
REVIEW

Pleiotropic Role of PPARc in Intracerebral Hemorrhage: An
Intricate System Involving Nrf2, RXR, and NF-jB

Xiu-Rong Zhao, Nicole Gonzales & Jaroslaw Aronowski

Department of Neurology, Stroke Research Center, University of Texas Medical School – Houston, Houston, TX, USA

Keywords

Catalase; CD36; Cerebral Hemorrhage;

NF-kappa B; Nrf2; Oxidative stress; PPAR

gamma.

Correspondence

J. Aronowski, Ph.D/M.D., Professor of

Neurology and Director of Stroke Research

Program, University of Texas Medical School

at Houston, Department of Neurology, 6431

Fannin, Suite 7.210, Houston, TX 77030.

Tel.: +1-713-500-7059;

Fax: +1-713-500-0549;

E-mail: J.Aronowski@uth.tmc.edu

Received 15 September 2014; revision 10

October 2014; accepted 11 October 2014

doi: 10.1111/cns.12350

SUMMARY

Intracerebral hemorrhage (ICH) is a subtype of stroke involving formation of hematoma

within brain parenchyma, which accounts for 8–15% of all strokes in Western societies and

20–30% among Asian populations, and has a 1-year mortality rate >50%. The high mortal-

ity and severe morbidity make ICH a major public health problem. Only a few evidence-

based targeted treatments are used for ICH management, and interventions focus primarily

on supportive care and comorbidity prevention. Even in patients who survive the ictus,

extravasated blood (including plasma components) and subsequent intrahematoma hemo-

lytic products trigger a series of adverse events within the brain parenchyma, leading to sec-

ondary brain injury, edema and severe neurological deficits or death. Although the

hematoma in humans gradually resolves within months, full restoration of neurological

function can be slow and often incomplete, leaving survivors with devastating neurological

deficits. During past years, peroxisome proliferator-activated receptor gamma (PPARc) tran-
scription factor and its agonists received recognition as important players in regulating not

only glucose and lipid metabolism (which underlies its therapeutic effect in type 2 diabetes

mellitus), and more recently, as an instrumental pleiotropic regulator of antiinflammation,

antioxidative regulation, and phagocyte-mediated cleanup processes. PPARc agonists have

emerged as potential therapeutic target for stroke. The use of PPARc as a therapeutic target

appears to have particularly strong compatibility toward pathogenic components of ICH. In

addition to its direct genomic effect, PPARc may interact with transcription factor, NF-jB,
which may underlie many aspects of the antiinflammatory effect of PPARc. Furthermore,

PPARc appears to regulate expression of Nrf2, another transcription factor and master regu-

lator of detoxification and antioxidative regulation. Finally, the synergistic costimulation of

PPARc and retinoid X receptor, RXR, may play an additional role in the therapeutic modula-

tion of PPARc function. In this article, we outline the main components of the role of PPARc
in ICH pathogenesis.

Intracerebral Hemorrhage Pathobiology
and PPARc

Intracerebral hemorrhage (ICH) accounts for 8–15% of all

strokes in Western societies and 20–30% among Asian popula-

tions with a 1-year mortality rate >50–60% [1–4]. Despite

advances in the field of stroke and neurocritical care, the 30-day

mortality has not changed significantly over the past two dec-

ades. The therapeutic interventions that are currently available

focus primarily on supportive care and comorbidity management

and prevention [5–7]. Even in patients who survive the acute

ictus (resulting in mass effect and increased intracranial pressure

and primary brain injury [8,9]), the extravasated blood and, sub-

sequently, the hemolytic products trigger a series of adverse

events within brain parenchyma, causing secondary brain

injury, edema, and neurological deficits [4,10–14]. Only half of

ICH-related deaths occur in the first 2 days after ICH onset [15],

strongly pointing at the unique role of secondary brain injury in

development of delayed mortality. It is generally accepted that

the delayed aspect of ICH injury is multifactorial and, at least in

part, is related to hematoma toxicity [16–20], the presence of

noxious cellular debris, and robust inflammation [11,21,22].

