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Magnesium and FGF-23 are independent predictors of pulse pressure
in pre-dialysis diabetic chronic kidney disease patients
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Abstract

Background. The aim of our study was to evaluate the relevance of magnesium and FGF-23 in
terms of cardiovascular disease in a population of type 2 diabetic patients with nephropathy.
Methods. In a cross-sectional study, we included 80 type 2 diabetic patients with chronic kidney
disease (CKD) stages 2, 3 and 4. We analysed mineral metabolism, inflammation, oxidative stress
and insulin resistance. Our population was divided into two groups according to their pulse
pressure (PP) as follows: G-1 with PP <50 mmHg (n = 34) and G-2 with PP > 50 mmHg (n = 46).
Results. We found that G-2 patients showed lower calcium (P=0.004), eGFR (P=0.001), mag-
nesium (P=0.0001), osteocalcin (P=0.0001) and 25(0OH)D3 (P=0.001), and higher iPTH (P=0.001),
FGF-23 (P=0.0001), malonaldehyde (P =0.0001), interleukin 6 (P=0.001) and HOMA-IR (P=0.033).
No differences were found between the two groups regarding age, duration of disease, haemo-
globin, HgAlc and phosphorus. In a multivariate analysis, we found that FGF-23 and magnesium
independently influenced the PP [OR=1.239 (1.001-2.082), P=0.039 and OR=0.550 (0.305-
0.727), P=0.016, respectively].

Conclusions. In our diabetic population with early stages of CKD, FGF-23 as well as lower mag-
nesium levels were significantly and independently associated with higher PP levels, an established
marker of cardiovascular morbidity and mortality.
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Introduction

Cardiovascular disease (CVD) is the leading cause of death
in chronic kidney disease (CKD) patients with a higher inci-
dence than in the general population [1-7], even after ad-
justing for age and diabetic status [1, 8]. This increased
cardiovascular morbidity and mortality progressively in-
creases with the decline of the glomerular filtration rate
(GFR) [8]. Nontraditional risk factors like disturbances of
the mineral metabolism play a critical role in these
adverse outcomes [3, 7, 8]. Large artery stiffness, second-
ary to medial calcification due to these disturbances in
mineral metabolism, is the main determinant of pulse
pressure (PP) [9-13].

Hypomagnesaemia is probably the most frequently un-
diagnosed electrolyte deficiency. Some reports indicate
that there is a significant inverse correlation between
magnesium levels, metabolic dysfunctions and CVD [12,
14-16] as well as mortality in haemodialysis patients [17].

Fibroblast growth factor-23 (FGF-23), secreted by osteo-
cytes and osteoblasts, is also a major regulator of mineral
metabolism in health and disease [2, 18, 19]. Emerging
evidence from observational studies in the CKD population

suggests a strong association between FGF-23 levels and
cardiovascular events [8].

The aim of our study was to evaluate the relevance of
magnesium and FGF-23 in terms of CVD in a population of
type 2 diabetic patients with nephropathy.

Materials and methods

Study population

In a cross-sectional study, we included 80 type 2 diabetic
patients, recruited between 2007 and 2011 with a diagno-
sis of diabetic nephropathy (stages 2-4) in a stable clinical
condition attending our outpatient clinic. CKD stages were
defined by the estimated glomerular filtration rate (eGFR)
calculated with the modification of diet in renal disease
(MDRD) formula at the time of the assessment. Exclusion
criteria were previous CVD, uncontrolled hypertension,
magnesium therapy, eGFR of <15 mL/min/1.73 m? and
neoplastic or infectious diseases.

The study was approved by the local Ethnics Committee,
and written informed consent was obtained from each
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participant. The study was conducted according to the
principles of the Declaration of Helsinki.

Blood measurements

Several laboratory parameters were determined using a
standard methodology in routine blood samples drawn
after an overnight fast. We analysed haemoglobin (Hg),
glycosylate haemoglobin (HgAlc) and eGFR according
to the MDRD formula. We also analysed markers of
mineral metabolism including intact parathormone (iPTH),
25-hydroxyvitamin D3 [25(0OH)D3], FGF-23, osteocalcin,
phosphorus, calcium and magnesium. Inflammation
(interleukin 6—IL6), oxidative stress (malonaldehyde) and
insulin resistance (HOMA-IR) were also evaluated. FGF-23
serum levels were quantified using an enzyme-linked
immunosorbent assay, Human FGF-23 (C-Term) ELISA kit,
according to the manufacturer’s instructions, adapted to
the Triturus automatic microplate apparatus. Results were
calculated using the apparatus curve-fitting software in 4
parameter logistics mode.

