
NeuroImage: Clinical 7 (2015) 782–787

Contents lists available at ScienceDirect

NeuroImage: Clinical

j ourna l homepage: www.e lsev ie r .com/ locate /yn ic l
Exposing asymmetric gray matter vulnerability in amyotrophic
lateral sclerosis
Matthew S. Devinea,b,⁎, Kerstin Pannekb,c, Alan Coulthardb,d, Pamela A. McCombea,b,
Stephen E. Rosec, Robert D. Hendersona

aDepartment of Neurology, Royal Brisbane and Women3s Hospital, Herston, QLD 4006, Australia
bSchool of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia
cAustralian e-Health Research Centre, CSIRO, Digital Productivity & Services Flagship, Royal Brisbane and Women3s Hospital, Herston, QLD 4006, Australia
dDepartment of Medical Imaging, Royal Brisbane and Women3s Hospital, Herston, QLD 4006, Australia
Abbreviations:ALS,amyotrophiclateralsclerosis;VBM,
graymatter; UMN, uppermotor neuron; LMN, lowermoto
⁎ Corresponding author at: Department of Neurology

Hospital, Herston, QLD 4006, Australia. Tel.: +61 7 3646 8
E-mail address: devine.m@gmail.com (M.S. Devine).

http://dx.doi.org/10.1016/j.nicl.2015.03.006
2213-1582/© 2015 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 23 January 2015
Received in revised form 2 March 2015
Accepted 5 March 2015
Available online 14 March 2015

Keywords:
Motor neuron disease
Amyotrophic lateral sclerosis
Voxel-based morphometry
Asymmetry
Limb dominance
Limbweakness in amyotrophic lateral sclerosis (ALS) is typically asymmetric. Previous studies have identified an
effect of limb dominance on onset and spread of weakness, however relative atrophy of dominant and non-
dominant brain regions has not been investigated. Our objective was to use voxel-based morphometry (VBM)
to explore graymatter (GM) asymmetry in ALS, in the context of limb dominance. 30 ALS subjects werematched
with 17 healthy controls. All subjectswere right-handed. Each underwent a structuralMRI sequence, fromwhich
GM segmentations were generated. Patterns of GM atrophy were assessed in ALS subjects with first weakness in
a right-sided limb (n=15) or left-sided limb (n=15).Within each group, a voxelwise comparisonwas also per-
formed between native and mirror GM images, to identify regions of hemispheric GM asymmetry. Subjects with
ALS showed disproportionate atrophy of the dominant (left) motor cortex hand area, irrespective of the side of first
limb weakness (p b 0.01). Asymmetric atrophy of the left somatosensory cortex and temporal gyri was only ob-
served inALS subjectswith right-sidedonset of limbweakness. Our VBMprotocol, contrastingnative andmirror im-
ages, was able to more sensitively detect asymmetric GM pathology in a small cohort, compared with standard
methods. These findings indicate particular vulnerability of dominant upper limb representation in ALS, supporting
previous clinical studies, and with implications for cortical organisation and selective vulnerability.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenera-
tive condition affecting upper (UMN) and lower motor neurons (LMN)
(Kiernan et al., 2011; Turner et al., 2013). Understanding the patho-
physiology of ALS is challenging, due to significant variability of clinical
phenotype, patient characteristics and disease progression (Chiò et al.,
2011; Turner et al., 2013).

Despite this variability, common patterns have been observed across
a wide range of ALS subjects. A well-studied example is the “split hand”
phenomenon, in which there is disproportionate weakness of the
thenar/first dorsal interosseous muscle group (Eisen et al., 2014; Eisen
and Kuwabara, 2012). Early weakness of ankle dorsiflexors (Eisen
voxel-basedmorphometry;GM,
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et al., 2014) and speech (Devine et al., 2013) has also been observed.
These findings have prompted suggestions that functions which
humanshave evolvedmore recently, such as the pincer grip and upright
stance, are more susceptible to ALS (Eisen et al., 2014; Eisen, 2009).