Hemolytic products such as hemoglobin (Hb) and its catabolic

by-products (heme and iron), free-radical formation (notably

through iron involving Fenton-type mechanism), thrombin, me-

talloproteinases, complement (and other proteases), formation of

oxy-modified lipid mediators, and excitotoxicity are generally

listed as central components of the delayed damage after ICH

[10,23–27]. Although the hematoma in humans gradually

resolves within months, restoration of neurological function is

slow and most often incomplete, and the neurological deficits

can be devastating. Therefore, management of hematoma stabil-

ity (e.g., preventing rebleeding) during the acute phase followed

by the control of timely clearance of hematoma-deposited blood

components (to speed up hematoma resolution) may represent

unique targets for the treatment of ICH [28–30].
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The peroxisome proliferator-activated receptors (PPARs) includ-

ing a, c, and d/b are encoded by separate genes and are members

of a type II nuclear hormone receptor superfamily of ligand-acti-

vated nuclear transcription factors [31,32]. Three different PPARc
transcripts (PPARc 1, 2, and 3), each a derivative of the PPARc
gene through differential promoter usage [33,34], have been

identified. While PPARc 2 is the isoform primarily expressed in

adipose tissue, PPARc 1 has a broader tissue distribution including

presence in the brain [33,35]. The PPARc regulates target gene

expression by binding to conserved DNA sequences termed peroxi-

some proliferator response elements (PPREs), as heterodimers with the

retinoic acid receptor (RXR) [36,37]. PPARc functions as a thera-

peutic target for the treatment of metabolic disorders, for example

diabetes [32,38,39]. Phosphorylation of serine 112 at the N-termi-

nus of PPARc2 by MAP kinase and SUMOylation was suggested to

regulate its transcriptional activities [40,41]. The ligands for

PPARc include oxidized fatty acids, monounsaturated and

polyunsaturated fatty acids such as oleic acid or linoleic acid [42],

nonsteroidal antiinflammatory drugs [43], 15-deoxy-Δ12,14-Pros-

taglandin J2 (15d-PGJ2) [44], and a class of compounds, the thia-

zolidinediones (TZDs) [45]. The PPARc receptor subtype was

originally characterized in adipose tissue as an important regulator

of the expression of various key enzymes involved in glucose and

lipid metabolism to regulate efficient energy storage [32,38,39].

Through selective activation of PPARc, the TZDs control insulin

sensitivity [44,46]. Two of the TZDs, pioglitazone and rosiglitaz-

one, are approved by the FDA for the treatment of type 2 diabetes

mellitus (DM2). It is important to stress that these drugs do not

change blood insulin levels; rather, they make cells more sensitive

to its effect (Figure 1).

In response to stroke, it appears that PPARc mRNA is robustly

upregulated in the affected brain tissue, suggesting that the

endogenous system is attempting to activate PPARc pathway via

increasing PPARc transcript [47,48]. While immunohistochemis-

try confirms that PPARc protein is increased in the ischemia-

affected hemisphere, it seems that the PPARc DNA binding and

PPARc gene target expression in this region is not increased,

unless animals are treated with PPARc activator [48]. This may

suggest that following brain injury, the endogenous activators of

PPARc are not available or in deficit and that the whole system

requires exogenous agonist to activate the PPARc pathway.

Intracerebral hemorrhage, primarily in the case of large hema-

tomas, could lead to alteration in cerebral perfusion in proximity

to the hematoma [49,50]. While, generally, no support exists for

direct ischemic penumbra in ICH-affected tissue [50,51], it is likely

that even modestly reduced perfusion at the hematoma site in

combination with local hypermetabolism [52] (an event demon-

strated in the brain in response to intracerebral injection of hem-

olysates) could lead to restricted cellular injury. PPARc agonists,

by controlling expression of the glucose transporter GLUT-3 [53],

could improve glucose utilization and local metabolism and, as

such, contribute to cytoprotection after ICH. In addition, the arcu-

ate nucleus, an energy homeostasis and glucose metabolism con-

trol center in the brain, contains many neurons that show high
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Figure 1 PPARc as therapeutic targets for ICH. In response to ICH, the local generation of reactive oxygen species (ROS), accumulation of toxic blood

components (e.g., hemolytic products) in brain parenchyma, and activation of pro-inflammatory transcription factor NF-jB (causing generation of pro-

inflammatory cytokines and enzymes) lead to brain injury, often referred to as secondary brain damage, which manifest itself with blood brain barrier