Definitions

Brachial blood pressure was measured by a trained tech-
nician using a validated oscillometric device at the clinic
visit after the patient had rested for at least 5 min in a
seated position. PP was calculated as the difference
between the systolic blood pressure (SBP) and the diastolic
blood pressure (DBP). Subjects were classified into two
groups accordingly to the mean calculated PP: G-1 (PP<
50 mmHg, n=46) and G-2 (PP > 50 mmHg, n = 34).

Statistical analyses

Statistical analysis was performed with SPSS 17.0 for
Windows. Descriptive statistics, Student’s t-test and logis-
tic regression were used. For comparison between CKD
stages, we used ANOVA and a post hoc analysis with
Scheffe test. The association between magnesium and
other markers of mineral metabolism and HOMA-IR was
evaluated with Pearson’s correlation test. Continuous vari-
ables were presented as mean * standard deviations. All
tests were two-sided, and a P-value of <0.05 was con-
sidered significant.

Results

The clinical characteristics of the population (n=80) are
provided in Table 1. Age ranged from 40 to 85 years with a
mean age of 65.8 years. CKD stage 2 represents 35% of
the patients, stage 3 represents 45% and stage 4 the re-
maining. Estimated GFR ranged from 16 to 88 mL/min/
1.73 m“.

In Figure 1, mean values of osteomineral parameters
according to the stage of renal disease are listed. iPTH,
phosphorus and FGF-23 increase with inclining CKD
stages, whereas magnesium and vitamin D decrease.

Subjects were classified into two groups according to
the calculated PP: G-1 (PP<50 mmHg, n=46) and G-2
(PP >50 mmHg, n=34). Table 2 illustrates the differences
between these two groups. G-2 patients displayed lower
values for calcium (P=0.004), GFR (P=0.001), magnesium
(P=0.0001), osteocalcin (P=0.0001) and 25(0OH)D3 (P=
0.001), and higher values for iPTH (P=0.001), FGF23
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Table 1. Baseline patient characteristics (n = 80)

Characteristics Values

Age (years) 65.8+9.2

Gender (male/female) 51/29

Duration of disease (years) 13.6+49

eGFR (mL/min/1.73 m?) 49.8+19.5

SBP (mmHg) 129.1+12.1

DBP (mmHg) 78.8+10.3

Hg, g/L (g/dL) 129+15(12.9+1.5)
HgAlc, % 7.1+13

Calcium, mmol/L (mg/dL)
Phosphorus, mmol/L (mg/dL)
Magnesium,, mmol/L (mg/dL)
25(0OH)D3, nmol/L (ng/mL)

iPTH, ng/L (pg/mL)

FGF-23, RU/mL

Osteocalcin, nmol/L (pg/L)
Malonaldehyde, pmol/L (nmol/mL)
IL6, pg/mL

HOMA-IR

2.35+0.175(9.4%0.7)

1.16 £0.190 (3.6 £ 0.6)
1.1+£0.25(2.2+0.5)

48.67 +24.96 (19.5+10.0)
13.489+8.78 (128.1+83.4)
137.2+88.4
10.9+8.5(10.9+8.5)
3.8+1.2(3.8+1.2)
6.2+28

3525

(0.0001), malonaldehyde (P=0.0001), interleukin 6 (P=
0.001) and HOMA-IR (P=0.033). No differences were
found between the two groups regarding age, duration of
disease, haemoglobin, HgAlc and phosphorus.

A model of logistic regression analysis (Table 3) revealed
that FGF-23 and magnesium independently influenced PP
[OR=1.239 (1.001-2.082), P=0.039 and OR=0.550
(0.305-0.727), P=0.016, respectively].

Pearson analysis showed that magnesium was nega-
tively correlated with PTH (R=-0.398, P=0.0001), FGF-23
(R=-0.814, P=0.0001), calcium (R=-0.248, P=0.026)
and HOMA-IR (R=-0.319, P=0.003), but positively corre-
lated with 25(0OH)D3 (R=0.690, P=0.0001). No correlation
was found with phosphorus.

