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Abstract

Insufficient HIV drug levels in lymph nodes have been linked to viral persistence. To overcome 

lymphatic drug insufficiency, we developed and evaluated in primates a lipid-drug nanoparticle 

containing lopinavir, ritonavir, and tenofovir. These nanoparticles produced over 50-fold higher 

intracellular lopinavir, ritonavir and tenofovir concentrations in lymph nodes compared to free 

drug. Plasma and intracellular drug levels in blood were enhanced and sustained for 7 days after a 

single subcutaneous dose, exceeding that achievable with current oral therapy.

Combined antiretroviral therapy (cART) can clear HIV from the blood; however, residual 

virus remains in lymph nodes [1,2]. Oral cART produces lower drug concentrations in 

lymphoid tissues than in plasma [3–5], which is linked to persistent virus in lymph nodes 

[3,6,7] and virus rebound upon therapy cessation [8]. Drug nanoparticles have the potential 

to overcome lymphatic drug insufficiency [9]. We previously developed and demonstrated 

in primates a lipid nanoparticle (LNP) containing indinavir (IDV) that enhanced drug levels 

in all analyzed lymph nodes [4,10]. Also, IDV in LNPs enhanced intracellular drug 

concentrations in peripheral blood mononuclear cells (PBMCs), prolonged plasma residence 

time, reversed CD4+ T-cell decline, and suppressed viral RNA in both plasma and lymph 

nodes [10]. Building on findings with IDV-LNPs, we have developed an anti-HIV LNP 

containing two protease inhibitors, lopinavir (LPV) and ritonavir (RTV), and a reverse 

transcriptase inhibitor, tenofovir (TFV), for simultaneous, triple drug delivery to HIV host 

cells in blood and lymph. LPV and RTV were chosen for their stability and strong 

hydrophobic interactions with LNPs [11]. Ritonavir enhances the efficacy of LPV through 

metabolic and drug transporter interactions [12,13]. Inclusion of TFV provides a second 

target of antiviral action to further suppress drug resistance potential, and intracellular 

retention of phosphorylated TFV prolongs antiviral activity [14].
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We evaluated the characteristics of optimized anti-HIV LNPs for primate studies. The 

aseptically prepared anti-HIV LNPs exhibited 94, 91 and 12% LPV, RTV and TFV 

incorporation, respectively, with a mean diameter of 52 nm. The well defined unbound drug 

fractions were included for in-vivo studies. Antiviral potency against HIV-1, evaluated at a 

fixed LPV: RTV: TFV 1: 1: 0.5 mole ratio, revealed at least a three-fold increase in potency 

with anti-HIV LNP compared to the drugs in soluble form (LPV, RTV, and TFV EC50 

30±0.8, 30±0.8, 15±0.1 nmol/l in LNP form, vs. 98±0.3, 98±0.3, 49 ±0.2 nmol/l in free 

form).

Primates dosed subcutaneously with LPV, RTV, and TFV (25.0, 14.3, and 17.1 mg/kg) in 

anti-HIV LNP form exhibited elevated plasma concentrations of LPV and RTV over 7 days 

(168 h). In contrast, plasma drug levels after administration of free drug in combination 

subsided to near or below detection limited by 24 h. The increase in total drug exposure 

[area under the curve (AUC)] provided by the LNP formulation for LPV, RTV, and TFV 

was 18, 14, and 7-fold, respectively (paired t test P =<0.05, 0.07, and 0.173) (Table 1). The 

AUCs for early (0–8 h) versus late drug exposure (8–168 h) were also analyzed. Primates 

treated with free drug exhibited 92% of total TFV exposure within the first 8 h, whereas 

those treated with anti-HIV LNPs exhibited only 9.1% in the first 8 h, with the remaining 

fraction at 8–168 h (Table 1).

Intracellular drug accumulation is pivotal for antiviral effects. Sustained LPV, RTV and 

TFV in PBMCs were detected for over 7 days in primates treated with anti-HIV LNPs, 

whereas those on free drug fell near or below the detection limit by 48 h (Table 1). The ratio 

of anti-HIV LNP to free drug (LNP/free ratio) was used to compare PBMC drug 

concentrations between the two test groups. This ratio was greater than 1 at all time points 

beyond 5 h, and greater than 20 at later time points (Table 1). For TFV, with only 12% LNP 

association, the LNP/free ratio in blood PBMCs was less than 1 at early time points; by 8 h, 

however, this value increased to over 50. Anti-HIV LNPs also enhanced intracellular drug 

concentrations in mononuclear cells of lymph nodes (LNMCs). LNMCs isolated from 

inguinal lymph nodes at 24 h revealed that no LPV and only low levels of RTV were 

detectable in animals treated with the free drug combination, whereas those treated with 

anti-HIV LNPs exhibited over 50-fold higher intracellular concentration (Table 1). For TFV, 

with limited LNP association, the LNP/free ratio was lower and recorded at 0.7; however, 

the differences between the two groups of macaques were not statistically significant (P 

=1.0).

While toxicity of anti-HIV LNPs needs further investigation, complete blood count, serum 

chemistry panel, C-reactive protein, and complement levels revealed no treatment impact. 

No anti-HIV LNP-treated animals demonstrated an elevation in C-reactive protein, white 

blood cell count, blood urea nitrogen (BUN), creatinine, or liver enzymes. Total 

complement levels were highly variable, but variations were not significant. Also, no 

significant increase in cholesterol levels was noted with anti-HIV LNP administration (162 

± 16.4 vs. 191 ± 14.8 mg/dl). On physical examination of the injection site, naïve animals 

receiving free drug demonstrated a local reaction consisting of firm, nonerythematous 

swellings that resolved over the following weeks. Animals treated with anti-HIV LNP 

demonstrated no local reaction and their platelet counts remained within normal range.
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In summary, taking advantage of the high LNP incorporation efficiency of two lipophilic 

protease inhibitors, LPV and RTV, and the ability to encapsulate hydrophilic TFV, we 

constructed a combination anti-HIV LNP and analyzed intracellular drug concentrations and 

plasma kinetics in macaques (Macaca nemestrina). Primates administered subcutaneously 

with anti-HIV LNPs exhibited elevated and extended intracellular drug levels in 

mononuclear cells of both blood and lymph nodes, indicating the potential for this approach 

to overcome lymph node drug insufficiency and associated viral persistence in patients on 

oral cART therapy [3–5]. The ability of anti-HIV LNP to extend plasma drug levels for over 

1 week with higher total drug exposure supports consideration as a long-acting agent to 

improve patient compliance. Importantly, three drugs packaged together in anti-HIV LNPs 

could reduce drug resistance potential by consistently and simultaneously delivering all 

three drugs above therapeutic levels in the same cell. This reduces the likelihood of varying 

intracellular concentrations for each drug, as achieved when delivered in free form or in 

separate particles. Therapeutic efficacy of anti-HIV LNPs could be further enhanced by 

organelle targeting with pH-responsive drug release [16,17] and expressing CD4+-binding 

peptide [18] to target HIV host cells; for a review, see Gunaseelan et al. [19]. In summary, 

anti-HIV LNPs show promise for overcoming drug insufficiency in lymphoid tissues and 

improving patient compliance in search of a cure for AIDS.
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