(BBB) disruption, rebleeding, edema and ultimately neurological deficit or death. Activation of PPARc with, for example, 15d-PGJ2 or thiazolidinediones

(known as glitazones) leads to: upregulation of the antioxidative enzymes, catalase and superoxide dismutase (SOD); scavenger receptor (e.g., CD36 on

macrophages/microglia MMΦ) for RBC and hematoma clearance. Both PPARc and Nrf2 (which can be activated with sulforaphane, SF) regulate

transcription of these genes. PPARc suppresses NF-jB to limit the pro-inflammatory response. Also, activation of RXR, an obligatory heterodimeric partner

for PPARc activity (e.g., with 9-cis retinoic acid or bexarotene, BEX), could augment the effect of PPARc ligand acting alone. Thus, PPARc activation may

benefit the acute ICH and post-ICH recovery by (1) downregulating the production of pro-inflammatory mediators, (2) upregulating the antioxidative

enzymes production, (3) promoting endogenous hematoma clearance thus eliminating the source of inflammation and allowing for more effective repair,

and (4) direct and indirect cytoprotection.
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expression of PPARc [54], suggesting a potential role of PPARc
agonists in regulating metabolism by also affecting hypothalamic

functions.

Later work on PPARc noted that PPARc plays important roles in

regulating antioxidative processes and inflammation [55]. It is the

antiinflammatory properties of PPARc ligands that ultimately

brought additional attention to the whole class of PPARc agents

[56–62]. As a transcription factor with pleiotropic mechanism of

action, in terms of neurological conditions [59], PPARc was sug-

gested to play important roles in the pathogenesis of Alzheimer’s

disease [63,64], Parkinson’s disease and neurodegenerative disor-

ders [65,66], multiple sclerosis [67,68], ischemic stroke [47,69–

72], neurotrauma and spinal cord injury [73–76], and ICH

[77,78]. In studies with tissue culture and other injury models, it

became clear that PPARc is protective not only to neurons

[47,72,79], astrocytes [80,81], oligodendrocytes [82], endothelia

[83], but also to microglia/macrophages (MMΦ) [78,84–86].

Among many potential mechanisms of action, the beneficial

effects of PPARc agonists are proposed to be due to the following:

(i) the suppression of proinflammatory mediators, in part by inter-

ference with nuclear factor kappa B (NF-jB) [87–89], (ii) the

upregulation of antioxidant enzymes including CuZn superoxide

dismutase (SOD) and catalase [78,90], (iii) the inhibition of ex-

citotoxicity [91,92], and (iv) the promotion of microglia/macro-

phage-mediated clearance of toxic cellular debris via mechanism

involving upregulation of scavenger receptor CD36 expression

[78,93–95], or (iv) modification of neutrophil phenotype [61].

In this article, we will focus primarily on the role of PPARc in

ICH. We will discuss the interactions of PPARc with nuclear factor

erythroid 2-related factor (Nrf2; a master regulator of oxidative

responses) and NF-jB signaling pathways pertaining to regulation

of pro- and antiinflammatory responses. We will describe a syner-

gistic activation of PPARc when retinoid X receptor alpha (RXRa)
and PPARc are coactivated to achieve optimal cytoprotection and

endogenous cleanup function—the clearance of hematoma-

deposited blood components by brain MMΦ after ICH.

