locus epistatic are

expected to be found in outbred populations.11,12

On the other hand, genome-wide association studies

(GWASs) facilitated by high-throughput genotyping tech-

nologies have been enormously successful in identifying

SNPs that are associated with complex traits.13 For most

complex traits, however, a large portion of trait narrow-

sense heritability (h2) remains unexplained, the so-called

‘‘missing heritability’’ problem.14,15 SNP-trait associations

are most often identified by fitting additive models so

that phenotypic variation explained by the top associated

SNPs in GWASs is per definition additive, and per defini-

tion h2 does not include non-additive genetic variance.
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Hence, missing narrow-sense heritability appears not rele-

vant to non-additive variation. However, it has been sug-

gested that estimates of h2 could be inflated in the presence

of non-additive variation such as epistatic variation,16,17

and highly non-additive models of biology appear consis-

tent with the resemblance of relatives.17 Therefore, to place

the findings from SNP discoveries in context, precise and

unbiased partitioning of total genetic variance is required.

In this study, we proposed a method of estimating domi-

nance genetic variance by using genome-wide SNP data

and applied the method in the analyses of 79 quantitative

traits in humans.
Material and Methods

Statistical Models
In quantitative genetics theory,2,9,10 additive (A) variance at a sin-

gle locus is defined as the genetic variance explained by the regres-

sion of genotypic value (expected value of phenotypic mean in

each genotypic class) on genotype, and dominance (D) variance

is defined as the residual genetic variance that is not explained

by the regression. Let a ¼ (mBB – mAA) / 2 and d ¼ mAB � (mAA þ
mBB) / 2 with mAA, mAB, and mBB being the phenotypic means in

the three genotypic classes AA, AB, and BB, respectively. Under

the assumption of Hardy-Weinberg equilibrium (HWE), additive

variance (s2a) is 2p(1 – p)[a þ (1 – 2p)d]2, dominance variance (s2d)

is [2p(1 – p)d]2, and genotypic variance (s2g ) is s
2
a þ s2d , with p being

the frequency of allele B. Additive variance is the variance for the

average effect of allele substitution,10 i.e., b ¼ a þ (1 – 2p)d, which

contains a term due to dominance interaction between two alleles.

Such difference between interaction and variance resulting from

the interaction is a source of great confusion, not least in the dis-

cussion of the importance of epistatic interaction and epistatic

variance.12 Dominance variance is the variation in the deviations

of the genotypic values from the regression. These definitions are

consistent with the question we seek to ask, i.e., how much extra

genetic variance can be explained by dominance variation on top

of the A-only model. In GWASs, however, the analysis is often per-

formed based on the model18

y ¼ mþ xAbA þ xDbd þ e; (Equation 1)

where y is the phenotypic value; m is the mean term; xA is coded as

0, 1, or 2 and xD is coded as 0, 1, or 0 for the three genotypic classes

AA, AB, and BB; and e is the residual, e � Nð0; s2e Þ. However, this

model is not orthogonal because xA and xD are correlated, i.e.,

cov(xA,xD) ¼ 2p(1 � p)(1 � 2p) under HWE. We cannot simply

partition additive and dominance variance as var(xAbA) and

var(xDbD) because they do not add up to the total genetic variance,

i.e., varðxAbAÞ þ varðxDbDÞ svarðxAbA þ xDbDÞ. In a multiple

regression analysis of the AþD model, the true parameters of

the regression coefficients are bA ¼ a and bD ¼ d, whereas in a sim-

ple regression analysis of the A-only model, bA ¼ aþ (1� 2p)d. We

therefore re-parameterize Equation 1 as

y ¼ mþ xAbþ x0Dd þ e (Equation 2)

where b ¼ a þ (1 – 2p)d, which is the same as the regression coef-

ficient of y on xA in a GWAS based on the A-only model, and

x0D ¼ 0, 2p, or (4p – 2) for genotypes AA, AB, or BB. This model is

orthogonal because cov(xA, x’D) ¼ 0, meaning that the estimate
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of b is independent of whether d is fitted in the model or not

and vice versa, and the definitions of additive and dominance var-

iances are exactly consistent with those defined in classical quan-

titative genetics, i.e., s2a ¼ varðxAbÞ ¼ 2pð1� pÞ½aþ ð1� 2pÞd�2 and
s2d ¼ varðx0DdÞ ¼ ½2pð1� pÞd�2 with s2a þ s2d ¼ s2g .

