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Rhodopsin/Lipid Hydrophobic Matching—Rhodopsin Oligomerization and
Function
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ABSTRACT Lipid composition of the membrane and rhodopsin packing density strongly modulate the early steps of the visual
response of photoreceptor membranes. In this study, lipid-order and bovine rhodopsin function in proteoliposomes composed of
the sn-1 chain perdeuterated lipids 14:0d27-14:1-PC, 16:0d31-16:1-PC, 18:0d35-18:1-PC, or 20:0d39-20:1-PC at rhodopsin/lipid
molar ratios from 1:70 to 1:1000 (mol/mol) were investigated. Clear evidence for matching of hydrophobic regions on rhodopsin
transmembrane helices and hydrophobic thickness of lipid bilayers was observed from 2H nuclear magnetic resonance order
parameter measurements at low rhodopsin concentrations. Thin bilayers stretched to match the length of transmembrane he-
lices observed as increase of sn-1 chain order, while thicker bilayers were compressed near the protein. A quantitative analysis
of lipid-order parameter changes suggested that the protein adjusts its conformation to bilayer hydrophobic thickness as well,
which confirmed our earlier circular-dichroism measurements. Changes in lipid order parameters upon rhodopsin incorporation
vanished for bilayers with a hydrophobic thickness of 27 5 1 Å, suggesting that this is the bilayer thickness at which rhodopsin
packs in bilayers at the lowest membrane perturbation. The lipid-order parameter studies also indicated that a hydrophobic
mismatch between rhodopsin and lipids triggers rhodopsin oligomerization with increasing rhodopsin concentrations. Both hy-
drophobic mismatch and rhodopsin oligomerization result in substantial shifts of the equilibrium between the photointermediates
metarhodopsin I and metarhodopsin II; increasing bilayer thickness favors formation of metarhodopsin II while oligomerization
favors metarhodopsin I. The results highlight the importance of hydrophobic matching for rhodopsin structure, oligomerization,
and function.
INTRODUCTION
Rhodopsin, the mammalian dim-light photoreceptor, is the
best-characterized G protein-coupled receptor. It is also
the only one, as of this writing, for which several high-
resolution structures are available in both the dark-adapted
and photoactivated states (1–3). Absorption of light leads
to the formation of an active metarhodopsin II state (MII)
in equilibrium with an inactive metarhodopsin I state (MI)
(4). MII binds and activates the heterotrimeric G-protein
transducin (Gt), setting off a biochemical amplification
cascade that results in a drop of cGMP concentration (5)
which, in turn, leads to hyperpolarization of the plasma
membrane and the signaling of second-order neurons.
In vivo, the reaction ends with rhodopsin phosphorylation
by rhodopsin kinases that allow arrestin binding, which
prevents further activation of transducin (6).

The lipid bilayer is a powerful allosteric modulator
of rhodopsin function. We, and others, have shown that
changes in membrane elastic properties as well as specific
molecular properties of lipids in the first layer of lipids sur-
rounding rhodopsin, are key determinants of the MI-MII
equilibrium (7–11). The influence of hydrophobic mismatch
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on rhodopsin oligomerization and interfacial lipid-protein
interactions was studied by electron paramagnetic reso-
nance (EPR) (12), freeze fracture electron microscopy
(13), and more recently by nuclear magnetic resonance
(NMR) (14), circular dichroism (14), fluorescence energy
transfer (15), and coarse-grained, molecular dynamics
simulations (CG-MD) (16). NMR, circular dichroism, and
CG-MD showed that mismatch reduction occurred by small
adaptations of the bilayer thickness together with rhodopsin
conformational changes (14,16). EPR (17,18), electron
microscopy (13), and CG-MD (16) reported that rhodopsin
oligomerization is bilayer-thickness-dependent. Experi-
ments were generally undertaken at lipid/protein molar
ratios (P/L) of 100 or lower. A concentration-dependent
oligomerization was observed by fluorescence energy trans-
fer in 16:0-18:1-PC membranes (15). As for function,
Botelho et al. (15) reported that the amount of MII formed
after photoactivation peaked in membranes with monoun-
saturated acyl chains of 20 carbons.