PPARc and Catalase—Implication in ICH
Pathogenesis

The TZDs (e.g., ciglitazone, pioglitazone, and rosiglitazone) and

cyclopentanone prostaglandins (e.g., 15d-PGJ2) are PPARc agon-

ists which have been proved to act as potent and safe pro-survival

factors for primary neurons subjected to either excitotoxic insult,

oxygen–glucose deprivation (OGD), or H2O2-induced oxidative

stress. The exact mechanism behind this protective mechanism is

not fully known, but one of several potential candidates is a

PPARc-mediated induction of potent antioxidative enzymes, such

as superoxide dismutase [72,96] and catalase [72,74,97]. Catalase

is a well-known gene target for PPARc [98] and administration of

PPARc agonist, for example 15d-PGJ2, after ICH was demon-

strated to rapidly induce catalase production in the affected brain

[77,78]. This boost in production of antioxidative enzymes could

be of particular importance for brain cells after ICH, as it was

reported that hemoglobin lysis products (a protocol mimicking

hematoma environment) reduce tissue levels of free-radical

decomposing enzymes [99–101]. Catalase is a large homotetra-

meric protein that is highly abundant in the peroxisome (the

membrane-enclosed small organelles that house various oxidation

reactions, in which toxic peroxides are generated as side prod-

ucts), where it serves to protect the cells from the toxic effects of

H2O2 by catalyzing its decomposition into O2 and H2O (2H2O2 ?
O2 + 2H2O) without generating free radicals. Interestingly, cata-

lase activity in the brain, as compared with other tissue (e.g.,

heart, kidney, liver, or lung), is relatively low [102]. In response

to PPARc agonist, catalase expression rapidly increased in the

ICH-affected brain, demonstrating two temporal peaks with differ-

ential spatial distribution. The first peak reflects, primarily, induc-

tion of catalase expression in the ICH-affected neurons (as early as

1 h after ICH and sustained at higher levels for 6~24 h [77]). The

second peak is mainly associated with the catalase induction in

MMΦ (appeared 3~7 days, unpublished data). The rapid catalase

production by neurons may likely reflect an adaptive response

aimed at improving the H2O2 buffering capacity of neurons and is

linked to direct neuroprotection. On the other hand, the upregu-

lation of catalase in MMΦ could facilitate effective phagocytosis-

mediated cleanup functions by preventing self-injury to MMΦ.
During phagocytosis, MMΦ generate high levels of pro-oxidative

molecules that, unless neutralized by the MMΦ, may adversely

affect phagocytes themselves, as well as other perihematomal

brain cells [74,78]. Although the benefits of cytoprotective

approaches to reduce damage to neurons, oligodendroglia, astro-

glia, or endothelium have been frequently discussed, the benefits

of protecting the phagocytes (MMΦ) from damage at the brain

injury site have been seldom addressed. In our ongoing research,

subjecting primary microglia to “ICH-like” (hemolytic products

plus mild OGD) injury or high (>50 lM) levels of H2O2 in our

hands induced significant morphological and functional damage

indicating that these cells can suffer from damage similar to other

brain cells. Preincubating the microglia with PPARc activators

improves the expression of antioxidative enzymes and microglia’s

resistance to H2O2 or “ICH-like” injury [78] and could increase

resistance to ICH-like damage.

PPARc and Phagocytosis-Mediated
Hematoma Resolution

The hematoma size after ICH not only predicts the magnitude

of mass effect and direct physical injury, but it also reflects the

volume of toxic blood breakdown products, which is the cause

of “chemical” secondary damage, deposited in the brain. The

larger hematomas may require more time for their resolution

(blood clearance) and as such may inflict damage to the sur-

rounding brain tissue (or to impair its repair) for a longer dura-

tion of time. Thus, it is not surprising that hematoma size is

one of the strongest predictors of poor outcome [103,104].

Based on this assumption, several clinical trials targeting surgi-

cal hematoma evacuation were initiated [105–108]. While the

overall outcome of these studies is generally neutral, some

potentially promising results were seen in patients with

superficial lobar hematomas without intraventricular hemor-

rhage [109,110]. Also, in patients subjected to minimally

invasive hematoma evacuation surgery plus rt-PA during

hematoma evacuation (MISTIE trial), the procedure was associ-
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ated with significant reduction in perihematomal edema [107].

These suggest that under circumstances when invasiveness of

the surgical approaches is low (e.g., manipulations with superfi-

cial aspects of the brain or washout of blood with the assis-

tance of thrombolytic rt-PA vs. application of pressure suction),

the clearance of blood from the brain could be beneficial.

While surgical approaches to remove blood clots continue to be

evaluated, a new concept of nonsurgical approaches to assist

blood cleanup through promoting the endogenous microglia/

macrophages-mediated phagocytosis is being tested [18]. Nor-

mally, depending on the hematoma size, the blood clearance

from the brain occurs naturally in 2–4 weeks in rodents

[78,111]. Our recent studies indicated that activating PPARc in

microglia/macrophages results in upregulation of expression of

CD36, a cell membrane protein, which plays an essential role

in phagocytosis-mediated hematoma cleanup after ICH [12].

