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ARTICLE INFO ABSTRACT

Background: Disrupted cortical connectivity is thought to underlie the complex cognitive and behavior profile ob-
served in individuals with autism spectrum disorder (ASD). Previous neuroimaging research has identified pat-
terns of both functional hypo- and hyper-connectivity in individuals with ASD. A recent theory attempting to
reconcile conflicting results in the literature proposes that hyper-connectivity of brain networks may be more
characteristic of young children with ASD, while hypo-connectivity may be more prevalent in adolescents and
adults with the disorder when compared to typical development (TD) (Uddin et al., 2013). Previous work has
examined only young children, mixed groups of children and adolescents, or adult cohorts in separate studies,
leaving open the question of developmental influences on functional brain connectivity in ASD.
Methods: The current study tests this developmental hypothesis by examining within- and between-network
resting state functional connectivity in a large sample of 26 children, 28 adolescents, and 18 adults with ASD
and age- and IQ-matchedTD individuals for the first time using an entirely data-driven approach. Independent
component analyses (ICA) and dual regression was applied to data from three age cohorts to examine the effects
of participant age on patterns of within-networkwhole-brain functional connectivity in individuals with ASD
compared with TD individuals. Between-network connectivity differences were examined for each age cohort
by comparing correlations between ICA components across groups.
Results: We find that in the youngest cohort (age 11 and under), children with ASD exhibit hyper-connectivity
within large-scale brain networks as well as decreased between-network connectivity compared with age-
matchedTD children. In contrast, adolescents with ASD (age 11-18) do not differ from TD adolescents in
within-network connectivity, yet show decreased between-network connectivity compared with TD adoles-
cents. Adults with ASD show no within- or between-network differences in functional network connectivity
compared with neurotypical age-matched individuals.
Conclusions: Characterizing within- and between-network functional connectivity in age-stratified cohorts of in-
dividuals with ASD and TD individuals demonstrates that functional connectivity atypicalities in the disorder are
not uniform across the lifespan. These results demonstrate how explicitly characterizing participant age and
adopting a developmental perspective can lead to a more nuanced understanding of atypicalities of functional
brain connectivity in autism.
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1. Introduction

Early neuroimaging research comparing functional brain connectiv-
ity in individuals with autism spectrum disorder (ASD) and typically de-
veloping (TD) individuals led to the hypo-connectivity hypothesis
proposing that fronto-posterior connectivity deficits are partly respon-
sible for cognitive deficits in ASD(Belmonte et al., 2004; Just et al.,
2004). Previous task-based functional magnetic resonance imaging

* Corresponding author at: Department of Psychology, University of Miami, P.O. Box
248185, Coral Gables, FL 33124, USA. Tel.: +1 305 284 3265; fax: +1 305 284 3402.
E-mail address: jxn131@miami.edu (J.S. Nomi), L.uddin@miami.edu (L.Q. Uddin).
! Department of Psychology, University of Miami, P.O. Box 248185, Coral Gables, FL
33124, USA.

http://dx.doi.org/10.1016/j.nicl.2015.02.024

(fMRI) studies primarily using region-of-interest (ROI) analyses found
support for the hypo-connectivity theory (Just et al., 2012; Minshew
and Williams, 2007). These experiments found hypo-connectivity with-
in the temporal-parietal junction in a theory of mind task (Kana et al.,
2009), the limbic system in a face perception task (Kleinhans et al.,
2008), between the frontal and parietal regions in a working memory
task (Koshino et al., 2005), and between the frontal, parietal and occip-
ital regions in a cognitive control task (Solomon et al., 2009). However,
later task-based fMRI studies found hyper-connectivity in connections
involving the posterior superior temporal sulcus in visual search tasks
(Shih et al., 2011), the medial temporal lobe in face perception tasks
(Welchew et al., 2005), within the left hemisphere in a source recognition
task (Noonan et al., 2009), between the inferior frontal gyrus, and
between the inferior parietal lobule and the superior temporal sulcus in
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semantic judgments and letter decision tasks (Shih et al., 2010). These
results suggested that ASD could also be characterized by hyper-
connectivity, providing evidence against a pure hypo-connectivity ac-
count (Kana et al., 2011).

Recently, resting-state fMRI (rsfMRI), has emerged as a powerful
tool for examining intrinsic functional brain connectivity in clinical
pediatric populations. Resting-state fMRI offers two advantages over
task-based fMRL. First, it allows easier data collection from special pop-
ulations such as young children with ASD, who have difficulties with
long task-based fMRI experiments (Yerys et al., 2009). Second, it identifies
underlying intrinsic functional networks that are not confounded by dif-
ferences in task performance or strategy differences commonly found be-
tween individuals with ASD and neurotypical controls. Resting-state fMRI
typically involves instructing participants to rest for 5-8 min while blood
oxygen level dependent (BOLD) signals are acquired with MRI. By focus-
ing on temporal correlations of the BOLD signal between functionally
coupled brain regions, it is possible to identify intrinsically connected
functional networks that are not confounded by cognitive tasks (Biswal
et al,, 1995; Bressler and Menon, 2010).