In isolated disk membranes of rod photoreceptors,
high-resolution atomic force microscopy images revealed
rhodopsin to be heavily oligomerized (19), in contradiction
to earlier reports (20). However, the functional role of
rhodopsin oligomerization is unknown. Indeed, rhodopsin
was found to efficiently activate Gt and to promote normal
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rhodopsin kinase phosphorylation and normal arrestin-1
binding as a monomer (21). In model membranes, increased
packing density that may result in formation of rhodopsin
oligomers, reduced rhodopsin activation (22).

The data suggest that there are at least three ways of
relieving the energetic constraints imposed by a mismatch
between the hydrophobic length of a G protein-coupled
receptor and bilayer thickness:

1. lipids can modulate the membrane hydrophobic thick-
ness by stretching or disordering their acyl chains at
the lipid-protein interface;

2. the protein might adjust its conformation to the surround-
ing lipid matrix; or

3. it might oligomerize.

Depending on membrane composition, all of these mecha-
nisms might contribute to relieving stresses in lipid-protein
interactions.

The aim of this study was to quantitatively follow stresses
in membranes from rhodopsin incorporation as function of
bilayer thickness from 14 to 20 carbons per lipid hydrocar-
bon chain by 2H NMR order parameter measurements.
Rhodopsin oligomerization was assessed by measuring
lipid-order parameter changes as a function of rhodopsin
concentration ranging from rhodopsin/lipid molar ratios of
1:1000–1:70. Oligomerization was detected as a fractional
decrease of rhodopsin’s influence on lipid order. Function
of rhodopsin was followed by measurement of the MI/MII
equilibrium. The data suggest that hydrophobic mismatch
is dealt with via a combination of changes including an
adjustment of bilayer thickness, a change of rhodopsin
conformation, and rhodopsin oligomerization.
MATERIALS AND METHODS

Preparation of reconstituted membranes

Sample preparation was carried out in complete darkness. The

phospholipids 14:0d27-14:1-PC (1-perdeuterio- myristoyl-2-myris-

toleoyl-sn-glycero-3-phosphocholine), 16:0d31-16:1-PC (1-perdeuterio-

palmitoyl-2-palmitoleoyl-sn-glycero- 3-phosphocholine), 18:0d35-18:1-PC

(1-perdeuterio-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine), and 20:

0d39-20:1-PC (1-perdeuterioarachidoyl-2-eicosanoyl-sn-glycero-3-phospho-

choline) were synthesized by Avanti Polar Lipids (Alabaster, AL). The lipids

are chromatographically pure (>99%), with a low level of acyl-chain migra-

tion (<3%).

Rhodopsin was purified from bovine retinas using procedures that were

developed in the Litman laboratory (23). Rhodopsin fractions in 3 wt % oc-

tylglucoside (OG), which gave an ultraviolet-visible absorption intensity ra-

tio at 280:500 nm of 1.8 or lower, were used. To eliminate the possibility

that minor differences in rhodopsin purity may influence results, experi-

ments were conducted using one batch of rhodopsin for reconstitution of

the entire series of lipids.

For rhodopsin reconstitution, a glass round-bottom flask was coated with

phospholipids by slow rotation and removal of solvent in a stream of pure

nitrogen gas. The rhodopsin-OG solution was added to lipid-OG mixed mi-

celles such that the OG/lipid molar ratio was 10:1 and the rhodopsin/phos-

pholipid molar ratio was 1:70, 1:125, 1:250, 1:500, and 1:1000. The sample

was vortexed to complete solubilization of the lipid and then equilibrated
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for 12 h under argon. Subsequently, this rhodopsin/lipid micellar solution

was added dropwise at a rate of ~400 mL/min to deoxygenated PIPES buffer

(10 mM PIPES, 100 mM NaCl, 50 mM DTPA, pH ¼ 7.0) under rapid stir-

ring, resulting in formation of unilamellar proteoliposomes. Typically, the

final OG concentration was 7.2 mM, which is well below the critical micelle

concentration (24).

The proteoliposome dispersion (2.5–3 mL) was then dialyzed against 1 L

of PIPES buffer (Slide-A-Lyzer membrane, 10 kDa cutoff; Pierce, Rock-

ford, IL). The buffer was exchanged three times over 16–24 h. The final

rhodopsin concentration in the samples was measured by light absorption

at 500 nm assuming a molar extinction coefficient ε500 ¼ 40,600 M�1

cm�1 (25). The concentration of residual OG in the lipid bilayers was lower

than 0.4 mol % of the lipid concentration as determined by solution 1H

NMR on a small aliquot of sample dissolved in deuterated methanol.