CD36, a type II scavenger receptor, has been shown to act as a

receptor for phosphatidyl serine, thrombospondin, and oxidized

lipids; in addition, it mediates internalization/phagocytosis of

brain apoptotic cells [112–114], sickled/asymmetric/dislocated

red blood cells (RBC) [78,94,115], and apoptotic neutrophils

[116–118]. Interestingly, expression of this phagocytosis-aiding

protein is under transcriptional control of PPARc [119], so that its

expression could effectively be upregulated pharmacologically by

PPARc agonists and inhibited by selective PPARc antagonists

[120–122]. In agreement with this notion, administration of

PPARc activators can efficiently increase expression of CD36 by

microglia and improve phagocytosis of RBC, thus promoting

hematoma resolution in animal models of ICH [18,78]. This

cleanup-aiding function of CD36 and PPARc was suggested ear-

lier based on findings that deficiency of CD36 in macrophages

due to genetic deletion of PPARc led to delayed uptake of oxi-

dized low-density lipoprotein (oxLDL) by macrophages and

aggravated atherosclerotic lesions [119,123,124]. Thus, CD36

upregulation in MMΦ in response to PPARc activation may

ensure a more efficient interaction between MMΦ and their

phagocytosis targets for a timely clearance. This line of research

prompted us to launch a clinical trial with pioglitazone in ICH

patients [108]. The underlying hypothesis is that pioglitazone

through PPARc activation will assist the enhancement of the

endogenous cleanup process and anti-oxidative defense, as well

as amelioration of pro-inflammatory responses that altogether

will inhibit secondary damage caused by ICH.

PPARc and Two Faces of Inflammation

After ICH, phagocytosis-mediated clearance of apoptotic or dam-

aged cells and dislocated blood components by MMΦ is believed

to play a beneficial role by minimizing the exposure of the

brain tissue to this toxic and pro-inflammatory milieu

[125,126]. Engulfment of apoptotic cells by MMΦ was proposed

to actively suppress production of pro-inflammatory mediators

by the phagocyte through promoting release of antiinflamma-

tory mediators, such as transforming growth factors (TGF-b)
and IL-10 [127–129]. Although clearance of hematoma by

MMΦ is necessary to achieve elimination of the hematoma, a

source of inflammation, the deleterious molecules generated by

MMΦ during phagocytosis could injure the neurovascular com-

ponent of the brain (e.g., neuron, oligodendrocyte, endothe-

lium), and also the phagocytes themselves [11,130,131]. The

main deleterious components of this process include (i)

increased release of pro-inflammatory mediators (e.g., IL-1b,
TNFa), (ii) activation of pro-inflammatory transcription factor

NF-jB and increased expression of pro-inflammatory enzymes

(e.g., iNOS, COX-2), (iii) increased synthesis and release of pro-

teinases (e.g., MMP9), (iv) acidification of the environment,

and (v) generation of free radicals. These responses are, in part,

the reason why in an attempt to control inflammation after

ICH, many studies focused on how to reduce microglia/macro-

phage activation and/or their phagocytosis function. However,

as indicated above, phagocytosis is necessary for clearance of

the hematoma [18,108]. Thus, it is necessary to find ways to

tune up the phagocytosis process, so that effective clearance can

be generated under conditions that have minimal adverse effect

to the surrounding brain tissue.

The antiinflammatory role of PPARc in ICH appears to be sig-

nificant. Many studies using PPARc activators showed a robust

reduction in expression of pro-inflammatory mediators (TNF-a,
IL-1b, iNOS, MMP9) in MMΦ with concurrently increased

expression of antiinflammatory cytokines (TGF-b and IL-10)

[59,78,89,132,133]. In rat primary microglia in culture, PPARc
agonists not only increased microglia-mediated phagocytosis of