Resting state fMRI studies in neurotypical individuals have identified
several major intrinsically connected networks related to visual, motor,
auditory, memory and executive processes (Damoiseaux et al., 2006). Re-
search examining individuals with ASD has recently focused on hypo- and
hyper-connectivity differences observed in two major large-scale brain
networks. The default mode network (DMN) consists of key nodes in
the posterior cingulate cortex (PCC), the medial temporal lobes (MTL)
and the medial prefrontal cortex (MPFC) and is active in self-related
tasks such as autobiographical memories or social tasks such as theory
of mind (Fox and Raichle, 2007; Spreng et al., 2009). The salience network
(SN) involves the anterior insula (Al) and the anterior cingulate cortex
(ACC) and is thought to regulate switching of endogenous and exogenous
attention to relevant stimuli that helps in guiding behavior (Uddin, 2015).
Studies using rsfMRI have found both hypo- and hyper-connectivity of
these and other functional networks when comparing individuals with
ASD with neurotypical (NT) individuals. Hypo-connectivity in ASD com-
pared with TD individuals has been identified in connections between
the insula and amygdala (Ebisch et al., 2011) and most consistently be-
tween connections of nodes within the DMN(Assaf et al.,, 2010; Ebisch
et al, 2011; Kennedy and Courchesne, 2008a; Monk et al., 2009; Weng
et al., 2010). Hyper-connectivity in ASD compared with TD individuals
has been identified in motor and visual networks, as well as the DMN
and SN(Uddin et al., 2013; Washington et al., 2014), and between striatal
areas and the insula (Di Martino et al., 2011). Finally, one study has even
demonstrated extremely small to no differences in functional connectivi-
ty in ASD compared with neurotypical adults (Tyszka et al., 2014), pro-
ducing additional conflicting evidence.

Although methodological differences surely contribute to the mixed
findings in the literature (Muller et al., 2011), a more recent idea
attempting to reconcile these discrepant findings proposes that hyper-
connectivity may be more characteristic of young children with ASD,
while hypo-connectivity may begin to emerge in adolescence and
persist into adulthood. In a review of the rsfMRI functional connectivity
literature in ASD it is suggested that studies demonstrating hyper-
connectivity have typically examined children less than 12 years of
age, while studies demonstrating hypo-connectivity have typically ex-
amined adolescents and adults over the age of 12 (Uddin et al., 2013).
The authors proposed that a developmental account hypothesizing
early childhood hyper-connectivity and later adolescent and adult
hypo-connectivity in ASD compared with TD could partially account
for the mixed functional connectivity findings in the literature.

Previous functional connectivity studies have focused on a single age
group (e.g., childhood, adolescence, or adulthood), mixed age groups
(e.g., combining childhood and adolescence, or adolescence and adult-
hood), or used a linear regression correlational approach across a single
group of subjects containing various age ranges (Assaf et al., 2010;
Kennedy and Courchesne, 2008b; Monk et al., 2009). Several studies

exploring whole-brain connectivity have included subjects with a
wide range of ages, allowing for the possibility that a certain age
group was driving the functional connectivity findings in the results
(Assaf et al., 2010; Gotts et al.,, 2012). Therefore, an important gap in
the literature concerns the principled examination of functional connec-
tivity alterations in ASD across different developmental stages. In the
current work we stratify individuals into age cohorts to directly test if
some of the mixed findings throughout the literature can be accounted
for by explicitly sorting groups of ASD and TD participants according to
their ages.

An additional aspect of network connectivity that has received less at-
tention in ASD research is how correlations between networks compare
to that observed in the neurotypical population. Previous research has
shown that the DMN, referred to as a ‘task-negative network’ (TNN), typ-
ically exhibits negative correlations with task-positive networks (TPN)
such as the dorsal attention network (DAN) (Fox et al., 2005). The TNN
nomenclature refers to the fact that nodes of the DMN typically show re-
ductions in activity when a participant is focused on a task demanding ex-
ogenous attention while TPN refers to the fact that nodes of the DAN
typically show increases in activity during such a task. Thus these net-
works are often referred to as “anti-correlated” because when a TPN is ac-
tive the TNN is not, and vice versa. The relationship between these
networks relates to behavioral performance in the neurotypical popula-
tion (Kelly et al,, 2008), but is not well understood in ASD. Characteriza-
tion of relationships between these two networks may have important
implications for understanding brain dynamics in ASD.