For NMR experiments on dark-adapted rhodopsin, the proteoliposomes

were pelleted at 500,000�g and 4�C for 12 h in a TLX-Optima centrifuge

(Beckmann-Coulter, Fullerton, CA). The pellet was then extruded through

porous anodic aluminum oxide (AAO) Anopore filters (Whatman, GE

Healthcare Bio-Sciences, Pittsburgh, PA) with a nominal pore diameter

of 0.2 mM and a thickness of 60 mM, which resulted in formation of tubular,

rhodopsin-containing bilayers supported by the pore walls of AAO

as described previously (26). Extrusion was performed at ambient

temperature, which is well above the main phase transition temperature

of 14:0d27-14:1-PC (Tm < 0�C), 16:0d31-16:1-PC (Tm < 0�C), and

18:0d35-18:1PC (Tm ¼ 4�C), and at 35�C in a heated glovebox for the

20:0d39-20:1-PC (Tm ¼ 17.5�C) membranes.

All experiments were conducted at a temperature of 37�C, which is well

above the main-phase transition temperature of all four lipids. For each

experiment, two AAO filters (diameter 25 mm) and one polycarbonate filter

(nominal pore size 0.8 mm) were stacked and flushed with several milliliters

of PIPES buffer before extruding the dispersion of proteoliposomes. The

1-mL proteoliposome suspension (1 mg lipid/mL) was then extruded

10 times through the stack of filters at a rate of 0.01 mL/s, resulting in

entrapment of multilamellar bilayers inside AAO pores. All but a single

tubular bilayer covering the inner AAO pore surface were removed by flush-

ing the filters with 5–10 mL of PIPES buffer at a rate of 0.2 mL/s as reported

earlier (26).
NMR experiments

Solid-state 2H NMR experiments were carried out on a model DMX500

spectrometer (Bruker, Billerica, MA) equipped with a flat coil 1H,X-probe

(Doty Scientific, Columbia, SC) operating at a 2H NMR resonance fre-

quency of 76.8 MHz. Data were acquired at 37�C with a quadrupolar

echo pulse sequence, d1-90
�
x-t-90

�
y-t-acq, at a relaxation delay time

d1 ¼ 250 ms, a 5-ms 90� pulse, a delay time t ¼ 50 ms, and a 200 kHz spec-

tral width. Typically, 150,000 transients were acquired. Order-parameter

profiles, mosaic spread of bilayer orientations, and resonance line-width

were determined by fitting the spectra with a program written in the soft-

ware MATHCAD (PTC, Needham, MA). The program reported a smoothed

order parameter profile of lipid hydrocarbon chains, the orientational distri-

bution function of bilayer normals (assumed to be Gaussian), and the reso-

nance line-width of all resolved quadrupolar splittings.
Measurement of MII/MI ratio after photoactivation

The equilibrium constant Keq ¼ [MII]/[MI] was determined from rapidly

acquired spectra of the MI-MII equilibrium as previously described in

Straume et al. (27). Briefly, vesicles were diluted to a rhodopsin concentra-

tion of 0.3 mg/mL in pH 7.0 PBS buffer and equilibrated at 37�C in a ther-

mally regulated sample holder. A set of four absorption spectra were

collected sequentially in a model No. 8453 diode array spectrophotometer

(Agilent, Santa Clara, CA). These included the spectra acquired

1. after the sample was equilibrated in the dark at 37�C;
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2. three seconds after the sample was 15–20% bleached by a 520-nm flash;

3. ten minutes after addition of 30 mM hydroxylamine to convert bleached

rhodopsin to opsin and retinal oxime; and

4. after complete bleach of the sample.

Individual MI and MII spectra were deconvolved from spectra of their

equilibrium mixture, with [MI] and [MII] determined using extinction

coefficients at their absorbance maxima of 44,000 and 38,000 cm�1,

respectively (28).
RESULTS

Average lipid-order parameters

Dark-adapted rhodopsin was incorporated at rhodopsin/
lipid values ranging from 1:1000 to 1:70 into phosphati-
dylcholine membranes with sn-1 saturated/perdeuterated
and sn-2 monounsaturated acyl chains of 14–20 methylene
segments in length. The order parameters of the saturated
lipid hydrocarbon chains in position sn-1 were measured
with a precision of 50.001. Lipid-order parameters at
the protein-lipid interface are altered by lipid-protein inter-
actions, and may differ from lipid order away from the
protein. 2H-NMR measurements report order parameters
that are averaged on a timescale of 10�4–10�5 s. Also,
assuming a typical lateral diffusion rate of lipids of 1 �
10�11 m2 s�1 suggests that lipids may easily move over
typical distances between monomeric rhodopsin mole-
cules within microseconds at all investigated rhodopsin
concentrations.

