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The quest to determine the genetic basis of root system architecture (RSA) has been greatly facilitated by recent developments in
root phenotyping techniques. Methods that are accurate, high throughput, and control for environmental factors are especially
attractive for quantitative trait locus mapping. Here, we describe the adaptation of a nondestructive in vivo gel-based root
imaging platform for use in maize (Zea mays). We identify a large number of contrasting RSA traits among 25 founder lines of the
maize nested association mapping population and locate 102 quantitative trait loci using the B73 (compact RSA) 3 Ki3
(exploratory RSA) mapping population. Our results suggest that a phenotypic tradeoff exists between small, compact RSA
and large, exploratory RSA.

Maize (Zea mays) serves a key role in food, feedstock,
and biofuel production throughout the world. To date,
maize improvement through breeding has kept pace
with the increasing demand for this crop (faostat3.fao.
org). This feat has been accomplished through the uti-
lization of the tremendous genetic diversity in maize
(Flint-Garcia et al., 2005; Jiao et al., 2012), but increasing
environmental pressures and a growing global popu-
lation will require unprecedented gains in yield in the
coming years. In the last decade, researchers have be-
gun to explore the possibility of yield improvements
through the manipulation of root systems, for example
through breeding for roots better able to cope with
drought (Uga et al., 2013) and flooding (Jackson and
Armstrong, 1999), the use of plant growth-promoting
rhizobacteria (Silby et al., 2009), or increasing nutrient
use efficiency (Garnett et al., 2009). The potential of
belowground solutions to enhanced plant productivity
has driven the development of numerous methodolo-
gies for phenotyping root system architecture (RSA),
which is the spatial organization of the plant’s root
system.

Several methods ranging from techniques adapted
from medical imaging, such as x-ray tomography
(Hargreaves et al., 2008) and combined positron emis-
sion tomography-magnetic resonance imaging (Jahnke
et al., 2009), to refined versions of classical methods,
such as field excavations (Trachsel et al., 2010) and
pouch systems (Le Marié et al., 2014), have been used
in attempts to understand the phenotypic conse-
quences of genetic and environmental variation on
root traits. Each root-phenotyping method has its ad-
vantages and disadvantages. Although the medical
imaging-based techniques can produce highly detailed
representations of roots, they are also very time con-
suming and require specialized equipment. Excava-
tions, although more easily scaled to higher throughput
and not requiring special equipment, are destructive
and offer only coarse measurements of RSA. An alter-
native method for root phenotyping based on an op-
tically clear gel substrate strikes an effective balance
between throughput and detail, using a simple digital
camera while maintaining precise control over envi-
ronmental conditions. This platform has been used to
quantify and classify distinctive root architectures from
12 rice (Oryza sativa) genotypes (Iyer-Pascuzzi et al.,
2010), conduct a quantitative trait locus (QTL) mapping
study of rice root traits in three dimensions (Topp et al.,
2013), study interspecific and intraspecific rice root in-
teractions (Fang et al., 2013), and quantify contributions
of different root types to overall RSA (Clark et al.,
2011).

Here, we describe the adaptation of this gel imaging
platform for use with the large maize root system. We
used the platform to quantify the phenotypic diver-
sity of RSA among 25 of the 26 nested association
mapping (NAM) founder lines, which encompass a wide
spectrum of maize genetic diversity (Yu et al., 2008;
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McMullen et al., 2009). We found that these lines ex-
hibit diverse RSAs, ranging from small and compact to
large and exploratory, suggesting tradeoffs between
different types of architectures. In order to identify
genetic loci that control maize RSA traits, we charac-
terized a subpopulation that best represented the con-
trast between the compact and exploratory RSAs. We
phenotyped the B73 (compact) 3 Ki3 (exploratory) re-
combinant inbred line (RIL) NAM subpopulation for 19
RSA traits at three time points (Topp et al., 2013). These
data were used to map 102 QTLs that localized to nine
genomic clusters. We found high heritability and large-
effect QTLs for most traits, in contrast to maize flow-
ering time QTLs (Buckler et al., 2009). Additionally,
several of our QTL clusters overlapped with meta-QTLs
for yield traits (Tuberosa et al., 2003; Semagn et al.,
2013) as well as novel and previously unreported loci,
suggesting that this system can provide a time- and
cost-effective means to identify genes controlling root
architecture in maize.