Onset of weakness in ALS is also typically asymmetric. However, the
factors determining the side of onset and direction of spread remain un-
clear. Since humans have evolved strong population-wide upper limb
dominance (Fitch and Braccini, 2013), it is important to explore this as
another potential source of vulnerability in ALS. It has been shown
that the dominant upper limb, but not lower limb, is more susceptible
to onset of weakness (Turner et al., 2011). We have also described
that spread of weakness and UMN signs are affected by dominance,
suggesting importance of central factors (Devine et al., 2014).

The aim of this study was to investigate gray matter (GM) asymme-
try in ALS, and thus identify regions asymmetrically affected by the dis-
ease. Applying voxel-based morphometry (VBM) analysis of structural
MRI, we performed direct comparisons between ALS subjects and con-
trols, as well as using a novel asymmetry protocol to assess interhemi-
spheric differences (Rose et al., 2012). Our hypothesis was that this
asymmetry protocol would detect patterns of disproportionate atrophy
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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in ALS, whichwould be affected bywhetherweaknessfirst occurred in a
dominant or non-dominant limb.

2. Materials and methods

2.1. Subjects and recruitment

Ethical approval was obtained from the Royal Brisbane andWomen3s
Hospital (RBWH) Human Research Ethics Committee. All subjects pro-
vided written informed consent, and all research was conducted in
accordance with the Declaration of Helsinki.

Thirty right-handed subjects were recruited from ALS outpatient
clinics at the RBWH (2008–2013). All had diagnoses of clinically proba-
ble or definite ALS, according to revised El Escorial criteria (Brooks et al.,
2000). We chose to study only right-handed subjects due to their pre-
dominance in the population (Meguerditchian et al., 2013), as well as
greater uniformity of motor and language lateralisation (Adamo and
Taufiq, 2011). Handedness was confirmed using the Edinburgh Hand-
edness Inventory (Oldfield, 1971). Subjects were grouped according to
the index limb, defined as the first limb affected by weakness (either
the limb of onset, or the first limb affected after bulbar onset) (Devine
et al., 2014). Fifteen subjects had a right-sided (dominant) index limb
and 15 had a left-sided (non-dominant) index limb. Each subject was
administered the ALS Functional Rating Scale—Revised (ALSFRS-R) as a
measure of disability. To adjust the degree of disability for the disease du-
ration, we calculated “disease progression” as: (48 − ALSFRS-R score) /
(disease duration). Seventeen right-handed healthy controlswere closely
age and sex-matchedwith each groupof 15ALS subjects. Noneof the con-
trol or ALS subjects had a history of cerebrovascular events, intracranial
pathology, or other neurological diseases.

2.2. MRI acquisition

Each subject underwent an MRI scan acquired with a 3 T Siemens
TimTrio (Siemens, Erlangen, Germany), using sequences from VB17
Neuro applications and a 12-channel head coil. A high-resolution struc-
tural imagewas acquired for each subject using a 1mm3 isotropic 3D T1
MPRAGE (FOV 24 × 25.6 × 17.6 cm, TR/TE/TI 2300/2.26/900 ms, flip
angle 9). Slice thickness was 1 mm and image acquisition time was
9:14 min.

2.3. Image processing

Structural images were processed according to the protocol previ-
ously reported (Rose et al., 2012). The software package FSL-VBM (Ver-
sion 4.1), an optimised VBM protocol (Good et al., 2001a) carried out
with FSL tools (Smith et al., 2004), was used for all image processing
and analysis. The brain was extracted using BET (Smith, 2002). GM
segmentation was performed using FAST (Zhang et al., 2001), with the
segmentations then aligned toMNI152 standard space using affine reg-
istration, FLIRT (Jenkinson and Smith, 2001), followed by non-linear
registration using FNIRT (Andersson, 2007). The resulting images
were averaged to create a study-specific GM template. Each image
wasnon-linearly re-registered to that template, before beingmodulated
by dividing by the Jacobian determinant of thewarpfield and smoothed
with an isotropic Gaussian kernel (sigma=4mm). Mirror images were
then generated for each of the smoothed, modulated GM images in
standard space, for each of the 47 subjects.