The measured 2H NMR spectra of rhodopsin-containing
samples (see Fig. 1) show only one set of slightly broadened
FIGURE 1 2H NMR spectra of 14:0d27-14:1-PC bilayers containing

rhodopsin at a P/L from 0 to 1:70 (only the left half of the spectra are

shown). The AAO-supported sample of tubular lipid bilayers was oriented

such that the pores are aligned parallel to the static magnetic field of the

NMR instrument, resulting in a preferential perpendicular orientation of

the bilayer normal to the magnetic field. Resonances are somewhat broad-

ened by mosaic spread of bilayer orientations. Samples displayed only one

set of quadrupolar splittings, suggesting that lipids exchange rapidly be-

tween the rhodopsin interface and the bulk of the lipid matrix on a timescale

of 10�5 s.
quadrupolar splittings in the presence of rhodopsin. There-
fore, it is reasonable to assume that lipids near rhodopsin
and in the bulk of the lipid matrix are in rapid exchange.
This is different from EPR measurements that operate on
a timescale of 10�8 s, which yields distinct EPR spectra
for lipids in the first layer surrounding rhodopsin and
away from it. Those measurements indicated that ~25 lipids
form a first shell surrounding rhodopsin (29), which is
in reasonable agreement with geometry of a rhodopsin
monomer.

Consequently, a 2H NMR experiment will report lipid-
order averaged over lipid properties near the protein and
in the bulk of the lipid matrix according to the equations
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where hSlavi is the average order parameter of lipids, hSlfi is
the order parameter of free lipids away from rhodopsin, hSlbi
is the order parameter of lipids in the boundary layer sur-
rounding rhodopsin, nlf is the number of free lipids away
from rhodopsin, nlt is the total number of lipids, alb is the
number of boundary lipids surrounding rhodopsin, and xr/1

is the rhodopsin/lipid. For simplicity, it was assumed that
the boundary layer consists of 25 lipid molecules surround-
ing every rhodopsin molecule as a first layer.

Equation 3 predicts that without protein oligomeriza-
tion or overlap of lipid boundary layers surrounding the pro-
tein, the average lipid-order hSlavi changes linearly with the
rhodopsin/lipid value, xr/1. In Fig. 2, the corresponding plots
are shown. Indeed, the curves for all four lipids at low
rhodopsin content seem to change linearly with xr/1. Statis-
tically significant deviations from linearity are observed
for 14:0d27-14:1-PC at molar ratios larger than 1:250, for
16:0d31-16:1-PC larger than 1:250, for 18:0d35-18:1-PC
larger than 1:125, and for 20:0d39-20:1-PC larger than
1:500. Most likely, those deviations from linearity are the
result of rhodopsin oligomerization that occur at higher
rhodopsin concentrations (see Fig. 3).
Rhodopsin MI/MII equilibrium

The ratio of concentrations of photointermediates, Keq ¼
[MII]/[MI], was measured by ultraviolet-visible spectros-
copy as outlined in Materials and Methods. Assuming a
Boltzmann distribution, the logarithm of Keq is proportional
to the difference in free energies between the photointer-
mediates MII and MI, DDG f ln Keq. The experimental
Biophysical Journal 108(5) 1125–1132



FIGURE 2 Average sn-1 chain order parameters, Sav, of 14:0d27-14:1-

PC (squares), 16:0d31-16:1-PC (triangles), 18:0d35-18:1-PC (circles), and

20:0d39-20:1-PC (diamonds) bilayers containing dark-adapted rhodopsin

at P/L from 0 to 1:70. Experiments were conducted at a temperature of

37�C. The average order parameters of lipid bilayers increases continu-

ously with increasing hydrocarbon chain length. Incorporation of

rhodopsin increases order of lipids with a chain length of 14 and 16 carbon

atoms per chain and decreases order of lipids with 18 and 20 carbon atoms

per chain. (Straight lines through the data points) Protein concentration

ranges over which lipid-order changes can be approximated by a linear

function.