RESULTS

Adaptation of a Gel-Based Root Imaging System for Use
with Maize

We previously developed a high-throughput root
imaging and analysis pipeline to identify the genetic
basis of RSA in rice (Iyer-Pascuzzi et al., 2010; Fang
et al., 2013; Topp et al., 2013). The pipeline combined a
dedicated imaging platform with semiautomated im-
age processing and analysis software. To adapt this gel-
based phenotyping system for maize, we made several
modifications to accommodate the larger size and
faster growth rate of maize roots. These modifications
included the use of custom-manufactured glass con-
tainers and the construction of a more robust imaging
table (Supplemental Fig. S1). The initial modification of
the imaging table, used for characterization of the
NAM founders, was a direct scale up of the rice plat-
form. The second modification, used for imaging the
B73 3 Ki3 mapping population, integrated several
improvements to better deal with the scale of those
experiments. The commercial digital cameras were
replaced with higher quality computer vision cameras,
the fluorescent backlight was replaced with light-
emitting diode panels to improve image contrast, and
the plastic turntable was replaced with a heavy-duty
industrial turntable to better handle the 40-pound
weight of the growth containers (see “Materials and
Methods”).

To facilitate germination, maize seeds were pre-
germinated in petri dishes and transplanted to the gel
after emergence of the primary root and coleoptile.
Additionally, a more stringent, two-step surface sterili-
zation protocol using 35% (v/v) hydrogen peroxide was
implemented, because we found a higher prevalence of
fungal spores on maize seeds than on rice. Due to light
penetration issues through the larger diameter maize
containers, the transparency of the gel was increased

by lowering the Gelzan concentration to 0.15% (w/v).
Lastly, we used a Hoagland solution-based growth
medium better suited to maize (Hoagland and Arnon,
1950).

Imaging of NAM Founder Lines Reveals the Phenotypic
Diversity of Maize Root Architecture

To characterize the extent of root trait diversity in
maize, we imaged roots of 25 of the 26 NAM founder
lines. We chose these lines for two reasons: (1) the NAM
founders encompass a large proportion of the genetic
diversity available in maize and, therefore, should en-
compass a wide range of RSA traits (Yu et al., 2008;
McMullen et al., 2009; Hansey et al., 2012); and (2) the
NAM population is composed of 25 individual RIL
subpopulations, providing many options for subse-
quent QTL mapping. We produced a comprehensive
survey of early root development by imaging each
founder line at 3, 6, 9, and 12 d after planting (dap) for
a total of 564 image sets representing 225 individual
plants. All images were analyzed for 19 two-dimensional
traits (Galkovskyi et al., 2012). A representative image
of each founder (Fig. 1; Supplemental Fig. S2) and a
description of all traits used (Supplemental Table S1)
are provided.

Among the NAM founders, we observed RSAs that
ranged from large and expansive to small and com-
pact. At one extreme were Tx303 and Ki3 (Fig. 1;
Supplemental Fig. S2), which displayed the greatest
depths, maximum widths, and convex hull areas but
the smallest solidities and bushiness. This combination
of traits resulted in root systems that encompassed a
large area/volume but did so superficially. A charac-
teristic feature of these root systems was the presence
of large pockets of unexplored space. At the other
extreme were B73 (the common founder) and Ki11
(Fig. 1), which had much denser root systems, with
small values for depths, maximum widths, and convex
hull areas but large values for solidities and bushiness.
These root systems were more tightly packed into a
small area, forgoing initial expansive exploration in
favor of thoroughness. This compact RSA form could
be especially useful in a densely planted (Hammer,
1999) and nutrient-rich (Jobbágy and Jackson, 2001)
environment, such as a well-fertilized field.