Following the GREML approach19 we developed previously, we

can fit dominance effects of all SNPs together as random effects in

a mixed linear model, i.e.,

y ¼ mþ
X
i

wAðiÞuAðiÞ þ
X
i

wDðiÞuDðiÞ þ e: (Equation 3)

For a SNP i, wAðiÞ ¼ ðxAðiÞ � 2piÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ

p
and wDðiÞ ¼ ðx0DðiÞ�

2p2i Þ=½2pið1� piÞ�, which are essentially the standardized forms of

xA and xD because EðxAÞ ¼ 2p, Eðx0DÞ ¼ 2p2, varðxAÞ ¼ 2p(1 – p),

and varðx0DÞ ¼ 4p2(1 – p)2. uA and uD are additive and dominance

effects (random effects) corresponding to the standardized geno-

type variables wA and wD, respectively. The SNP-based model can

be transformed to an individual-based model as

y ¼ mþ gA þ gD þ e; (Equation 4)

where gA ¼ P
iwAðiÞuAðiÞ and gD ¼ P

iwDðiÞuDðiÞ, which can be

defined as the genome-wide additive and dominance genetic

values of an individual, respectively. Then, the phenotypic covari-

ance between individuals j and k is covðyj; ykÞ ¼ pAðjkÞs2Aþ
pDðjkÞs2D þ s2e , where s2A ¼ varðgAÞ, s2D ¼ varðgDÞ, pA(jk) and pD(jk)

are the additive and dominance genetic relationships between

individuals j and k, respectively, and s2e is the residual variance.

Using the method of equating the SNP-based model (Equation 3)

to the individual-based model (Equation 4),19 we get

pAðjkÞ ¼ 1

m

X
i

�
wAðijÞwAðikÞ

� ¼ 1

m

X
i

�
xAðijÞ � 2pi

��
xAðikÞ � 2pi

�
2pi

�
1� pi

�

pDðjkÞ ¼ 1

m

X
i

�
wDðijÞwDðikÞ

� ¼ 1

m

X
i

�
x0DðijÞ � 2p2i

��
x0DðikÞ � 2p2i

�
4p2i

�
1� pi

�2 ;

where m is the number of SNPs. Because covðxA; x0DÞ ¼ 0, the cor-

relation between pA and pD is also expected to be zero, and there-

fore the estimates of s2A and s2D are independent in a sample of

unrelated individuals. More generally, if there are fixed covariates

such as principal components, we can re-write Equation 4 in

matrix form as

y ¼ Cbþ gA þ gD þ e; (Equation 5)

where y is a n3 1 vector of phenotypes of all the individuals, C is a

n 3 c matrix of c covariates, b is a c 3 1 vector of the effects of the

covariates, gA and gD are n 3 1 vectors of genome-wide additive

and dominance values of all individuals, respectively, and e is

an n 3 1 vector of residuals. If there are no covariates, C will be

a n 3 1 vector of ones and b ¼ m. The (co)variance matrix of phe-

notypes is

varðyÞ ¼ varðgAÞ þ varðgDÞ þ varðeÞ ¼ QAs
2
A þQDs

2
D þ Is2

e

where QA and QD are the additive and dominance genetic rela-

tionship matrices (GRM), respectively. This is a typical mixed

linear model, and the variance components can be estimated by

the REML approach.20 The variance explained by additive and

dominance variation at all SNPs are defined as h2
SNP ¼ s2A=ðs2Aþ

s2D þ s2e Þ and d2SNP ¼ s2D=ðs2A þ s2D þ s2e Þ, respectively, where h2
SNP is

interpreted as the narrow-sense heritability (h2) captured by
, 2015



Figure 1. Off-Diagonal Elements of the Additive GRM against
Those of the Dominance GRM
The correlation is 3.40 3 10�4, which is not significantly different
from zero (p ¼ 0.11).
SNPs and H2
SNP ¼ h2

SNP þ d2SNP is the broad-sense heritability (H2)

captured by SNPs. We can assess the significance of h2
SNP or d2SNP

by likelihood ratio test (LRT) and calculate the standard errors

(SEs) of the estimates of h2
SNP or d2SNP via the delta method.10

We named this method GREMLd following the previous

nomenclature21 and have implemented it in the GCTA software

tool (see Web Resources).