A challenge to synthesizing the functional connectivity literature in
autism is that several studies have used ROI-based analyses that are dif-
ficult to compare with each other, as they are often linked to hypotheses
about specific functional circuits (Abrams et al., 2013; Kennedy and
Courchesne, 2008b; Lynch et al., 2013). The current study sought to
compare whole-brain functional connectivity in ASD and TD individuals
using an entirely data-driven approach. We explored the nature and ex-
tent of functional differences both within- and between-networks
when comparing ASD and TD individuals across three age groups — chil-
dren (under 11), adolescents (11-18), and adults (over 18). In order to
assess within-network group differences in functional connectivity, we
used independent component analysis (ICA) (Beckmann et al., 2005)
across three different age groups to examine if the developmental tra-
jectory of hyper- to hypo-connectivity in children to adults respectively,
as predicted by Uddin and colleagues (Uddin et al., 2013) would be
present. To assess between-network group differences in functional
connectivity, we applied a network analysis to examine how correla-
tions between networks potentially differ across the three age groups.
This approach of exploring within- and between-network functional
connections was adapted to elucidate how large-scale brain networks
in ASD compare to those observed in age-matchedTD individuals across
development.

2. Methods
2.1. Participants

We used data from the Autism Brain Imaging Data Exchange
(ABIDE), a publicly available data set (http://fcon_1000.projects.nitrc.
org/indi/abide/) (Di Martino et al., 2014). Only data collected at the
New York University Langone Medical Center were utilized to avoid
cross-study methodological acquisition differences. To explore the ef-
fects of participant age on functional connectivity, we divided the data
into three age groups of ASD and TD participants: young children
under 11 years of age (n = 52), adolescents from 11-18 years of age
(n = 56), and adults over 18 years of age (n = 36; Table 1). Individuals
with ASD had a clinical DSM-IV diagnosis of Autistic Disorder,
Asperger's syndrome, Pervasive Developmental Disorder Not-
Otherwise Specified (PDD-NOS) while TD participants were required
to have no Axis-I disorders based on the KSADS-PL questionnaire.



http://fcon_1000.projects.nitrc.org/indi/abide/
http://fcon_1000.projects.nitrc.org/indi/abide/

J.S. Nomi, L.Q. Uddin / Neurolmage: Clinical 7 (2015) 732-741

734
Table 1
Participant demographics.
ASD TD p value
Children (<11)
Mean age 9.51 (1.12) 9.10 (1.32) 22
Age range 7.15-10.96 6.47-10.86
Gender 24M/2F 19M/7F
Full IQ 107.77 (16.16) 113.04 (13.67) 10
(76-142) (80-136)
ADI social score? 19.4 (5.42) (7-27)
ADI verbal score® 16.16 (3.92) (8-22)
ADI RRB? 5.92 (2.27) (3-10)
ADOS communication 3.31(1.85) (0-7)
ADOS social 7.58 (2.67) (4-14)
Adolescent (11-18)
Mean age 13.71 (1.79) 14.01 (1.74) .53
Age range 11.01-17.88 11.32-16.93
Gender 23M/5F 23M/5F
Full IQ 103.57 (15.45) 105.18 (9.90) .65
(78-132) (80-121)
ADI social score” 20.46 (5.53) (13-28)
ADI verbal score® 15.78 (4.06) (8-23)
ADI RRB? 6.07 (2.66) (0-12)
ADOS communication 3.64 (1.52) (1-6)
ADOS social 8.64 (2.98) (2-14)
Adults (>18)
Mean age 24.13 (3.92) 25.41 (5.87) 45
Age range 18.58-39.1 18.59-31.78
Gender 14M/4F 14M/4F
Full IQ 108.06 (13.86) 116.11 (14.20) .09
(80-137) (81-139)
ADI social score® 18 (6.14) (9-27)
ADI verbal score 6.46 (5.95) (8-25)
ADI RRB score 4,62 (2.36) (2-9)
ADOS communication 3.72 (1.36) (2-6)
ADOS social 7.44 (3.14) (2-12)

2 Score missing for 1 participant.
b Score missing for 2 participants.
¢ Score missing for 5 participants.

Within each of the three cohorts, there were no significant group dif-
ferences in age and full-scalelQ between participants with ASD and TD
participants (ps >.09). A 2 x 3 mixed-modelANOVA on IQ showed that
there was a marginally significant main effect of age (p = .06) but no
main effect of group (p = .1) and no age x group interaction (p = .8). Fol-
low up t-tests showed that the children (M = 110.40) had higher I1Q
scores than adolescents (M = 104.38; p = .03), and adults (M =
112.08) had higher 1Q scores than adolescents (p = .01), with no differ-
ences between children and adults (p = .6). As is typical in young chil-
dren with ASD, these children had greater RMS relative and absolute
motion than TD individuals (Supplementary Table 1; relative ASD = .10,
TD = .06, p = .001; absolute ASD = .39, TD = .23, p = .008). There
were no motion differences between the adolescent and adult groups
(ps >.15) (Supplementary Table 1). There were no differences between
individuals with ASD across the three age groups for all ASD diagnostic
questionnaires (ADI and ADOS; one way ANOVAs, p > .2).