RBC, but also reduced the production of H2O2 during the pro-

cess of engulfment [78]. Treatment with PPARc agonist is asso-

ciated with increased production of antioxidative defense

system enzymes such as catalase and superoxide dismutase that

may explain reduced pro-oxidative responses in cells with acti-

vated PPARc [72,74,77,78]. It appears that prevention of oxida-

tive stress is obligatory in allowing microglia to show optimal

cleanup capacity. We have demonstrated that exogenous appli-

cation of catalase to primary microglia in culture can enhance

internalization of RBC by these cells, suggesting that a self-pro-

tective mechanism (antioxidative defense) from the excessive

oxidative stress is critical to ensure MMΦ survival and efficient

cleanup function. Interestingly, one of key important gene tar-

gets of PPARc is CD36. As mentioned above, PPARc-induced
CD36 expression may play an important role in stimulating

phagocytotic efficacy of microglia [78]. While the process of

phagocytosis is overall beneficial from the point of removal of

toxic and pro-inflammatory cellular debris, it is well recognized

that microglia-mediated scavenging activities are associated with

generation of massive amount of pro-oxidants [134] which

could adversely affect surrounding brain cells. As such, it is

intriguing to note the same transcription factor (PPARc) not

only upregulates genes associated with enhanced phagocytosis

(e.g., CD36), but also simultaneously upregulates antioxidative

genes (e.g., catalase) that permit more effective neutralization of

oxidative stress associated with more robust scavenging activi-

ties. Interestingly, this cooperative generation of CD36 and

antioxidative enzyme exists not only for PPARc. In our ongoing

research (unpublished results), we have determined that Nrf2, a

transcription factor considered a master regulator of cellular an-

tioxidative defense, is also capable of inducing CD36 expression

in microglia. These findings strongly suggest that for optimal

function of CD36 in hematoma resolution (and likely cleanup

after ischemic stroke), the antioxidative defense system needs to
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be enhanced to eliminate the deleterious consequences (oxida-

tive damage) associated with CD36-mediated phagocytosis/

endocytosis.

Lastly, it should be mentioned that PPARc is proposed to act as a

signaling molecule downstream from the IL-4 receptor, a pathway

that has a key role in an alternative activation of MMΦ [135–

137], which results in formation of a “healing” trophic phenotype

of MMΦ. In our ongoing research, we have established that IL-4 is

generated locally in the brain and via IL-4 receptor activates

STAT6 and PPARc signaling leading to reduction of pro-inflamma-

tory and induction of antiinflammatory phenotype of microglia

after stroke.

Taken together, PPARc may benefit the inflammation in ICH by

directly downregulating the production of pro-inflammatory

mediators and upregulating antiinflammatory mediators. This is

in addition to its role in hematoma clearance, the process that

leads to removal of the toxic and pro-inflammatory debris from

the intraparenchymal tissue.

PPARc Activation and Interaction of
PPARc and RXR

PPARc and RXR, both are ligand-dependent pleiotropic transcrip-

tion factors belonging to the nuclear hormone receptor family.

Upon dimerization, PPARc–RXR as “partners” regulate target gene

expression by binding to conserved DNA sequences, PPRE [38].