The B73 and Ki3 lines were of special interest as they
represented extremes in RSA. To further explore the
differences between their compact and exploratory
RSAs, we attempted to determine if the differences
were due to biomass allocation tradeoffs or represented
intrinsic phenotypic tradeoffs. We performed Student’s
t test to compare these varieties for several key traits
that epitomize the contrasting RSAs, including solidity,
depth, and convex hull area. To control for biomass
differences between the plants, we normalized the traits
using root volume as a biomass proxy. In all cases, for
both transformed and untransformed data, there were
significant differences between the means (Student’s
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t test, P, 0.0003), suggesting that the different RSA types
are likely the result of phenotypic tradeoffs between
thorough soil exploration and occupation and do not
result merely from limiting biomass. These results indi-
cate that root growth decisions result in architectures that
determine the range of soil exploration versus occupation.
A similar pattern was reported previously in rice using
the same gel imaging system (Topp et al., 2013).
The remaining founders could be described as

having intermediate but distinct phenotypes. For ex-
ample, OH43 (Fig. 1) had a deep root system, similar
to Ki3 and Tx303, but a much smaller maximumwidth
and average solidities and convex hull areas. In con-
trast, NC358 (Fig. 1) had a shallow root system, sim-
ilar to B73, but large maximum width similar to Ki3.
Interestingly, there were no varieties with roots that
both encompassed a large area and also explored it
thoroughly, further supporting the idea of phenotypic
tradeoffs.

Principal Component Analysis Demonstrates a Need for
Multiple Traits to Describe RSA

To explore the relationship between different traits,
we performed principal component analysis (PCA) for
each analysis day. In all cases, over 90% of the variation
between the founder lines could be explained by the first
five principal components. Although for the youngest
plants (day 3), the first principal component was able to
explain 51.6% of the variation, that number decreased
with each successive day, to 44% on day 6, 36.4% on day
9, and 36% on day 12 (Supplemental Table S2). This
indicated that there was less variation between the RSA
of younger plants, which was not surprising given that
the RSAs of the younger plants appeared very similar to
each other. As the plants grew, their unique RSAs began
to appear, resulting in partitioning of the variation across
more principal components.
Interestingly, there was no obvious linkage between

the genetic relatedness of the founders and their RSAs,

as the PCA showed no grouping of varieties based
on their phylogenetic relatedness (Fig. 2; Flint-Garcia
et al., 2005). As a whole, this suite of traits was able
to distinguish among NAM founder genotypes. The
fact that they did not correlate with the genetic relat-
edness of demographic groups of the founders sug-
gests that other selective factors, such as management
practices or environmental influences (i.e. water and
nutrient availability [Lynch and Brown, 2012], planting
density [Fang et al., 2013], and soil quality [Gamuyao
et al., 2012]), were important in RSA trait selection
during breeding improvement.

Logistic Regression Identifies Key Traits for
Distinguishing Founders

To determine the specific RSA traits that best dif-
ferentiate the founders, we used a machine-learning
approach, logistic regression, which is both accurate
in its predictions and produces coefficient terms that
reflect the importance of each individual trait in
identifying different founders (Fan et al., 2008). The
analysis was performed separately for each B73 by
other founder pairs. To validate the predictions, a
control analysis was performed by randomizing all of
the data prior to the analysis (Supplemental Fig. S3).
Accuracy values were calculated for classifications for
both true and randomized data (Supplemental Table
S3). For any given day and pair comparison, we found
at least a few key traits that were best suited for that
particular classification (Fig. 3). A few of the traits
played important roles in a large number of classifi-
cations (such as maximum number of roots or depth);
however, no single trait was key for all classifications.
Which traits were key, as well as the number of in-
formative traits, were highly dependent on the differ-
ences between the RSAs of the tested pair and the
imaging day. In general, the younger the plants and
the more similar the RSAs, the more traits had to be
used to correctly identify the founder.

Figure 1. RSA of several NAM founder lines grown in
gellan gum. Images are from day 9 plants and repre-
sent several types of RSA. The founders include B73
(A), NC358 (B), OH43 (C), and Ki3 (D). Supplemental
Figure S2 shows a representative image for each
founder line. Bars = 10 mm.
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For example, all of the day 3 classifications (Fig. 3)
depended on a large number of traits, with network
area, width-depth ratio, and length distribution being
especially prominent. This was because the RSAs of
the plants at 3 dap were still quite small, so a large mix
of traits had to be used to distinguish between the
varieties. With each subsequent imaging day, fewer
and fewer traits needed to be used. This was especially
true for day 12 (Fig. 3), as each pairwise classification
included only a few key traits. On that day, a set of
different traits, such as depth and maximum number
of roots, took on more prominent roles in the classifi-
cation process. Altogether, this illustrates the com-
plexity of RSA both between varieties and over time,
reinforcing the necessity of assessing a large number of
traits to distinguish between different varieties as well
as individual varieties at different ages (Iyer-Pascuzzi
et al., 2010; Topp et al., 2013).