For the overall group ICA used to create templates for subsequent
analyses, we randomly selected 18 participants from each age group
(18 x 6 = 108) to derive the independent components (ICs). This was
done in order to avoid non-network noise differences across the three
age groups by creating a common template of ICs for use in the dual re-
gression analysis. There were no differences in full-scalelQ for any group
of 18 participants (2 x 3 ANOVA: p = .59), nor were there any differ-
ences for all ASD diagnostic questionnaires (ADI and ADOS) across the
three age cohorts (one way ANOVAs, p >.38).

2.2. Data acquisition

Resting state fMRI data were collected on a 3 T Siemens Allegra scan-
ner using an echo-planner imaging (EPI) sequence (TR = 2000 ms;

TE = 15 ms; flip angle = 90°; FOV = 240 mm, voxel size =
3 x 3 x 4 mm; number of slice = 33, 4 mm slice thickness). Each
resting-state scan lasted for 6 min, consisting of 180 volumes collected
while participants were asked to relax with their eyes open and fixate
on a projection screen displaying a white cross hair on a black
background.

Anatomical images were acquired using a magnetization prepared
gradient echo sequence (TR = 2530 ms; TE = 3.25 ms; inversion
time = 8.07 min; flip angle = 7°; 128 slices; 1 volume; FOV =
256 mm) (Di Martino et al., 2014).

2.3. Image preprocessing

Functional MRI data were preprocessed using FSL 5.06 (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/). The first three volumes of each data set
were deleted. Preprocessing steps included motion correction, inter-
leaved slice-timing correction, spatial smoothing (full width at half
maximum = 5 mm), and high pass temporal filtering using a local fit
of a straight line (Gaussian-weighted least-squares straight line fitting
with sigma = 100 s). Images were then normalized to the Montreal
Neurological Institute (MNI) 152 stereotactic space (2 mm) using the
default settings in FSL’s FEAT toolbox by applying a linear transforma-
tion with 12 degrees of freedom. Global signal regression was not ap-
plied (Saad et al,, 2012).

2.4. Within-network connectivity: dual regression ICA

In order to examine within-network differences in functional
connectivity, the dual regression approach in FSL (v 5.06) was
applied to preprocessed images (Beckmann and Smith, 2004). Cur-
rently, dual regression is the preferred data-driven approach for
exploring between-population differences in large-scale functional
connectivity patterns (Filippini et al. 2009). The overall group
preprocessed data consisting of 108 subjects were concatenated
and subjected to an ICA using MELODIC(http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/MELODIC) in FSL. Next, 25 ICs were created representing
large-scalegroup-level functional networks. Visual inspection of
these group-level ICs was used to identify those best representing
previously identified functional networks (Damoiseaux et al.,
2006). The remaining components were considered noise or artifacts
such as movement, white matter, or ventricles and were not subject-
ed to further analysis.

To account for head motion differences between the child ASD and TD
groups, and keep analyses consistent between age groups, the time
courses of all 144 subjects were subjected to a covariate regression of
the Friston 24 motion parameters (6 typical motion parameters for each
volume, the preceding volume, and each of the 12 derivatives) using
the DPARSF-A toolbox (http://rfmri.org/DPARSF). This 24-parameter
model has been shown to better reduce the influence of motion effects
than other models (Satterthwaite et al., 2012; Yan et al., 2013). The covar-
iate regression was not applied to the initial ICA because the initial ICA
creates motion components that were then discarded from further
analysis.

The ICs of interest were then compared to motion-regressedparticipant-
specific time courses and spatial maps with a dual regression algorithm
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/DualRegression) producing group
difference maps for each component within each age group. Permutation
testing using the randomize feature in FSL was conducted using the de-
fault settings (5000 permutations) to create difference maps between
groups for each component of interest. The resulting group difference
maps were thresholded using threshold-free cluster enhancement with
an alpha level of .05 (corrected). Correction for multiple component test-
ing was not applied in this case, as in previous similar studies (Uddin
et al,, 2013).
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2.5. Between-network connectivity: FSL Nets

To examine between-network differences in functional connectivity
for each age cohort, the FSL Nets analysis package was implemented in
Matlab (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). This analysis takes
the participants’ time courses from the dual regression analysis and
subjects them to between-network comparisons that determine how
independent components from the overall ICA are correlated with
each other ( Smith et al., 2013). Between-subject testing is then con-
ducted across correlation values acquired for pairs of independent
components.

3. Results

3.1. Group ICA

The group ICA from the subset of 108 subjects produced 25 ICs. Of
these 25 ICs, 7 were determined to be noise-related artifacts representing
cerebral spinal fluid, ventricles, and head motion. These ICs were
discarded from further analysis, leaving 18 ICs of interest used in each
dual regression analysis (Fig. 1). Group ICAs were also conducted for
each age cohort separately for comparison purposes. Each age cohort ex-

hibited similar components to the overall ICA (Supplementary Figs. 1-3).