2.4. Statistical analysis

All statistical comparisons were performed using Randomise
(Nichols and Holmes, 2002), and adjusted for multiple comparisons
using threshold-free cluster enhancement (TFCE) (Smith and Nichols,
2009).
2.4.1. ALS and controls
Firstly, a voxelwise unpaired t-test was performed, comparing the

GM density of all ALS subjects (n = 30) with all controls (n = 17).
ALS subjects were then subdivided into two groups (15 with a right-
sided index limb, and 15 with a left-sided index limb), and each group
was compared with 15 age and sex-matched controls. Finally, the ALS
subjects with a right-sided index limb were compared directly with
those having a left-sided index limb. For each test, age and disease pro-
gression were introduced as nuisance covariates.

2.4.2. Asymmetry analysis
In order to identify areas of hemispheric asymmetry, a voxelwise

paired t-test was performed between the native and mirror images.
This was performed separately for each of the three groups of subjects
(17 controls, 15 ALS subjects with a right-sided index limb and 15
with a left-sided index limb). The limb subscore (questions 4–9) of
the ALSFRS-R was introduced as a covariate. The anatomical location
of each cluster of GM asymmetry was determined using the Talairach
Daemon. The threshold for statistical significance was set at p ≤ 0.01
(TFCE-corrected).

3. Results

3.1. ALS and controls

Specific subject characteristics are presented in Table 1. Compared
with controls (n= 17), subjects with ALS (n= 30) showed amultifocal
cluster of reduced GM density, involving the left precentral gyrus and
adjacent regions of the left middle frontal gyrus and bilateral medial
frontal gyri (2087 voxels; centre-of-gravity: −22, −11, 52; p ≤ 0.05).
Therewas a separate cluster of reducedGMdensity involving bilateral an-
terior cingulate gyri (425 voxels; centre-of-gravity: 1, 39, 6; p ≤ 0.05).
These patterns of atrophy are illustrated in Fig. 1A.

Across all 47 subjects, therewas a negative correlation (p≤ 0.05) be-
tween age andGMdensity inwidespread regions of the frontal, parietal,
temporal and occipital lobes, representative of age-related atrophy.
However, therewas no confounding effect of age or disease progression
on the patterns of atrophy in ALS.

3.2. ALS (according to index limb) and controls

As illustrated in Fig. 1B, ALS subjects with a right (dominant) index
limb (n = 15) showed patchy reductions in GM density affecting the
left precentral gyrus, at a threshold of p ≤ 0.05. These changes were
not significant at a higher threshold of p ≤ 0.01. Subjects with a left
(non-dominant) index limb (n = 15) did not demonstrate any signifi-
cant reductions in GM density at either the left or right precentral gyri
at a threshold of p ≤ 0.05 (Fig. 1C).

Direct voxelwise comparison between ALS subjects with either a
right or left index limb also did not reveal any significant differences
in GM density.

3.3. GM asymmetry in controls

In the 17 right-handed control subjects, multiple statistical clusters
of both rightward and leftward asymmetries were identified (Table 2,
Fig. 2A). Of particular note was an area of leftward asymmetry
(p ≤ 0.01) encompassing a dorsolateral region of the precentral and
postcentral gyri. This area corresponded closely with the centre-of-
gravity of the dominant thenar representation area, previously defined
using transcranial magnetic stimulation (TMS) (Niskanen et al., 2010).
Control subjects also demonstrated significant leftward asymmetry of
a region of the superior and transverse temporal gyri, adjacent to the
Sylvian fissure. There were no significant asymmetries of lower limb
or bulbar representation areas, indicating that these regions were of a
similar density in the right and left hemispheres.



Table 1
Demographics and clinical features of ALS subjects and controls.