There are three RXR isotypes, RXRa (NR2B1), RXRb (NR2B2),

and RXRc (NR2B3), which have considerable tissue-specific differ-

ences in their expression [138] and are present in various cells of

brain tissue [139]. The PPARc–RXR heterodimer complex can be

activated either by PPARc ligands (e.g., TZD or 15d-PGJ2) and/or

by RXR ligands (e.g., 9-cis retinoic acid) [140]; however, the occu-

pancy of both (PPARc plus RXR) ligand-binding domains simulta-

neously could provide maximal receptor activity [32,141–143]. It

is necessary to acknowledge that when comparing PPARc activa-

tion in response to RXR- versus PPARc-activating ligand, RXR

may dimerize with and activate other nuclear receptors (e.g., reti-

noic acid receptor, RAR; liver X receptor, LXR; pregnane X recep-

tor, PXR; or farnesoid X receptor, FXR). As such, RXR agonists

could have broader biological activity than PPARc. However, it is

often proposed that some key effects including antiinflammatory

effects of RXR agonists appear to be executed largely through a

PPARc pathway [144]. In our laboratory, we have demonstrated

that the cotreatment of primary cortical-cultured neurons with

the combination of 15d-PGJ2 and 9-cis retinoic acid protected the

cells from OGD-induced damage more robustly than each of the

ligands alone. Also, primary rat microglia in response to combined

PPARc activator (e.g., pioglitazone) and RXR activator (e.g., bex-

arotene) appear to demonstrate a significantly higher phagocytosis

efficacy toward erythrocytes, as compared to each of the ligands

alone (ongoing studies), further supporting the existence of syn-

ergy between PPARc and RXR activators in various biological pro-

cesses. These beneficial interactions of PPARc and RXR ligands are

consistent with an earlier report that 15d-PGJ2 plus 9-cis retinoic

acid was superior in reducing behavioral dysfunction in a mouse

model of experimental encephalomyelitis (EAE) [145]. Interest-

ingly, it was recently demonstrated that retinoic acid at higher

concentration can elicit different, even contrasting effect (to that

seen with lower concentration) by activating PPARbd/RXR
heterodimers[146].

Interaction of PPARc and Nrf2 and NF-jB

NF-jB is a transcription factor that regulates expression of

many pro-inflammatory enzymes, cytokines, chemokines, prote-

ases, and adhesion molecules, contributing to amplification of

the secondary inflammation response and neuronal damage

after ICH [11,147–150]. The functional NF-jB exists as a dimer,

which in neurons is composed primarily of the (NF-jB1) p50

and (RelA) p65 subunits. Other NF-jB members of the NF-jB/
Rel family include RelB, c-Rel, and p52 (NF-jB2) [151].

Numerous studies have confirmed that PPARc may bind to the

NF-jB subunits, p50 and p65, directly resulting in NF-jB inacti-

vation [77,87,152]. PPARc may also indirectly inhibit NF-jB by

(i) competing for common transcription coactivators such as

SRC-1 [153] and p300/CBP (CREB-binding protein) [154,155],

(ii) upregulating the inhibitor kappa B (IjB), protein that pre-

vents NF-jB nuclear translocation which is a prerequisite for

NF-jB activation [88,156], and (iii) indirectly inhibiting NF-jB
by activating transcription factor Nrf2, which reduces genera-

tion of pro-oxidative molecules that are required for NF-jB acti-

vation. Ultimately, inhibition of NF-jB by PPARc agonists was

reported to reduce generation of pro-inflammatory mediators/

responses [56,57] and consequently the secondary brain dam-

age associated with these pro-inflammatory responses

[72,73,77,78].

Nrf2 is a ubiquitous pleiotropic transcription factor and a

master genomic homeostatic regulator of intracellular stress

[157–159]. Combining with Mif family proteins, Nrf2 forms

heterodimeric complexes to transactivate the antioxidant

response elements (ARE) within the regulatory region of many

cytoprotective target genes [e.g., catalase, heme oxygenase-1

(HO-1), superoxide dismutase (SOD), glutathione-S-transferase

(GST), thioredoxin and NAD(P)H dehydrogenase quinone 1

(NQO1)) [160], and also other proteins with important roles in

neutralization of oxidative stress and detoxification of hemo-

lytic products (e.g., haptoglobin, hemopexin, ferritin, and he-

mooxygenase-1) [30,161]. In most cells, Nrf2 is present at low

concentrations due to continuous Nrf2 degradation through the

proteasome pathway. Nrf2 contributes to neuroprotection and

amelioration of brain damage after cerebral ischemia [162,163],

neurotrauma [164,165], neurodegenerative diseases [166–168],

and ICH [30,161,169] primarily through reducing oxidative

stress, inflammation, and generation of detoxifying molecules

capable of neutralizing many noxious products generated in

response to injury. The interaction between PPARc and Nrf2

may involve multiple mechanisms. First, PPRE and ARE coexist

in the same genes, such as CD36 [170] and catalase [171,172];

second, a reciprocal transcriptional regulation exists between

Nrf2 and PPARc genes, Nrf2 gene contains putative PPREs

[173], and conversely, PPARc gene appears to contain the ARE

[174,175]; third, an interaction between PPARc and Nrf2 may

be through NF-jB inhibition. As NF-jB activation highly

depends upon the presence of oxidative stress, then the effect

of Nrf2 in ameliorating oxidative stress was proposed to inhibit
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NF-jB [176]. As different mechanisms are used by Nrf2 and

PPARc in inhibiting NF-jB, it is likely that the simultaneous

activation of both Nrf2 and PPARc may have a synergistic

effect. Due to the interactions among PPARc, Nrf2, and NF-jB,
it has been suggested that coactivation of PPARc and Nrf2 may

improve outcomes of several neurological disorders [177].