3.2. Overall between-network comparisons

The overall FSL Nets analysis was conducted on each age group
(Fig. 2). Boxes below the diagonal line represent full correlation com-
parisons, while boxes above the diagonal line represent partial correla-
tion values. Full correlation comparisons allow for the influence of other
network values on pairs of interest, while partial correlations are a more
direct measure of the relationship between pairs of networks. Positive
correlations for each age group can be seen between the DAN and

<
—
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>
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O

higher-level visual areas (labeled 1) while negative correlations be-
tween the DAN and two DMN components (labeled 2 and 3) are also
present in both the full and partial correlation matrices.

3.3. Within-network connectivity: children with ASD vs. TD children

For the within-network comparison, two components showed sig-
nificant hyper-connectivity in ASD compared with TD (ASD > TD,
Fig. 3). Component C representing a network that included nodes of
both the DMN and central-executive network showed hyper-
connectivity in the right frontal pole. Component P representing the
insula and subcortical areas showed hyper-connectivity in bilateral
areas that included the insula, thalamus, hippocampus, and amygdala.
No TD > ASD functional connectivity differences were observed in any
of the networks examined.

3.4. Between-network connectivity: children with ASD vs. TD children

The between-network comparison showed only one significant dif-
ference for partial correlation values between components F and B
representing the DMN(Fig. 2, labeled 4; FWE corrected: p = .017). The
difference was such that children with ASD showed a significantly
smaller correlation between these two networks compared with TD
children. No other differences emerged for full or partial correlation
comparisons (FWE corrected: p > .07.).

3.5. Within-network connectivity: adolescents with ASD vs. TD adolescents

There were no significant within-network differences between ado-
lescents with ASD and TD adolescents, in either direction (ASD > TD or
TD > ASD).

Fig. 1. Functional networks observed in an overall group of 108 subjects (18 from each age group) using ICA.
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Fig. 2. FSL Nets between network correlations for each age group. Full correlations are shown below the diagonal line with partial correlations shown above the diagonal line. Letters on
each axis indicate specific components from Fig. 1. Number 1 within each correlation matrix represents a positive correlation between the dorsal attention network (K) and higher order
visual areas (I). Numbers 2 and 3 represent negative correlations between default mode networks (B and F) and the dorsal attention network (K). Number 4 represents a significant dif-
ference in partial correlations between default mode networks (B and F) for children (TD > ASD). Number 5 represents a significant difference in full correlations between default mode (B)
and subcortical/insula networks (P) for adolescents (TD > ASD). Groupings on top of each matrix represents hierarchical clustering of component timeseries.

3.6. Between-network connectivity: adolescents with ASD vs. TD adolescents

The between-network comparison showed one significant difference
for full correlation values between components B and P representing the
DMN and a subcortical/insula network. The difference was such that indi-
viduals with ASD had a significantly smaller correlation between the two
components (Fig. 2, labeled 5; FWE corrected: p = .004). No other differ-
ences emerged for between-network comparisons (FWE corrected:
p>.08).

3.7. Adults with ASD vs. NT adults

No significant group differences in within- or between-network con-
nectivity were observed for any of the networks examined, in either di-
rection (ASD > TD or TD > ASD).

4. Discussion

The results of the current study demonstrate age-specific patterns of
whole-brain functional connectivity atypicalities in ASD. Hyper-
connectivity within large-scale brain networks in ASD was observed in
young children under the age of 11, with no within-network differences
in functional connectivity in adolescents and adults with ASD compared
with neurotypical individuals. Abetween-network analysis showed that

children with ASD had a smaller correlation between two DMN networks,
while adolescents with ASD had a smaller correlation between the DMN
and a subcortical/insula network compared with TD individuals. Adults
with ASD showed no differences in either within- or between-network
functional connectivity compared to neurotypical controls. Overall, the re-
sults demonstrate that children with ASD exhibit atypical within- and
between-network functional connectivity, adolescents with ASD show
atypical between-network functional connectivity, and adults with the
disorder do not differ from their age-matched peers on either of these
measures.