Controls ALS with Right Index Limb ALS with Left Index Limb

Number of subjects 17 15 15 –

Handedness (right:left) 17:0 15:0 15:0 –

Age (mean ± SD; range) 56 ± 13 years
(33–74 years)

59 ± 13 years
(30–76 years)

56 ± 11 years
(29–73 years)

–

Sex (male:female) 11M:6F 11M:4F 10M:5F –

Sporadic:familial – 14:1 11:3 –

Onset site – • 9 right upper limb
• 5 Right lower limb
• 1 bulbar

• 7 left upper limb
• 5 left lower limb
• 3 bulbar

–

Disease duration, months (mean ± SE; range) – 23.8 ± 6.4 months
(4–104 months)

28.7 ± 10.5 months
(7–173 months)

p = 0.69

ALSFRS-R score (mean ± SD) – 40 ± 4 39 ± 6 p = 0.58
Disease progressiona (mean ± SE) – 0.53 ± 0.08 0.55 ± 0.11 p = 0.93

a Disease progression = (48 − ALSFRS score) / disease duration.
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3.4. GM asymmetry in ALS

In the 15 ALS subjects with a right-sided (dominant) index limb,
there was complete absence of leftward asymmetry at the precentral
gyrus hand representation area, at the threshold of p ≤ 0.01 (Table 2,
Fig. 2B). This indicated disproportionate loss of GM supplying the domi-
nant hand, relative to the remainder of the bilateral motor strip (includ-
ing lower limb and bulbar representation areas). Leftward asymmetry
was also lost at the adjacent region of the postcentral gyrus, as well as
the superior and transverse temporal gyri and anterior insula.

In contrast, leftward asymmetry of the dorsolateral postcentral
gyrus, superior and transverse temporal gyri and anterior insula was
preserved in the 15 ALS subjects with a left-sided (non-dominant)
index limb (Table 2, Fig. 2C). However, these subjects still showed
complete absence of leftward asymmetry at the precentral gyrus hand
representation area. This disproportionate loss of GM density in the
left motor cortex occurred despite first weakness occurring in a limb
controlled by the right hemisphere. These subjects also demonstrated
a new cluster of leftward asymmetry involving the middle frontal
gyrus (MFG), which was not present in controls (Table 2). This may
Fig. 1. Gray matter atrophy in ALS versus controls. Selected axial plane reconstructions showin
significantly reduced density (p≤ 0.05, TFCE-corrected) are coloured in orange-yellow. RowA s
show the patterns of atrophy in ALS subjects with a right-sided or left-sided index limb, respe
indicate either relative gain of GM density at the left MFG or GM loss
at the right MFG, with the latter favoured.

Other regions of GM asymmetry were preserved across all ALS
subjects and controls. These included rightward asymmetry of the
inferior frontal, rectal and orbital gyri, posterior thalamus, posterior
cingulate gyrus and cuneus, and leftward asymmetry of the postero-
lateral cerebellum and occipital lobes. Several of these regions, in-
cluding rightward asymmetry of the antero-inferior frontal lobes
and leftward asymmetry of the occipital lobes, have been previously re-
ported in larger populations of healthy subjects (Toga and Thompson,
2003; Watkins et al., 2001).

4. Discussion

The objective of this studywas to identify ALS-related changes to the
normal patterns of GM asymmetry, and interpret these in the context of
limb dominance. We have established that a VBM asymmetry protocol
applied to structural T1 MRI (Rose et al., 2012) is a useful tool for
assessing GM changes in both healthy and disease states, especially in
smaller cohorts in which standard voxelwise comparisons are less
g regions of reduced GM density in subjects with ALS, compared with controls. Regions of
hows a comparison between all ALS subjects (n=30) and controls (n=17). Rows B and C
ctively (n = 15 in each group).



Table 2
Statistical clusters of GM asymmetry in controls and ALS subjects.