Analysis of GWAS Data
We used SNP genotype data from three published GWASs, i.e., the

Atherosclerosis Risk in Communities (ARIC) study (n ¼ 8,682

European Americans),22 the population-based biobank of the Esto-

nian Genome Center at the University of Tartu (EGCUT) study

(n ¼ 10,652),23 and the LifeLines (LL) study (n ¼ 13,386).24

Informed consent was obtained from all subjects. To partition

and estimate the proportions of variance explained by additive

and dominance variation at all common SNPs (h2
SNP and d2SNP) for

quantitative traits, we first performed analyses in the ARIC cohort

for a number of quantitative traits and used the EGCUT and LL

data as a replication dataset for a few traits that showed a substan-

tial component of dominance variance from the analysis of the

ARIC data.

Information on genotyping and quality controls (QC) in the

three data sets are summarized in Table S1. To be able to merge

multiple datasets, genotype data from different genotyping plat-

forms were imputed separately to 1000 Genomes (1000G) refer-

ence panels25 via IMPUTE v.2.26 After imputation, we excluded

SNPs with MAF < 0.01, HWE test p value < 10�6, or imputation

R2 < 0.6. We then extracted SNPs on HapMap phase 3 (HM3) for

two reasons. First, the HM3 SNP set was optimized to capture com-

mon genetic variation in the human genome.27 Second, there has

been a debate on applying the SNP-based heritability estimation

approach in dense coverage SNP data (e.g., 1000G imputed

data), which has not led to a clear conclusion28,29 and needs
The Ame
further investigation. We finally retained 1,174,402, 1,177,501,

and 1,158,700 SNPs in the ARIC, EGCUT, and LL cohorts, respec-

tively, for analysis. To remove cryptic relatedness, we used all the

HM3 SNPs to estimate the additive genetic relationships between

all the individuals in each cohort and removed one of each pair of

individuals with estimated genetic relatedness >0.025. We re-

tained 6,715, 6,420, and 7,850 unrelated individuals in the

ARIC, EGCUT, and LL cohorts, respectively. In the combined data-

set of the EGCUTand LL cohorts, there were 1,140,901 HM3 SNPs

in common across the two cohorts and 11,965 unrelated individ-

uals (pairwise genetic relatedness < 0.025).

There are hundreds of phenotypes (including those measuring

the same trait atmultiple visits) in the ARIC data, which are related

to height, obesity, lipoproteins, diabetes, blood phenotypes, ca-

rotid artery, heart function, smoking, etc. We used data at the first

visit because the sample size was smaller in the follow-up visits.

We did not use the mean phenotype averaged across multiple

visits because (strictly speaking) mean phenotype is a different

trait. We excluded traits with missing rate >40% and excluded

those categorical traits with the number of classes <10. There

were 79 quantitative traits included in the analysis. A summary

description of the phenotypes is presented in Table S2. We repli-

cated the estimates of h2
SNP and d2SNP in the EGCUT and LL cohorts

for four traits (see Results), i.e., systolic blood pressure (SBP), BMI,

weight (WT), and waist circumference (WC). Each of the pheno-

types was corrected for age, standardized to z-score, and inverse

normal transformed, in males and females separately, in each

cohort. Pairwise correlations between the 79 traits in ARIC are

shown in Figure S1. The first 20 principal components (PCs) esti-

mated from the SNP data30 were included as fixed covariates in

the GREMLd analyses.
Genome-wide Association Tests for Dominance

Variance at Individual SNPs
We used the method described in Equation 3 to perform genome-

wide association tests for dominance variance at individual SNPs

for all the 79 traits in the ARIC data, and further for 4 traits that

showed a substantial estimate of d2SNP in the ARIC data, in the com-

bined data of the LL and EGCUTcohorts. The first 20 PCs were also

fitted as covariates in the association analyses.
Results

We estimated h2
SNP and d2SNP via the GREMLd method for

the 79 traits using ~1.17M SNPs and 6,715 unrelated indi-

viduals in the ARIC cohort (Materials and Methods). The

method uses genome-wide SNP data to estimate the addi-

tive and dominance GRMs and fits both GRMs in a mixed

linear model to estimate h2
SNP and d2SNP simultaneously. The

additive and dominance genotype variables at single SNPs

are parameterized such that genome-wide additive and

dominance GRMs are uncorrelated. Therefore, the esti-

mate of h2
SNP is independent of whether d2SNP is fitted in

the model or not, and vice versa. This is demonstrated

empirically by the tiny correlation (r ¼ 0.0003) of the off-

diagonal elements between the additive and dominance

GRMs in the ARIC data (Figure 1).