Selection and Phenotyping of an NAM RIL Subpopulation

We chose the B73 3 Ki3 RIL population for QTL
mapping because of the large phenotypic differences
between their parent RSAs (Fig. 1) and because of their
many genetic differences (Yu et al., 2008). Of the 200
lines in this RIL population, we omitted 14 due to the
lack of seed availability or poor germination. Addi-
tionally, 11 lines were removed from further analysis
due to the lack of genetic marker data. A total of 774
plants were imaged and phenotyped at 4, 6, and 8 dap
for a total of 80,080 individual images across 2,020
image sets. As expected, individual RIL trait values fell

between the parental values, although a number of trans-
gressive phenotypes also were observed (Supplemental
Fig. S5).

Since each plant was imaged on 3 separate days, we
were able to observe RSA changes over time. Of the 19
traits, 11 showed a progressive increase between the
three time points, seven remained relatively static, and a
single trait decreased in value (Fig. 4; Supplemental Fig.
S4). Traits such as network area showed a tremendous
increase over just 4 d of growth, increasing by 120%
between days 4 and 6 and by 55% between days 6 and
8. Additionally, the range between the smallest and
largest values also increased significantly, from 7.29 cm2

on day 4 to 15.35 cm2 on day 6 to 24.28 cm2 on day 8.
This not only demonstrates the rapid rate of growth of
maize roots but also the rapid development of many
root traits over a small window of time.

On the other hand, traits that reflected overall growth
patterns, such as solidity, tended to remain static (Fig. 5)
following large changes due to the initial growth burst.
For example, average solidity changed by 216.5% be-
tween days 4 and 6 but only by 23.9% between days 6
and 8. The same pattern was seen across all of the NAM
founder lines, with large changes in solidity at the
outset of growth followed by relative stasis only a few
days after planting (Supplemental Fig. S4). This is es-
pecially notable as solidity is a ratio of the number of
network pixels, which reflects the size of the root, and
network convex area, which reflects the expansive na-
ture of the RSA. The fact that solidity tended to remain
constant suggests a means of controlling the density of a
root system through maintaining the ratio of root mass

Figure 2. PCA for NAM founder lines for day 3 (A) and day 12 (B). The color of the dots indicates the subgroup of each data
point (Flint-Garcia et al., 2005): red, mixed; yellow, nonstiff stalk; green, other; pink, stiff stalk; and blue, tropical.
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to root size. A similar pattern was reported for two rice
varieties (Topp et al., 2013), reinforcing the idea that a
global RSA, for example compact versus exploratory, of
a given genotype or plant species can be maintained
over time, irrespective of the size of the root system, and
can be captured using an appropriate combination of
different metrics.
A single trait, average root width, showed a pro-

gressive decrease in average trait values (Fig. 5). This
was due to the proportional shift from thick to thin
roots over time. At day 4, a majority of the root mass is
composed of thicker primary and seminal roots. At
days 6 and 8, the thinner lateral roots begin to emerge,
which results in a decrease of average root width.
Although this makes this trait an unexpected proxy
for the ratio of root type (e.g. lateral versus seminal)
distributions, it also highlights the need for the fur-
ther development of algorithms able to analyze spe-
cific root types. It is worth mentioning that the
generally thicker maize lateral root as compared with
rice roots resulted in much higher contrast between
these roots and background, which in turn allowed
us to more easily capture and include them in the
analysis.