4.1. Within-network functional connectivity

The results from this data-driven developmental approach to inves-
tigating whole-brain functional connectivity between ASD and TD indi-
viduals are an important first step in helping to resolve discrepancies in
the ASD rsfMRI literature finding hyper- and hypo-connectivity of in-
trinsically functional networks across different studies. Importantly,
these results are partially in accord with the developmental trajectory
hypothesis proposed by Uddin et al. (2013) predicting hyper-
connectivity in young children with ASD and hypo-connectivity in
adults with ASD. Although hypo-connectivity was not found in the
adult group, the general developmental trajectory shows widespread
hyper-connectivity in children with ASD that reduces with age. The
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Child Group: ASD > TD
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Fig. 3. Functional networks showed greater connectivity for children with ASD compared with TD children in 2 out of 18 networks examined: default mode (top, C), and insula/subcortical

(bottom, P).

results also confirm the findings of previous rsfMRI studies showing
hyper-connectivity in young children with ASD(Di Martino et al.,
2011; Lynch et al,, 2013; Supekar et al., 2013; Uddin et al., 2013;
Washington et al., 2014) along with no differences in whole-brain func-
tional connectivity in adults with ASD (Tyszka et al., 2014).

The current study found hyper-connectivity within the DMN in chil-
dren with ASD. This replicates findings of Uddin et al. (2013), and other
studies showing hyper-connectivity of DMN nodes in children with
ASD(Lynch et al., 2013; Washington et al., 2014). Although the exact
function of the DMN is still not clear, activity in key nodes of the
DMN such as the MPFC and PCC is found to decrease during tasks
with a high cognitive demand (Raichle et al., 2001) and increase
during rest and also during tasks of a social nature involving self-
reflection(Buckner et al., 2008; Harrison et al., 2008; Northoff et al.,
2006). Previously, most studies finding aberrant DMN function in ASD
have found hypo-connectivity across nodes of the DMN(Kennedy and
Courchesne, 2008a; Monk et al., 2009; von dem Hagen et al., 2013;
Weng et al.,, 2010). However, these studies were conducted in adoles-
cents and adults. Thus, a developmental account predicting within-
networkhyper-connectivity in children with ASD that gradually recedes
over time would be a plausible explanation as to why some previous
studies have found hyper- opposed to hypo-connectivity across nodes
of the DMN.

The mechanisms underlying the observed widespread functional
hyper-connectivity in children with ASD are still unclear. Previous re-
search has shown that ASD is characterized by increased head circumfer-
ence in childhood (Lainhart et al., 1997) while in-vivo(Courchesne et al.,
2003) and post-mortem studies (Courchesne et al.,, 2011) have shown in-
creased neuronal growth in children with ASD from 2-5 years and
2-16 years respectively. Additionally, another post-mortem study has

shown both increased spine density and decreased synaptic pruning
across childhood and adolescence (Tang et al.,, 2014). Although no direct
evidence exists that links neuronal density to functional connectivity
within neural networks in the context of rsfMRI studies, it is plausible
that changes in neural density are related to changes in functional con-
nectivity. Thus, increased neural density found early in life in children
with ASD in these post-mortem studies could be related to increased
functional connectivity found in rsfMRI studies.

Additionally, mouse models have also demonstrated that decreases
in synaptic pruning (Gogolla et al., 2014; Tang et al., 2014) and increases
in synaptic turnover (Isshiki et al., 2014) during critical developmental
periods are related to atypical behavior similar to those found in
human individuals with ASD. These studies suggest that critical periods
of synaptic development may influence cortical function in ASD, making
the study of developmental trajectories imperative for research examin-
ing the disorder in humans. Within the context of the current study,
changes in synaptic pruning could be related to changes in functional
connectivity found across the lifespan such that increased synaptic
pruning could be responsible for normalizing the increased neuronal
growth found in children with ASD. Thus, increased synaptic pruning
of extra neuronal growth could help to normalize the amount of neu-
rons present in individuals with ASD during development that would
result in a more typical pattern of functional connectivity of individuals
with ASD as they get older. Unfortunately, a large amount of ASD re-
search is conducted on adolescents and adults, probably due to the
difficulty in acquiring artifact-free fMRI data from younger children, es-
pecially young children with psychiatric disorders such as ASD(Yerys
etal., 2009). The few studies that have examined rsfMRI functional con-
nectivity in young children with ASD have generally found hyper-
connectivity between brain areas (Di Martino et al., 2011; Lynch et al.,
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2013; Uddin et al., 2013; Washington et al., 2014) demonstrating the
importance of exploring child populations in ASD research.

One previously proposed explanation for the findings of changing
functional connectivity across development in ASD is that the pubertal
period during adolescence is responsible for changes in underlying
brain organization, and that pubertal hormones may differentially affect
developmental trajectories in the disorder (Uddin et al., 2013). Hor-
monal changes during puberty have been linked with changes in both
gray and white matter (Herting et al., 2012). However, there have
been no cross-sectional or longitudinal studies examining changes in
functional connectivity that accompany the pubertal transition in
humans, in either typical or atypical development.