The estimates of h2
SNP and d2SNP for the 79 traits are shown

in Table S3, with their distribution being presented in
rican Journal of Human Genetics 96, 377–385, March 5, 2015 379



Figure 2. Distribution of the Estimates of h2
SNP and d2SNP for 79

Traits in the ARIC Cohort
To get an unbiased estimate of the mean of h2

SNP or d2SNP across all
the traits, the estimates of h2

SNP and d2SNP for each trait were not con-
strained to be positive in the REML analysis. The mean estimates
of h2

SNP and d2SNP are 0.15 and 0.03, respectively.
Figure 2. The estimate of h2
SNP averaged across all the 79

traits was 0.15 (ranging from �0.07 to 0.48), consistent

with that from a previous study in Asians.31 The estimate

of d2SNP averaged across traits was 0.03 (ranging from

�0.13 to 0.19). These results suggest that on average domi-

nance variance is approximately a fifth of additive vari-

ance, consistent with s2D being much smaller than s2A as

predicted from classical quantitative genetics theories11

and observed in pedigree-based analyses of thousands of

gene expression traits.32 We plotted the estimate of d2SNP

against that of h2
SNP for each of these traits and did not

observe a significant correlation between the estimates of

h2
SNP and d2SNP (Figure S2), suggesting that traits that have

a large component of h2
SNP do not necessarily have a sub-

stantial component of d2SNP. We further performed analyses

with the genotyped data (593,521 SNPs genotyped on

Affymetrix 6.0 array after QC, Table S1), and the results

were similar to those using the imputed data (Figure S3).

There were eight traits, related to obesity, blood pressure,

and heart rate, which had nominally significant estimates

of d2SNP (p < 0.05) (Table S3), e.g., systolic blood pressure

(SBP, d2SNP ¼ 0.16, SE ¼ 0.07) and BMI (d2SNP ¼ 0.15, SE ¼
0.07). We then replicated the results for four of the eight

traits (SBP, BMI, WT, and WC) having data available in

the EGCUT (n ¼ 6,420) and LL (n ¼ 7,850) studies (Mate-

rials and Methods) and performed analyses in a combined

set of EGCUTand LL samples (n¼ up to 11,965) (Figure 3).

To avoid bias due to winner’s curse (the estimates of d2SNP

for these four traits were selected by p values in the ARIC

data), we did not include the ARIC cohort in the analysis

of combined data. All the four traits appeared to have a

strong component of additive variance, consistently across

all the datasets. For dominance variance, however, none of

estimates were replicated in the combined dataset of

EGCUT and LL.

Having not found any evidence of dominance variance

for all the traits using all genome-wide SNPs, we asked
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whether there are any specific SNPs that have strong domi-

nance effects. Using the orthogonal model as described

above (Equation 2), we then performed genome-wide asso-

ciation analyses to test for dominance effect of each SNP

for the 79 traits in the ARIC data using ~1.17M HM3

SNPs (Materials and Methods). We identified the ABO

blood group gene locus on chromosome 9 that had a

genome-wide significant (p < 5 3 10�8) dominance effect

on two traits: factor VIII (FVIII, p value for dominance

effect PD ¼ 5.0 3 10�27) and von Willebrand factor (vWF,

PD ¼ 1.13 10�25) (Figure 4). These are two correlated traits

with a phenotypic correlation of 0.72. The top associated

SNPs at the ABO gene locus are rs505922 for FVIII

(MAF ¼ 0.35) and rs612169 for vWF (MAF ¼ 0.35), which

are in high linkage disequilibrium (LD) with r ¼ 0.96. The

additive variation at this locus is known to explain more

than 10% of the phenotypic variance for vWF.33 In our

study, the additive variation at the top associated SNP ex-

plained 11.4% of variance for FVIII (13.6% for vWF), and

the dominance variation at the SNP explained 1.4% of

variance for FVIII (1.3% for vWF), also consistent with

additive genetic variance being several-fold larger than

dominance genetic variance, even at a single SNP level.