Discussion

CVD is the leading cause of mortality in CKD patients [2-
5]. Although traditional risk factors of CVD (hypertension,
older age, hyperlipidaemia and diabetes) are highly preva-
lent in this population, they do not explain the severity
and extent of this particular association. Other risk
factors, related to abnormal mineral metabolism, endo-
thelial dysfunction and inflammation, also play an impor-
tant role in the pathogenesis of CVD [3, 7, 8]. Disturbances
of the mineral metabolism are associated with increased
arterial stiffness, left ventricular hypertrophy and vascular
calcification, which are considered as independent risk
factors for CVD in both pre-dialysis and dialysis patients [4,
5, 8, 20]. CKD patients develop extensive medial arterial
calcification, which causes increased arterial stiffness of
the large elastic arteries resulting in a widening of PP,
which is ‘per se’—as pointed out before—an independent
predictor of cardiovascular mortality.

Several factors are causative for the calcified vascula-
ture in dialysis patients, such as dialysis vintage, uraemic
toxins, diabetes and inflammation, but abnormalities in
bone mineral metabolism are considered to play a central
role [6, 8, 13]. Recently, it was reported that magnesium
and FGF-23 are also associated with increased vascular
calcification in dialysis patients [1, 3, 20].

In this study, where only pre-dialysis diabetic CKD
patients were assessed, lower serum magnesium levels
and higher FGF-23 levels were significantly and
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Fig. 1. Parameters of mineral metabolism according to CKD stages. Most patients (65%) were in stages 3 and 4 of chronic kidney disease (stage 2, n=28;
stage 3, n=36 and stage 4, n=16). *: versus stage 2, P <0.05; **: versus stage 2, P <0.01; ***: versus stage 2, P <0.001; oo: versus stage 3, P<0.01

independently associated with increased PP after adjusting
for possible confounding factors. These findings suggest
that these disturbances of mineral metabolism are linked
to vascular stiffness and consequently can be considered
as predictors of cardiovascular events [9-12, 14].

Other studies used central pulse wave velocity, the
current gold standard [13], to measure vascular stiffness
[9, 10, 14, 21-23] rather than PP, a simpler and less
expensive technique [11]. As in the prospective study of
Beigel et al., which analyses PP, endothelial function and
CVD [22], the subjects were classified into two groups
according to their mean calculated PP (threshold of
50 mmHg). Other epidemiologic studies showed that PP is
associated with significant cardiovascular risk at values of
>60 mmHg [24] or 70 mmHg [11]. Dividing the population
by PP values, no differences with respect to age, haemo-
globin, glycaemic control (HgAlc) and lipid profile were
observed. However, G-2 showed a worse renal function,

which is by itself considered as a cause of increased cardi-
ovascular morbidity and mortality [8].

Magnesium could protect against vascular calcification
via multiple molecular mechanisms, and decreased
serum levels of magnesium are associated with vascular
calcification, as revealed in both humans and in animal
studies [1, 25-271].

Van Laecke and colleagues have reported that hypo-
magnesaemia is related to hypertension, endothelial dys-
function, dyslipidaemia and inflammation and is also
associated with an increase in pulse wave velocity [22].
Experimental findings on magnesium-deficient, spon-
taneously hypertensive rats of the Munster strain revealed
a high brachial PP and abnormal elastic material in the
aortic wall [9]. It was also shown that magnesium
deficiency is significantly and independently associated
with greater intima-media thickness [1], suggesting that
hypomagnesaemia alters vascular mechanical properties
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Table 2. Differences between groups
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G-1 (PP <50 mmHg) n=46 G-2 (PP > 50 mmHg) n=34 P

Age (years) 64.7+9.8 67.1+8.2 ns
Gender (male) 60.9% 67.6% ns
Disease time (years) 13.3+4.7 14.0+5.3 ns

Hg, g/L (g/dL) 132+14(13.2+1.4) 125+14 (12.5+1.4) 0.037
HgAlc, % 6.9+0.6 7.4+1.7 ns
Calcium, mmol/L (mg/dL) 2.4+0.150 (9.6 +0.6) 2.275+0.175(9.1+0.7) 0.004
Phosphorus, mmol/L (mg/dL) 1.131+0.162 (3.5+0.5) 1.163+0.258 (3.6 £0.8) ns
iPTH, ng/L (pg/mL) 10.825+6.297 (102.8 + 59.8) 17.111+10.351 (162.5 +£98.3) 0.001
eGFR, mL/min/1.73 m? 55.8+17.1 41.6+19.7 0.001
FGF-23, RU/mL 80.3+22.0 214.3+£859 0.0001
Magnesium, mmol/L (mg/dL) 1.250+0.15 (2.5+0.3) 0.9%0.15(1.8+0.3) 0.0001
Osteocalcin, nmol/L (pg/L) 15.6+6.8 (15.6 +6.8) 45%+59(4.5+5.9) 0.0001
25(0OH)D3, nmol/L (ng/mL) 61.651+22.214 (24.7 +8.9) 31.2+16.476 (12.5+6.6) 0.0001
IL-6, pg/mL 53+25 75+28 0.001
Malonaldehyde, pmol/L (nmol/mL) 3.3+0.9(3.3+£0.9) 45+12(4.5%+1.2) 0.0001
HOMA-IR 3.0+2.7 42+2.1 0.033
Total cholesterol, mmol/L (mg/dL) 4947 +1.0256 (191.0 £ 39.6) 5.1101+1.086 (197.3 +40.1) ns
HDL, mmol/L (mg/dL) 1.494 +0.658 (52.1+25.4) 1.354+0.619 (52.3+23.9) ns
Triglycerides, mmol/L (mg/dL) 1.603+0.7526 (141.9 + 66.6) 1.651+0.758 (146.1+67.1) ns