FIGURE 3 Predicted dependence of changes in average lipid order, Sav,

as a function of rhodopsin concentration reported as P/L: (blue points)

monomeric rhodopsin; (yellow points) rhodopsin with increasing oligomer-

ization. To see this figure in color, go online.

FIGURE 4 Natural logarithm of the ratio of concentrations of photo-

intermediates MII and MI, ln Keq ¼ ln[[MII]/[MI]] as a function of the

P/L and hydrocarbon chain length of phosphatidylcholines. (Lightest to

darkest shading) 14:0d27-14:1-PC, 16:0d31-16:1-PC, 18:0d35-18:1-PC, and

20:0d39-20:1-PC.
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results are reported in Fig. 4. For convenience, data are
plotted such that ln Keq ¼ 0 for rhodopsin in 14:0d27-14:1-
PC is extrapolated to infinite dilution. At all investigated
rhodopsin/lipid ratios, the amount of MII formed increased
with increasing bilayer thickness. At the lowest rhodopsin
content, this increase saturated for 18:0d35-18:1-PC and
20:0d39-20:1-PC. With increasing rhodopsin content, a
steady decrease of the amount of MII formed was observed
for 14:0d27-14:1-PC, 16:0d31-16:1-PC, and 18:0d35-18:1-PC.
For bilayers of 20:0d39-20:1-PC, the amount of MII peaks at
a rhodopsin/lipid of 1:250 and decreases at higher rhodopsin
content as well.
Biophysical Journal 108(5) 1125–1132
DISCUSSION

Hydrophobic length of rhodopsin transmembrane
helices

It was shown that average order parameters of saturated
lipid hydrocarbon chains are related to an effective hydro-
phobic thickness of lipid bilayers (see Petrache et al.
(30) and references therein). For consistency, we used the
same definitions for the conversion as in our previous
publication (14).

The hydrophobic thickness of rhodopsin-free bilayers
changes continuously from 21.2 Å for 14:0d27-14:1-PC to
33.2 Å for 20:0d39-20:1-PC, as shown on the x axis in
Fig. 5. The y axis reports the hydrophobic thickness of
the first layer of lipids surrounding monomeric rhodopsin.



FIGURE 5 Plot of bilayer hydrophobic thickness-versus-rhodopsin lipid

boundary layer thickness of 14:0d27-14:1-PC, 16:0d31-16:1-PC, 18:0d35-18:

1-PC, and 20:0d39-20:1-PC. (Solid line) Bilayer thickness in the absence of

rhodopsin. The numbers near the data points report the number of carbon

atoms per hydrocarbon chain of lipids. (Dashed line) Calculated bilayer

thickness in a hypothetical first layer of 25 lipids surrounding monomeric

rhodopsin (see text for details); both curves intersect at a hydrophobic

thickness of 27 Å. (The finite slope of the dashed line indicates that adjust-

ment of lipid order to rhodopsin is partial.)
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In the absence of rhodopsin, x and y values are identical
(solid line). For rhodopsin-containing samples, the lipid-or-
der parameters measured at P/L values of 1:1000 and 1:500
(Fig. 2) were used to calculate an increase or decrease in
lipid order of boundary lipids. For simplicity it was assumed
that the entire change in order is taking place in the first
layer of 25 lipids, while the remainder of lipids is unper-
turbed. Furthermore, it was assumed that lipids in the
boundary layer are in rapid exchange with the bulk such
that on the NMR timescale of 10 ms all lipids are equal as
observed experimentally. The increase or decrease in order
of boundary lipids was then converted to a change in bound-
ary lipid hydrophobic thicknesses that yielded the dashed
line in Fig. 5. The solid and dashed lines intersect at a hydro-
phobic thickness of 27 5 1 Å. This is the hydrophobic
thickness of bilayers at which order-parameter changes, re-
sulting from incorporation of rhodopsin, vanish. It is now
the hydrophobic thickness that matches the length of hydro-
phobic sections on transmembrane helices of rhodopsin.

The value of 27 Å is in good agreement with data from
our earlier experiments on incorporation of rhodopsin into
bilayers of 18:0d35-22:6-PC. At the physiological tempera-
ture of 36�C, those membranes have a hydrophobic thick-
ness of ~27 Å and lipid order is almost unperturbed by
rhodopsin incorporation (26). A similar value for an optimal
bilayer thickness was proposed by Periole et al. (16), using
CG-MD.