The estimates of a and d were 0.44 (SE ¼ 0.02) and 0.26

(SE ¼ 0.02) at rs505922 for FVIII, 0.47 (SE ¼ 0.02) and

0.25 (SE ¼ 0.02) at rs612169 for vWF, respectively, suggest-

ing a partial dominance model of gene action. Even under

a full dominance model, e.g., assuming a ¼ d ¼ 0.44 at

rs505922 for FVIII, the additive variance (0.147) is still

~3.8 times larger than dominance variance (0.039). In

addition, we did not find SNPs that were associated with

any other traits at genome-wide significance level (PD <

5 3 10�8). We further performed GWAS analyses for the

four traits (SBP, BMI, WT, and WC) in the combined

EGCUT and LL sample of up to 11,965 unrelated individ-

uals and did not find any SNP with dominance effect at

genome-wide significance level (Figure S4).
Discussion

Results from GREMLd analyses show that on average

across all the 79 quantitative traits, dominance genetic

variance is about a fifth of additive genetic variance and

that none of the traits show significant estimates of domi-

nance variance. There are two possible explanations for

these results: either dominance variance at causal variants

is small or dominance variance at the underlying causal

variants is not small but the observed dominance variance

at the SNPs is small due to imperfect LD between SNPs and

causal variants. In theory34 and simulations (Figure S5),

the proportion of genetic variance at a causal variant

captured by a SNP is r2 for additive variance, with r being

the LD correlation between the SNP and the causal variant,

and r4 for dominance variance, suggesting that if LD be-

tween SNPs and causal variants are weak to moderate,

the observed dominance variance at SNPs will tend to be
, 2015



Figure 3. Estimates of h2
SNP and d2SNP in

Three Independent Cohorts of ARIC,
EGCUT, and LL and in the Combined Data-
set of EGCUT and LL for Four Traits
Error bar represents the standard error.
smaller than the observed additive variance even if the

actual additive and dominance variance components at

causal variants are equal. However, in a variance estima-

tion analysis using genome-wide SNPs, an unobserved

causal variant can be tagged by multiple SNPs. Therefore,

variance explained by SNPs should be proportional to

the multi-correlation between the causal variants and the

SNPs in LD with the causal variants.

To calibrate the extent to which dominance variance de-

creases due to the imperfect LD between SNPs and causal

variants, we performed two additional analyses. We calcu-

lated the multi-correlation R2 between a SNP and all other

SNPs within 1 Mb distance. Multi-correlation R2 for addi-

tive variance (multi-R2
xðAÞ) is defined as the multiple regres-

sion R2 of xA of the target SNP on xA of other SNPs in the

region, and that for dominance variance (multi-R2
x0ðDÞ) is

defined as the multiple regression R2 of x0D of the target

SNP on x0D of other SNPs. Both multi-R2
xðAÞ and multi-

R2
x0ðDÞ were adjusted for chance correlation due to the use

of multiple variables, analogs to the adjusted R2 in a multi-

ple regression analysis. In the ARIC dataset, the average

multi-R2
xðAÞ and multi-R2

x0ðDÞ over all SNPs were 0.96 and

0.84, respectively, suggesting that if any one of the SNPs

is missing, on average 96% of its additive variance and

84% of its dominance variance can be captured by the

other SNPs, and that even if all causal variants are not pre-

sent in the HapMap3 SNP panel, only 16% of dominance

variance at common causal variants is missing, which is

small given the mean d2SNP of 3.0%.

Further, we preformed simulation studies based on real

SNP data in the ARIC cohort (Appendix A). We randomly

sampled 10% of SNPs as a pool of ‘‘causal variants.’’ In

each simulation, we randomly sampled 1,000 causal vari-

ants from the pool and simulated phenotypes with h2 ¼
The American Journal of Human
d2¼ 0.3. The analyses of the simulated

data were performed in two scenarios:

(1) using all the SNPs (including the

pool of causal variants) and (2) using

only 90% of the SNPs (excluding the

pool of causal variants). In scenario 1

where the causal variants were a

random subset of all SNPs and were

included in the analysis, the estimates

of h2 and d2 were unbiased (Table S4).