Cluster Centre of Gravity
(MNI)

GM Regions Encompassed Cluster Size (voxels) a T-valueb

x y z

Controls
(n = 17)

Leftward Asymmetries (L hemisphere N R hemisphere)
-39 -74 -26 • Cerebellum (posterolateral)

• Occipital lobe (posterolateral)
5523 12.3

-34 -14 35 • Precentral gyrus (dorsolateral)
• Postcentral gyrus (dorsolateral)
• Superior and transverse temporal gyri
• Anterior insula

4120 9.6

Rightward Asymmetries (R hemisphere N L hemisphere)
11 -53 12 • Posterior thalamus

• Posterior cingulate gyrus
• Cuneus and precuneus

2007 10.9

9 -61 -40 • Cerebellum (inferomedial) 1334 10.1
12 15 -17 • Inferior frontal, rectal and orbital gyri 452 8.2

ALS with Right Index Limb
(n = 15)

Leftward Asymmetries (L hemisphere N R hemisphere)
-39 -73 -32 • Cerebellum (posterolateral)

• Occipital lobe (posterolateral)
2938 10.7

Rightward Asymmetries (R hemisphere N L hemisphere)
10 -65 -28 • Cerebellum (inferomedial) 1791 9.4
13 19 -18 • Inferior frontal, rectal and orbital gyri 1011 12.4
10 -62 13 • Posterior cingulate gyrus

• Cuneus and precuneus
769 8.5

12 -27 6 • Posterior thalamus 452 6.9
ALS with Left Index Limb
(n = 15)

Leftward Asymmetries (L hemisphere N R hemisphere)
-34 -67 -44 • Cerebellum (posterolateral) 2285 7.5
-42 -25 13 • Superior and transverse temporal gyri 971 9.0
-47 -77 -6 • Occipital lobe (posterolateral) 617 9.7
-29 19 4 • Anterior insula 609 7.3
-29 40 30 • Middle frontal gyrus 498 7.5
-47 -23 55 • Postcentral gyrus (dorsolateral) 185 6.9
Rightward Asymmetries (R hemisphere N L hemisphere)
10 -68 -17 • Cerebellum (inferomedial)

• Posterior cingulate gyrus
• Cuneus and precuneus

3564 9.3

13 18 -18 • Inferior frontal, rectal and orbital gyri 556 10.3
13 -24 10 • Posterior thalamus 550 8.2

a Only clusters of ≥180 voxels are reported.
b All regions are significant, after correction for multiple comparisons (TFCE), at a threshold of p ≤ 0.01.

Fig. 2. Patterns of graymatter asymmetry in ALS and control subjects. Selected axial plane reconstructions from17 right-handed controls (RowA), 15 ALS subjectswith a right-sided index limb
(Row B), and 15 ALS subjects with a left-sided index limb (Row C). Significant regions of GM asymmetry (p ≤ 0.01, TFCE-corrected) are shown. Regions coloured in orange-yellow represent
leftward asymmetry (i.e. higher GMdensity in the left hemisphere), whereas blue clusters signify rightward asymmetry. In control subjects, there is a cluster of leftward GM asymmetrywhich
incorporates the centre-of-gravity of the dominant thenar representation area (shown by the intersection of the two red lines). PreCG = precentral gyrus; PostCG = postcentral gyrus;
PCG=posterior cingulate gyrus; STG=superior temporal gyrus; TTG= transverse temporal gyrus; IFG= inferior frontal gyrus; OG=orbital gyrus; RG= rectal gyrus; Thal= thalamus.
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sensitive. Using this protocol, we found that right-handed ALS subjects
with dominant limbonset disproportionately lost GM in left hemispher-
ic sensorimotor (upper limb representation) and language regions.
However, unlike other regions, disproportionate atrophy of the left
motor cortical hand area occurred independent of whether onset of
weaknesswas in a dominant or non-dominant limb. These findings sup-
port previous clinical studies of ALS laterality, and have implications for
cortical organisation, its evolution, and selective vulnerability.

Multiple large studies have demonstrated motor cortical atrophy in
ALS, which may initially be left-hemisphere predominant (Menke
et al., 2014). Furthermore, motor impairment has been shown to be
focal, using both clinical examination (Ravits et al., 2007) and neuro-
imaging (Bede et al., 2013). However, in the current study, major
differences between ALS and controls were only apparent when
analysing all 30 subjects together, and at a more relaxed statistical
threshold (p≤ 0.05). Comparisons involving 15 ALS subjects only de-
tected minor, patchy reductions in motor cortical GM density, and
were unable to differentiate subjects with right or left-sided disease
onset. In contrast, the VBM asymmetry protocol was sufficiently
powered to identify differences in GM between the two clinical
groups of ALS subjects, at a stricter threshold (p ≤ 0.01). Therefore,
this method is ideal for exposing subtle asymmetric changes in less
common diseases such as ALS.