Previous studies showing hypo-connectivity in adults with ASD
using rsfMRI data have mostly used seed ROI-based functional connec-
tivity analysis while also including mixed groups of participants youn-
ger than 18 (Cherkassky et al., 2006; Ebisch et al., 2011; Kennedy and
Courchesne, 2008a; Monk et al., 2009) whereas the current study exam-
ined resting state data using a whole brain ICA approach with subjects
18 years and older in the adult group. The current study and the previ-
ous study finding a lack of hypo-connectivity in adults (Tyszka et al.,
2014) used only participants older than 18 years in a data-drivenICA
analysis. However, two other studies using ICA with participants over
18 have found hypo-connectivity in ASD(Mueller et al., 2013; von
dem Hagen et al,, 2013). Thus, it is still unclear why some studies have
found hypo-connectivity in adults with ASD, compared with the results
of the current study and the previous study (Tyszka et al., 2014) which
found no differences in functional connectivity between adults with
ASD and neurotypical adults. In addition to the proposed developmental
account which finds empirical support from the current study, others
have suggested that hypo-connectivity is generally found in task-
driven studies using seed-based analysis approaches compared to
studies not finding hypo-connectivity that have used whole brain
analysis approaches combined with task-regression analysis to re-
move task-related activity (Muller et al., 2011). These and other
methodological factors may contribute to some of the inconsis-
tencies in the literature.

Three earlier studies examined functional connectivity in ASD
using linear regression correlations between functional connectivity
and age. Wiggins et al. (2011) examined the DMN in groups of ASD
and TD adolescents (10.25-18.97) and found that connectivity be-
tween posterior DMN nodes such as the inferior parietal lobule had
decreased connectivity with the superior frontal gyrus as age in-
creased in ASD, but connectivity increased with age in the TD
group. Padmanabhan et al. (2013) examined cortico-striatal connec-
tivity in groups of ASD and TD individuals (8-36 years) and found
that both groups showed general decreases in cortico-striatal con-
nections as age increased. Additionally, the ASD group had increased
connectivity of the striatum with the cerebellum, fusiform gyrus, and
inferior/superior temporal gyri with age while these connections de-
creased in TD individuals. However, when controlling for age, there
was ASD striatal hyper-connectivity with the parietal cortex but
hypo-connectivity with the pre-frontal cortex compared with TD in-
dividuals. Bos et al. (2014) found that adolescents with ASD
(8.3-15.1) had little to no within-network connectivity differences
compared to TD adolescents (6.4-15.8) using a group ICA, but
found that the ASD group had connectivity between the right insula
and other nodes of the DMN that increased with age, while decreas-
ing connectivity with age was observed in the TD group.

Although previous studies have also found hyper-connectivity in the
DMN and insula (Bos et al., 2014), these results were found using a linear
correlation approach as opposed to the whole brain ICA used in the cur-
rent study. Although Bos et al. (2014) found no group differences be-
tween ASD and TD in an overall group ICA, they used age ranges that
combined children with adolescents (6.4-15.8) while the current study
separated children under 11 and adolescents from 11-18 and found
hyper-connectivity in children, and no differences in adolescents. Thus,

future research is needed to further explore the effects of stratifying sam-
ples by age.

4.2. Between-network functional connectivity

The overall between-network results in the current study showed
that both ASD and TD groups for all ages had similar anti-correlations
between task-positive and task-negative networks represented by the
DAN and DMN respectively. Additionally, both ASD and TD groups for
all ages had positive correlations between the DAN and higher-
levelvisual areas. This shows that individuals with ASD show typical
anti-correlations between the DAN and DMN and typical positive corre-
lations between the DAN and higher-level visual areas. Both of these
results replicate previous work exploring between-network connectiv-
ity of resting state data in the neurotypical population (Smith et al.,
2013).

Previously, Kennedy and Courchesne (2008b) utilized a hypothesis-
driven seed ROI-based approach to demonstrate that adults with ASD
show typical anti-correlations between the DMN and DAN. The current
study extends this work by using a completely data-driven method to
demonstrate typical anti-correlations between the DMN and DAN, in
addition to typical positive correlations between the DAN and higher-
level visual areas. In addition, the novel contribution of the current
study demonstrates these results apply to children and adolescents
with ASD in addition to adults.

Between-network differences were observed in the current study
between DMN components for the child cohort and between a
DMN and subcortical/insula component for the adolescent cohort.
The difference for children (ASD < TD) was found in the partial-
correlationcomparison, while the difference for adolescents was found
in the full-correlation comparison. The partial-correlation difference
for children suggests that DMN networks had less direct functional rela-
tionships with each other, demonstrating atypical cooperation between
DMN components in children with ASD. The full-correlation difference
in adolescents would suggest that a weaker functional relationship be-
tween the DMN and subcortical/insula component for children with
ASD is moderated by another network.

Starck et al. (2013) used an ICA approach to examine the DMN and
its subnetworks in adolescents with ASD compared with TD adoles-
cents. Their study found no differences in within-networkDMN func-
tional connectivity compared with TD adolescents, consistent with the
current findings. They did find significantly reduced correlations
between anterior and posterior DMN subnetworks in ASD.