In scenario 2 where the causal variants

were not included in the analysis, the

estimate of h2
SNP was biased down-

ward, more so for d2SNP. We further per-

formed analyses reducing the number

of SNPs used from 90% to 10%
(Figure S6). Because the pool of causal variants (10% of

the SNPs) was always left out of the analysis, reducing

the number of SNPs used in the analysis (randomly

sampled from the remaining 90% SNPs) decreased the

LD between SNPs and causal variants. We observed a

slightly faster decline of the estimate of d2SNP due to imper-

fect LD than that of h2
SNP, consistent with that predicted

from theory. Even in a very extreme scenario, where only

10% SNPs were included in the estimation analysis, the

ratio of bh2

SNP (0.20) to
bd2SNP (0.13) was 1.48, not inconsistent

with a ratio of average multi-R2
xðAÞ (0.67) to average multi-

R2
x0ðDÞ (0.40) of 1.68 calculated in a random subset of 10%

SNPs (see above for the method of calculating multi-R2),

but much smaller than that observed in the analysis of

the 79 real phenotypes (bh2

SNP=
bd2SNP ¼ ~5). As suggested by

Yang et al.,19 if causal variants tend to be in lower MAF

than SNPs, the estimate of h2
SNP will be biased downward,

more so if the causal variants are not included in estima-

tion analysis. We then sought to test whether the observedbh2

SNP=
bd2SNP at SNPs would become larger if the unobserved

causal variants tend to be in lower MAF than the SNPs

by sampling causal variants from SNPs with MAF % 0.1

(h2 ¼ 0.3 and d2 ¼ 0.3). We found that both h2 and d2

were underestimated (bh2

SNP ¼ 0.18 and bd2SNP ¼ 0.18); how-

ever, the biases in bh2

SNP and bd2SNP were roughly equal so

that bh2

SNP=
bd2SNP is still approximately equal to 1. All these

results suggest that the observed large difference between

bh2

SNP and
bd2SNP in the analysis of real phenotypes is unlikely

to be driven by imperfect tagging.

Taking all results together, the most plausible reason

why we did not find a significant component of domi-

nance variance for all the traits is that d2SNP is small so
Genetics 96, 377–385, March 5, 2015 381



Figure 4. Genome-wide Association Tests for Dominance Effects for Factor VIII and von Willebrand Factor
(A and B)Manhattan plots of p values for dominance effects from themodel of fitting both additive and dominance effects for factor VIII
(FVIII) (A) and vonWillebrand factor (vWF) (B). SNPs with genome-wide significant dominance effects are located at the ABO gene locus.
(C and D) Genotype-phenotype maps at the top SNP rs505922 for FVIII (C) and the top SNP rs612169 for vWF (D). The normalized
phenotypic means in the three genotypic classes are �0.57, 0.12, and 0.30 at the SNP rs505922 for FVIII (C), and �0.57, 0.15, and
0.37 at the SNP rs612169 for vWF (D). Bars represent 2.5% and 97.5% quartiles of the phenotype distribution at each of the three
genotypic classes.
that we do not have sufficient power to detect it with sta-

tistical significance given the sample size used in this

study. The power to detect d2SNP is determined by the

non-centrality parameter (NCP) of the chi-square statistic,

i.e., NCP¼ d4SNP=varðbd2SNPÞ. For additive genetic variance, we

have derived in a previous study21 that varðbh2

SNPÞ is approx-
imately equal to 2 / [N2 3 var(GRMA)], where N is the sam-

ple size and var(GRMA) is the variance of the off-diagonal
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elements of the additive GRM, which is approximately

2 3 10�5 using all common SNPs. We show by empirical

data that var(GRMA) is approximately twice that of

var(GRMD), i.e., var(GRMD) ¼ 1 3 10�5, meaning that

varðbd2SNPÞ z2 / [N2 3 var(GRMD)] z2 / (1 3 10�5 N2)