Table 3. Logistic regression model—predictors of PP >50 mmHg

Adjusted OR (95% CI) P-Value

Age 1.099 (1.000-1.112) 0.62

Sex 0.344 (0.035-3.358) 0.358
eGFR 1.009 (0.954-1.067) 0.78

iPTH 1.005 (0.990-1.021) 0.52

Phosphorus 0.595 (0.114-3.101) 0.538
FGF-23 1.239 (1.001-2.082) 0.039
Osteocalcin 1.221 (0.954-1.562) 0.112
Magnesium 0.550 (0.305-0.727) 0.016
25(0H)D3 0.987 (0.861-1.130) 0.846
Malonaldehyde 1.009 (0.999-3.099) 0.852
-6 1.010 (0.899-1.623) 0.991
HOMA-IR 0.991 (0.897-1.843) 0.385

[1, 14, 28]. The Paris Prospective Study found that de-
creased serum magnesium was associated with cardio-
vascular and all-cause mortality [29], and the
Atherosclerosis Risk in Communities (ARIC) study, a multi-
center, prospective cohort study, showed an inverse
association between serum magnesium and the risk for
coronary heart disease [1, 29-31]. Overall, these observa-
tional data suggest that magnesium may play an impor-
tant role in the development and/or acceleration of
arterial atherosclerosis and vascular calcification both in
patients with CKD and in the general population [1, 28].

In contrast, Khan and colleagues examined 3531 par-
ticipants in the Framingham Heart Study offspring cohort
and found no association between baseline serum mag-
nesium levels and the development of hypertension, CVD
or all-cause mortality [29]. In the National Health and Nu-
tritional Examination Survey Epidemiologic Follow-up
Study, there was no significant association between
serum magnesium and incidence of CVD, although serum
magnesium was inversely associated with all-cause mor-
tality from ischemic heart disease [29].

There are other conflicting results [29] of studies
evaluating the relationship between magnesium supple-
mentation and endothelial function, arterial stiffness,
carotid structure [14] and blood pressure [14, 32]. Some
reports point towards a beneficial effect of magnesium
supplementation with respect to improving endothelial

function [14], vascular calcification [1], insulin sensitivity
and lowering blood pressure [14]. Other authors failed to
show a significant association between magnesium
intake and blood pressure reduction [14, 32, 33] or CVD
[33]. Magnesium supplementation is not indicated as
a part of an antihypertensive treatment [14] as this
supplementation has not produced consistent results in
hypertensive patients [14, 32].

Our study evaluated also the association between mag-
nesium and other markers of mineral metabolism, using a
Pearson correlation test. A negative correlation with PTH
was found, confirming previous findings that magnesium
influences PTH secretion [34, 35].

To the best of our knowledge, the present study is the
first to assess only diabetic subjects with mild-to-moderate
CKD. Several studies reported significant association
between hypomagnesaemia and diabetes [15, 28, 30].
The ARIC study revealed a significant higher prevalence of
diabetes in patients with lower serum magnesium levels
[28]. Although many authors suggest that diabetes ‘per
se’ may induce hypomagnesaemia, others suggest that
decreased levels of magnesium may affect glycaemic
control. It is believed that an impairment of magnesium
homeostasis may favour the onset and progression of dia-
betic complications [15], and some studies reported that
higher magnesium intake may improve diabetic control
[30]. In fact, using a Pearson correlation analysis, we
found that magnesium was negatively correlated with
HOMA-IR (R=-0.319, P=0.003).