The assumption that the entire adjustment of order param-
eters from rhodopsin incorporation occurs in a first layer of
25 lipids surrounding the protein is certainly an oversimpli-
fication. In reality, such elastic bilayer deformations decay
continuously over several layers of lipid surrounding the
protein (31), which would reduce any changes of average
length of lipid hydrocarbon chains near the protein that
are reported as the dashed line in Fig. 5. Nevertheless, an
important conclusion can be drawn from the results.
Because the slope of the dashed line is positive, adjustment
of hydrophobic lengths of lipids to the protein is only
partial. Because any significant increase of exposure of hy-
drophobic regions on rhodopsin to water is energetically
prohibitive (32), an important second conclusion can be
drawn from Fig. 5. The structure of rhodopsin adjusts to
the hydrophobic thickness of lipid bilayers such that expo-
sure of hydrophobic segments on rhodopsin to water is
reduced. Indeed, we had previously observed that helicity
of rhodopsin adjusts continuously to the hydrophobic thick-
ness of lipid bilayers (14). It is assumed that rhodopsin ad-
justs length and tilt of its seven transmembrane helices to
match hydrophobic thickness of the lipid matrix. A length
adjustment of helices most likely occurs at their ends.
Helices are stabilized by intrahelical hydrogen bonding.
The turns at either end of helices are stabilized by fewer
hydrogen bonds, giving helices freedom to adjust their
length to environmental changes.
Rhodopsin oligomerization

A mismatch between hydrophobic thicknesses of lipid bila-
yers and rhodopsin can also be reduced by limiting the frac-
tion of rhodopsin surfaces that are exposed to lipids. This
is achieved by oligomerization of rhodopsin molecules. If
oligomerization occurs, the number of lipid molecules, alb,
that interact with rhodopsin is reduced. According to Eq.
3, this reduces slopes of changes in lipid-order parameters
hSlavi as a function of the rhodopsin/lipid as plotted in
Fig. 3. Indeed, such reductions of slope are observed at
rhodopsin/lipid as low as 1:500. Changes in slope are larger
and tend to occur at lower rhodopsin concentrations for lipid
bilayers with hydrophobic thicknesses that deviate the most
from the optimal value of 27 Å. The data strongly suggest
that rhodopsin oligomerizes in response to increasing elastic
stresses in the lipid matrix from rhodopsin incorporation.

The occurrence of rhodopsin clustering in response to the
energetic constraints of a hydrophobic mismatch between
lipids and protein was reported previously. A chain-length
dependence of protein aggregation was observed experi-
mentally by Ryba and Marsh (18), Kusumi et al. (33), and
Botelho et al. (15), and with CG-MD by Periole et al. (16).
Functional consequences of hydrophobic
mismatch

As seen in Fig. 4, hydrophobic mismatch between lipids and
rhodopsin has profound consequences on the MI/MII equi-
librium. At all rhodopsin concentrations, there is a trend to-
ward favoring formation of the MII photointermediate with
Biophysical Journal 108(5) 1125–1132
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increasing bilayer thickness. Those changes are qualita-
tively in agreement with expectations from monolayer
elastic deformations near the protein (Fig. 6). We and others
reported earlier that the MII state of rhodopsin is favored
by membranes whose lipids are under negative curvature
elastic stress, suggesting that the MII state has a somewhat
longer hydrophobic transmembrane region and is more
hourglass-shaped (7–11). Curvature elastic stress not only
originates from lipid monolayers such as phosphatidyletha-
nolamines with unsaturated hydrocarbon chains that have a
tendency to curl like in an inverse hexagonal phase (34), but
also from lipid monolayers that have curvature due to a
hydrophobic mismatch between lipids and protein (31).
Assuming an hourglass-shaped MII state, thicker bilayers
relieve stresses upon MII formation in contrast to thinner bi-
layers for which stresses increase (see Fig. 6). We did not
attempt to quantitatively describe the drive toward MII for-
mation via lipid bilayer elasticity, because it is likely that the
structural changes in rhodopsin with changing bilayer thick-
ness contribute to the MI/MII energetics as well.