Additionally, the current results are in accord with previous ideas
suggesting that increased within-network connectivity in children
with ASD could be responsible for reduced between-network connec-
tivity as tighter coupling within networks could lead to reduced cou-
pling between networks (Uddin et al.,, 2013). In the current study, this
may explain the reduced coupling between DMN components for chil-
dren with ASD. The lack of within-networkhyper-connectivity in ado-
lescents suggests that reductions in between-network coupling can
still occur in the absence of within-network hyper-connectivity. In the
case of adolescents, the between-network differences were found
between the DMN and a subcortical/insula network. Both of these net-
works are related to cognitive flexibility and may contribute to some
of the behavioral patterns found in ASD, as discussed in the following
section. However, it is not possible to determine from the current
study if there is a direct relationship that relates within- and between-
network coupling.

4.3. Insula and the default mode network

Although the current study did not find any functional connectivity
group differences within the context of the salience network, there
were within- and between-network differences involving a subcorti-
cal/insula component. Thus, although the current findings implicate
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the insula as a source of atypical functional connectivity in ASD, this
does not occur within the context of the SN. The exact reason for this di-
vergence is unclear. One possible reason is that insula activation within
the SN in the context of the current study was generally related to ho-
mogeneous activity across the entire insula — a finding typical in ICA
based studies of the SN (Seeley et al., 2007; Uddin et al., 2013; Uddin
et al., 2011). However, other work suggests that insula subregions
such as the dorsal anterior, ventral anterior, and posterior insula regions
vary substantially in their functional roles and patterns of connectivity
(Deen et al., 2011; Uddin et al., 2014). The ventral anterior insula has
been shown to have direct structural connections with subcortical
areas in primate studies (Mesulam and Mufson, 1982) as well as sharing
task-based subcortical activations in fMRI studies of humans (Uddin
et al,, 2014; Uddin, 2015). Additionally, the ventral anterior insula has
been shown to have connections to subcortical limbic areas in task-
based activation studies (Uddin et al., 2014). Thus, it may be possible
that different insula subregions may be driving the functional connec-
tions of the insula with the ACC in the context of the SN and subcortical
areas with the insula in the context of the subcortical/insula component
found in the current study. Thus, different insula subregions may be
driving the atypical functional connections found in the current study
compared to previous studies finding atypical functional connections
of the insula within the context of the SN(Uddin et al., 2013).

The findings of the current study and previous studies strongly im-
plicate atypical within- and between-network functional connectivity
of the DMN and insula as possible brain markers of ASD. The major
nodes of the DMN include the posterior parietal and lateral prefrontal
cortices while the nodes of the SN include the anterior cingulate and an-
terior insular cortices; areas that are important in flexibly switching be-
tween internal cognitive and external information (Cole et al., 2013;
Dosenbach et al., 2007; Uddin et al., 2014; Uddin et al., 2011). Accord-
ingly, Uddin et al. (2014) have demonstrated that atypical effective con-
nectivity of these brain areas is correlated with restrictive and repetitive
patterns of behavior in children with ASD such that greater atypical con-
nectivity is related with more severe behavior deficits. This suggests
that the atypical functional connectivity of these networks that are im-
portant in cognitive flexibility contribute to the restrictive and repeti-
tive behaviors that often characterize the disorder. The current study
shows both within- and between-network differences involving the
DMN and insula that further implicate the atypical functional connec-
tions of the two as a possible biomarker of brain function in ASD.

5. Conclusions

In sum, the current findings support adopting a developmental
perspective to help reconcile the heterogeneous findings of functional
hypo- and hyper-connectivity observed in the rsfMRI literature in
ASD. These results demonstrating group differences specific to certain
age cohorts highlight the utility of carefully considering developmental
stage in studies of functional brain connectivity in ASD. We find that
while children show atypical within and between-network functional
relationships, adolescents exhibit fewer such differences and adults
are indistinguishable from age-matched neurotypical peers on such
measures. The fact that both within- and between-network differences
diminish across the lifespan could offer an explanation for some of the
improved function often found in adults with ASD compared to children
with ASD. These results also highlight the importance of considering
within- and between-network whole brain functional connections in
conjunction with a developmental approach in order to better charac-
terize brain connectivity in ASD.

Although the current study is an important first step in taking a devel-
opmental approach to investigating differences in functional connectivity
between individuals with ASD and neurotypical individuals, future stud-
ies should explore the influence of various age groupings to more precise-
ly determine where differences in hyper- and hypo-connectivity begin to
emerge between specific brain areas. As an increasing awareness of the

impact of development on brain function in ASD has begun to emerge
(Picci and Scherf, 2014; Uddin et al., 2013) more studies that explore
the impact of age on brain-based biomarkers in ASD are needed in
order to provide a better picture of the developmental maturation of func-
tional connectivity patterns that emerge across the lifespan in individuals
with ASD.
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