Despite previous authors correlating the size or density of motor
areas with handedness (Hervé et al., 2006; Rose et al., 2012; Takao
et al., 2011), some have not demonstrated this (Good et al., 2001b).
In the current study, we defined a significant cluster of leftward GM
asymmetry in right-handed controls, incorporating the cortical hand
representation area. This indicates greater size and complexity of this
area in the left hemisphere. In contrast, the absence of this asymmetry
across all right-handed ALS subjects suggests that the left hemisphere
handarea disproportionately loses GMdensity relative to the remainder
of the bilateral motor cortex. Our results also suggest that this region of
motor cortex is particularly vulnerable to atrophy, regardless of wheth-
er the patient or clinician had noticed first weakness in a right or left-
sided limb.

Vulnerability of the dominant upper limb in ALS has been previously
described using history and clinical examination (Devine et al., 2014;
Turner et al., 2011). Our study provides neuroimaging evidence to
support this phenomenon, and suggests an important role for central
factors in driving this effect. Our findings also confirm the lack of prefer-
ential involvement of either lower limb, which has been observed
clinically (Turner et al., 2011). It has been proposed that certain
functions, such as the “split hand”, are more vulnerable to the pa-
thology of ALS due to more recent development in human evolution
(Eisen et al., 2014). Another key feature of human development has been
a population-wide bias toward right-handedness (Fitch and Braccini,
2013), which is likely to have been facilitated by the onset of upright
gait (Meguerditchian et al., 2013). The current results suggest that the
increased complexity of left hemispheric motor networks in right-
handersmay lead to greater susceptibility to ALS. The cause of neuronal
vulnerability in ALS remains unknown, although potential contributory
factors include cellular density, excitability, and hormonal influences
(Amunts et al., 1996; Bäumer et al., 2007; Vivekananda et al., 2011).

In our study, subjects with dominant limb onset of weakness also
showed disproportionate atrophy of areas involved in language and
communication (left superior and transverse temporal gyri). It is
known that 98% of right-handers have left hemispheric language
lateralisation (Adamo and Taufiq, 2011). Although these subjects did
not undergo formal cognitive testing, this findingmay reflect the occur-
rence of language dysfunction as part of the ALS–FTD spectrum, includ-
ing milder language deficits in subjects without frank dementia (Taylor
et al., 2013). Alternatively, some authors have proposed that the domi-
nant upper limb and speech form a single network for communication,
with gestures and vocalisations being linked (Gentilucci et al., 2008;
Meguerditchian et al., 2013).
This study has limitations. Due to the current cohort being restricted
to right-handers, we were unable to assess changes to GM asymmetry
in left-handed or ambidextrous subjects. However, this would require
recruitment of a larger cohort, since hemispheric lateralisation of
motor and language is less predictable in non-right-handed individuals
(Adamo and Taufiq, 2011). The size of our cohort also limited the ability
to separately analyse smaller subgroups, for example only those sub-
jects with upper limb onset of weakness. Formal neuropsychological
testing was also not performed, therefore the cognitive correlates of
some changes (such as those affecting the left frontal and bilateral cin-
gulate gyri) remain unclear. Finally, it remains to be seen whether the
current results can be translated to individual subjects, for example in
a diagnostic setting.

Overall, this study provides evidence that certain areas of GM are
disproportionately and asymmetrically vulnerable to the pathology of
ALS, and that these regions can be identified using a sensitive VBM pro-
tocol. In particular, we have identified the dominant hand area as being
particularly susceptible to atrophy, supporting previous history and
examination-based studies. This finding warrants further investigation,
including assessment of associated white matter asymmetry using dif-
fusion tensor imaging.
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