Furthermore, the functional data indicate that rhodopsin
oligomerization triggered by hydrophobic mismatch
between lipids and protein disfavors formation of the MII
photointermediate. During our functional experiments,
FIGURE 6 (Top) Cartoon demonstrating adjustment of lipid bilayers to the s

thinner than rhodopsin have negative monolayer curvature, which increases u

hydrophobic thickness of 27 Å are matched to MI and MII, while thicker bila

In the case of hydrophobic mismatch between lipids and protein, curvature str

rhodopsin to lipids; (open) no oligomerization; and (lightest to darkest shading
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only 15–20% of dark-adapted rhodopsin molecules are
bleached. Therefore, upon oligomerization, most of the
MI or MII photointermediates have dark-adapted rhodopsin
molecules as next-neighbors. Obviously, the free energy of
MI photointermediates packed with dark-adapted rhodopsin
is lower than the energy of MII photointermediates. Indeed,
the larger tilt of transmembrane helices in MII, in particular
of helix VI (35), may result in less favorable packing of
protein aggregates.

Aword of caution needs to be added regarding oligomer-
ization and orientation of rhodopsin molecules in reconsti-
tuted proteoliposomes. While rhodopsin molecules in the
membranes of rod outer segments (ROS) have a uniform
orientation, in reconstituted membranes orientation is likely
to be random. It is not known whether a random orientation
of rhodopsin molecules favors or disfavors rhodopsin oligo-
merization and whether oligomers of rhodopsin molecules
with equal orientation have the same functional properties
as molecules with opposite orientations. Also, molecular
simulations clearly suggested that the length of hydrophobic
segments on rhodopsin is heterogeneous about the circum-
ference of the molecule, which has consequences for
the energetics of lipid-protein interaction and rhodopsin
oligomerization (31).
hape of the MI and MII photointermediates of rhodopsin. Bilayers that are

pon MII formation, therefore, favoring formation of MI. Bilayers with a

yers have monolayers with positive curvature near MI and MII. (Bottom)

ess is also reduced by rhodopsin oligomerization that reduces exposure of

) increasing levels of oligomerization.
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The results then raise the question of whether rhodopsin
oligomerization takes place in ROS as well. Lipid composi-
tion of ROS is complex, and includes a variety of lipid
headgroups (36) and lipid hydrocarbon chains (37) as well
as variation of cholesterol content depending on the age of
the ROS (37,38). Most remarkable is the high content of
docosahexaenoic acid chains (22:6n-3) in all major lipid
classes. Niu and Mitchell (39) investigated the effect of
rhodopsin/18:0-22:6-PC molar ratios on rhodopsin activa-
tion in the range of 1/422–1/40 and observed reduced MII
formation with increasing rhodopsin concentration as well.
However, it was concluded that the presence of polyunsatu-
rated chains attenuates the magnitude of changes.

Although our experimental data do not address oligomer-
ization of rhodopsin in ROS membranes, the trends of
18:0-22:6-PC to yield a hydrophobic thickness of 27 Å at
physiological temperature (26) and to attenuate changes in
MII formation both suggest that polyunsaturated lipids
tend to suppress rhodopsin oligomerization.
CONCLUSIONS

The order-parameter measurements show convincingly that
a hydrophobic mismatch between lipids and rhodopsin re-
sults in an elastic deformation in the lipid bilayer near the
protein to adjust membrane thickness to the hydrophobic
length of rhodopsin’s transmembrane helices. However,
the adjustment of the thickness of bilayers near the protein
is only partial. Rhodopsin responds to thickness changes
by structural adjustments as we reported earlier (14).
Furthermore, rhodopsin reduces unfavorable energy from
hydrophobic mismatch between lipids and protein by for-
mation of rhodopsin oligomers to reduce exposure of
rhodopsin molecules to lipid.

Hydrophobic mismatch between lipids and rhodopsin has
a profound influence on the equilibrium of MI/MII photoin-
termediates. Thicker bilayers clearly favor formation of MII
while rhodopsin oligomerization drives the equilibrium to-
ward MI. More experiments need to be conducted to better
understand rhodopsin oligomerization. From the results it
seems obvious that at the physiological rhodopsin/lipid
molar ratio of 1:70, as in membranes of ROS, rhodopsin
molecules are likely to influence each other functionally,
either directly through oligomerization or indirectly through
a superposition of lipid layers that are perturbed by lipid-
protein interaction.
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