Applying a multivariate logistic regression model ad-
justed to age, sex, eGFR, iPTH, phosphorus, FGF-23, osteo-
calcin, 25(0H)D3, malonaldehyde, IL-6 and HOMA-IR
(Table 3), the present study demonstrates that decreased
levels of magnesium independently predict PP of >50
mmHg. Clinical and experimental investigations have re-
vealed that hypomagnesaemia accelerates atherosclero-
sis by promoting the elevation of inflammatory cytokines,
lipid oxidation and the inhibition of endothelial cell
growth [22, 28]. In line with this, patients grouped into
G-2 in the present study indeed had lower levels of serum
magnesium and higher levels of inflammatory and oxi-
dative stress parameters.

FGF-23 is secreted by osteocytes and osteoblasts in
response to dietary phosphate intake and 1,25(0OH),D3
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[8, 36, 371, and their levels are progressively increased with
the deterioration of the renal function [5, 8]. The main
known physiological role of FGF-23 is to regulate urinary
phosphate excretion by suppressing the expression of type
IIa sodium phosphate co-transporter, thus regulating
phosphate reabsorption in the renal proximal tubule. FGF-
23 also appears to impair the synthesis and to accelerate
the degradation of 1,25(0H),D3. This rise of FGF-23 levels is
detected during the early stages of CKD (2-3) with even
modest decreases in GFR, as noted in the population as-
sessed in this study. As a result, serum phosphate levels are
maintained within the normal range up until late stages of
CKD when estimated GFR falls below 25-30 mL/min [3, 8,
20, 36, 37]. Recent data suggest that FGF-23 directly inhi-
bits the expression and secretion of PTH but by accentuat-
ing 1,25(0H),D3, deficiency may also contribute to the
development of secondary hyperparathyroidism [8, 20, 37].

Several studies documented that high levels of FGF-23
are an independent marker of cardiovascular and all-cause
mortality [3-5, 8, 18, 37]. Moreover, FGF-23 levels were
better predictors than serum phosphate levels in some
studies [4] although, in other studies, FGF-23 levels did not
demonstrate additional prognostic information when
phosphate levels were introduced in the analysis [5]. In
fact, in the present population with mild-to-moderate CKD,
G-2 showed phosphorus levels within the normal range
and elevated FGF-23 levels. Seiler et al. [4] were the first to
report increased cardiovascular events in pre-dialysis CKD
patients with elevated FGF-23 [4, 5]. Although the rise of
FGF-23 levels in early stages of CKD is an appropriate
mechanism to maintain normal phosphorus levels, it is
associated with worse outcome [4]. Several studies invol-
ving dialysis and pre-dialysis CKD patients also suggest an
association between increased FGF-23 levels and vascular
calcification [3, 8, 19, 20, 37]. Larsson found that higher
FGF-23 was related to arterial stiffness measured by pulse
wave velocity as well as to endothelial dysfunction
measured by an invasive forearm technique [36]. These
findings were confirmed in another cohort study with early
stage CKD patients, where a subset of these patients dis-
played a greater atherosclerotic burden measured by
whole-body magnetic resonance angiography [5].

The literature supports that FGF-23 is linked to early
changes in vascular function predisposing to an increased
cardiovascular risk [36]. Although FGF-23 has been associ-
ated with vascular calcification, few studies reported this
relationship [2, 19, 36], possibly due to disparity in diag-
nostic techniques and difficulties in standardizing the
quantification of vascular calcification [5, 36].

The present study also confirms the relationship
between FGF-23 and arterial stiffness using PP, a simple
but clinical relevant marker of vascular stiffness. The
inverse relationship between 1,25(0H),D3 and FGF-23 is
well known, and low vitamin D status is associated with
cardiovascular disorders [18], reflected by the lower
vitamin D levels in the G-2 patients with higher PP.

Notwithstanding, the present study has several limit-
ations. First, this is a cross-sectional study with a relatively
small population. Second, blood pressure and laboratory
parameters were measured at baseline, not accounting
for natural variation that may occur over time [29]. Third,
dietary information was not available at the point of
examination, and consequently, it was not possible to cor-
relate dietary intake with serum magnesium levels. Last,
pharmacological medication was not included in the
analysis and some common antihypertensive drugs inter-
fere with magnesium homeostasis.
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In conclusion, in a population of diabetic pre-dialysis
patients, magnesium and FGF-23 levels are independently
associated with PP. Further studies with more patients are
warranted to confirm whether an increase in magnesium
and a decrease in FGF-23 would reduce the PP and conse-
quently the cardiovascular risk of our patients.
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