(Figure S7). Given a simple size of 7,000, we will have

only ~12% and ~35% of power to detect d2SNP of 0.05 and

0.1, respectively, at the significance level of 0.05.
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Very little dominance variance is attributable to rare

causal variants because that at a single variant is propor-

tional to [2p(1 – p)]2. For a rare variant with MAF < 0.01,

even if the dominance effect is large (e.g., 1 standard devi-

ation), the proportion of variance explained by dominance

variation at it is tiny (<0.04%). If variants are deleterious

there is reason to expect that degree of dominance is

associated with the size of effect, i.e., those of largest effect

are likely to be at lowest frequency, contributing to

inbreeding depression but not generating much domi-

nance variance.35

We observed a significant estimate of dominance vari-

ance at the ABO gene locus for von Willebrand factor

(1.28% of variance explained) and for factor VIII (1.36%

of variance explained), which were also several-fold

smaller than those for additive variation (>10% of vari-

ance explained). We then used simulations to test whether

or not the observed dominance variation at the SNP was

caused by the unexplained additive variation at the unob-

served causal variant due to imperfect LD between the SNP

and the causal variant. As shown in Figure S8, if the genetic

effect at an unobserved causal variant is purely additive,

there is no inflation in the test statistic for dominance

effect at the linked SNP, suggesting that dominance varia-

tion at the ABO SNP is not driven by additive variation at

the underlying causal variant.

We have shown by theory, simulations, and data ana-

lyses the use of SNP data to partition and estimate addi-

tive and dominance variance in unrelated individuals

based on an orthogonal model. We found that, on

average, dominance variation at all the common SNPs

explain only 3% of variance for the traits analyzed in

this study, 5-fold smaller than that for additive variation.

Because rare variants contribute little to the dominance

variance and a very large proportion (multi-R2
x0 ðDÞ ¼

0.84) of dominance variation at common variants can

be captured by common SNPs, the variance explained

by dominance variation at all causal variants is also

likely to be small (3% / 0.84 < 4%). Hence, even if the

missing heritability problem is partly due to the over-

estimation of h2 in family/twin studies, it is highly un-

likely to be caused by dominance variation. Therefore,

dominance variation contributes little to the missing

heritability.
Appendix A

Simulations

We performed a series of simulations based on the real ge-

notypes of ~1.17MHapMap3 SNPs and 6,715 unrelated in-

dividuals in the ARIC cohort. To mimic the incomplete LD

between the unobserved causal variants and the observed

SNPs, we randomly sampled 10% of SNPs (~117K SNPs)

as a pool of causal variants, and used the other 90% as

the observed SNPs. In each simulation replicate, we

randomly sampled 1,000 causal variants from this pool
The Ame
and generated the phenotype of each individual based

on Equation 3, where the additive and dominance effects

were generated from the standard normal distribution

and the residuals were generated from a normal dis-

tribution with mean 0 and variance var(gA þ gD)[1 / (h2 þ
d2) – 1] (see Equation 4 for the definitions of gA þ gD). We

chose h2 ¼ 0.3 and d2 ¼ 0.3. We then estimated h2
SNP and

d2SNP based on Equation 5 in two scenarios: (1) all the

SNPs (including the pool of causal variants) were included

in the GREMLd estimation analysis, and (2) only the

observed SNPs (excluding the pool of causal variants)

were included in the GREMLd analysis. We repeated the

simulation 100 times. In each scenario, we calculated the

mean estimates of h2
SNP and d2SNP and their standard errors

across all replicates.

We extended the simulations by reducing the number

of observed SNPs included in the GREMLd analysis

from 90% to 10% by steps of 10%. With the decreasing

number of observed SNPs used in analysis, on average

the LD between causal variants used for generating

phenotype and the SNP used in analysis decreased. This

simulation was to test whether or not the reduction in

the estimate due to incomplete LD for d2SNP is faster than

that for h2
SNP.

We further performed simulations to mimic causal vari-

ants tending to have lower minor allele frequency (MAF)

than SNPs by randomly sampling causal variants from

SNPs with MAF < 0.1. We randomly sampled 10% of

SNPs as a pool of causal variants, simulated phenotype

with the same parameter setting as above (1,000 causal var-

iants, h2 ¼ 0.3, d2 ¼ 0.3, and 100 simulation replicates),

and estimated h2
SNP and d2SNP using the other 90% of SNPs

(excluding the pool of causal variants).
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