Neurotoxicity Following PPARc
Activation

Unlike synthetic thiazolidinediones (TZDs; e.g., pioglitazone

and rosiglitazone) that have considerable levels of specificity

toward PPARc, prostaglandin D2 derivatives (primarily with

cyclopentanone structure), including 15d-PGJ2, which is pro-

posed to act as endogenous PPARc ligands, demonstrate rather

limited selectivity toward PPARc with some of its biological

activities including activation of Nrf2 [168] or inhibition of

NF-jB [87]. There is existing evidence on the dose-dependent

neurotoxicity of the 15d-PGJ2 in cerebellar granule cells, pri-

mary cortical neurons, and spinal cord motor neurons

[178,179] which originally were believed to be linked to

PPARc. The mechanism that underlies the neurotoxic effect of

15d-PGJ2 is chiefly linked to higher doses of the compound.

In addition, it is primarily associated with induction of apopto-

sis and not likely associated with the activation of PPARc
[180,181]. On the other hand, the clinically relevant, more

selective PPARc agonist such as rosiglitazone was linked to

peripheral edema, increase in body weight, and cardiomyopa-

thies and heart failure [182]. Again the relationship between

these side effects and PPARc is somewhat controversial, as

another TZD PPARc agonist, pioglitazone, may show beneficial

effects. The PROACTIVE (PROspective pioglitAzone Clinical

Trial In macroVascular Events; NCT00174993) randomized,

double-blinded placebo-controlled study looked at the impact

of pioglitazone on total mortality and macrovascular morbidity

in 5238 patients with DM2 and macrovascular disease. This

secondary prevention study showed safety and a macrovascular

benefit with pioglitazone in terms of major adverse cardiovas-

cular events including all-cause mortality, MI, and stroke

[183,184]. Finally, it should be mentioned that the above side

effects of rosiglitazone are described in patients taking TZDs

long term for DM2. It is likely that PPARc agonist treatment

for ICH will be short term, potentially avoiding these side

effects, although this needs careful testing.

Clinical Trials of PPARc Agonists in ICH

Preclinical work has shown that PPARc agonists are capable of

promoting endogenous hematoma clearance, decreasing neuronal

damage, and improving functional recovery in rodent model of

ICH [77,78]. In addition, PPARc agonists in vitro reduced the pro-

duction of pro-inflammatory mediators and free radicals produced

during phagocytosis [78]. Based on these studies, a clinical trial to

evaluate the Safety of Pioglitazone for Hematoma Resolution in

ICH has been launched (SHRINC) [108]. This is a prospective, ran-

domized, blinded, placebo-controlled dose-escalation safety trial

in which patients with spontaneous intracerebral hemorrhage are

randomly allocated to placebo or treatment. Pioglitazone, one of

the PPARc agonists that are approved by the Food and Drug

Administration (FDA) for glycemic control in type II diabetes

mellitus, was provided to the patients with escalating dosages.

There was an evaluation period of 3~6 months, and the continual

reassessment method for dose finding is used to determine the

maximum tolerated dose of pioglitazone. Hematoma and edema

resolution is evaluated with serial magnetic resonance imaging

(MRI) at specified time points. The Phase 2 study with a planned

sample size of 84 patients has preliminarily demonstrated safety

regarding mortality [108] and is now in the next planning stages

(ClinicalTrials.gov Identifier: NCT00827892).

As hematoma absorption is an extremely important objective

after ICH, the SHRINC study should provide important informa-

tion regarding the safety and clinical outcome regarding PPARc ag-
onists in the endogenous hematoma absorption. Besides primary

ICH, secondary brain hemorrhage following brain trauma and

brain surgery, subarachnoid hemorrhage (SAH), and hemorrhagic

transformation of the ischemic stroke treated with rtPA may also

be managed through this endogenous blood reabsorption (clear-

ance) mechanism. Therefore, we are expecting that PPARc, as a

promising therapeutic target, could open a new field for managing

hematoma clearance through a nonsurgical mechanism.
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