The Gel Platform Reduces Environmental Effects and
Increases Apparent Trait Heritability

We calculated broad-sense heritability using a random-
effect ANOVA to ensure that there was enough power
to reliably detect QTLs. The majority of traits showed
moderately high heritabilities. This was especially true
for older plants, with a large number of the traits
showing heritabilities higher than 40% (Table I), in-
dicating that the observed variation has a genetic
basis rather than arising from environmental factors.
Additionally, key traits that defined the differences
between the B73 and Ki3 founders, such as depth,
network convex area, solidity, and minor ellipse axes
(Table I), had especially high heritabilities. The high
heritabilities for a number of RSA traits highlight the
robustness of the gel platform for phenotyping. By
standardizing growth conditions, confounding envi-
ronmental effects are reduced, which greatly facilitates
the observation of RSA differences due to genotype
while minimizing the number of replicates needed. In a
few rare cases, there was a slight effect due to RILs being
grown in different growth chambers. Least-square means
were used to transform the data to factor in and eliminate

Figure 3. Pairwise classification of the B73 founder versus all other NAM founders. Logistic regression was used to obtain
coefficient values for each trait for each classification. The data were normalized by taking the natural log of the absolute value
of each coefficient. Higher values of coefficients indicate especially informative traits for differentiating between B73 and other
founders. A, Day 3. B, Day 6. C, Day 9. D, Day 12. Controls based on randomized data and classifier accuracies are provided in
Supplemental Figure S3 and Supplemental Table S3.
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this effect. These transformed data were used for all sub-
sequent analyses.

Mapping of QTLs Identifies Colocalized Clusters

Using QTL Cartographer, we identified 102 RSAQTLs
across all 19 traits and three time points (Fig. 4; Basten
et al., 1994, 2004). Sixty-nine were significant at a = 0.01,
and an additional 33 were significant at a = 0.05. The

effect size of these ranged from 5.5% to 23.8%, which
was higher than expected based on previously mapped
flowering time QTLs from the whole NAM population
(Buckler et al., 2009). Although the smaller population
size of our RIL population may have produced QTL
effects with some upward bias, this would not have
played a large role due to the high heritability values for
our traits (Xu, 2003). The QTLs were unevenly distrib-
uted across the time points, with only 20 QTLs on day 4

Figure 4. QTLs controlling the RSA in the B73 3 Ki3 mapping population. The outer whiskers of each bar indicate the 2-log of
the odds (LOD) confidence intervals, while the extent of the inner box indicates the 1-LOD confidence intervals. Closed boxes,
QTL significance at a = 0.01; open boxes, QTL significance at a = 0.05. Each trait has been coded with a different color.
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but 40 on day 6 and 42 on day 8. As noted previously,
this was not surprising, as the roots of different geno-
types were less distinct and traits are less heritable on
day 4 (Table I). Individual QTLs also were unevenly
distributed across the genome, with chromosomes 2, 3,
7, 9, and 10 being especially QTL rich. Chromosome 10
was notable for its 29 QTLs, eight of which also ranked
among the top most significant and having the stron-
gest effects (Supplemental Table S4).
We used overlapping 2-LOD confidence intervals to

group 94 of the QTLs into nine clusters (Mangin and
Goffinet, 1997). These were distributed across the ge-
nome with single clusters on chromosomes 1 to 4, 6, 9,
and 10 and a pair of clusters on chromosome 7. The
remaining eight QTLs formed two clusters of two
QTLs or remained unclustered. As seen previously in
rice (Topp et al., 2013), in a large proportion of the
clusters, overlapping QTLs spanned multiple days for
the same trait, indicating that the allelic differences of
genes underlying RSA QTLs have durable effects de-
spite the rapid growth of the whole root system. Fur-
ther comparison of the QTL clusters, their individual
trait makeup, and the direction of the additive effects
of each individual trait illustrate tradeoffs between
overarching RSAs. The architectural extremes of large
solidity for compact RSA and large network convex
area for exploratory RSA seen in the NAM founder
analysis were reflected in the individual QTL clusters.
For example, in the chromosome 10 cluster, most of

the individual QTLs, such as depth and network con-
vex area, had large additive effects due to the Ki3 al-
lele, while solidity and width-depth ratio had large
effects due to the B73 allele (Supplemental Table S4).
The same pattern was seen for the QTL cluster on
chromosome 2, with most QTLs in that cluster having
large effects due to the Ki3 allele, with the exception of
solidity and average root widths. The opposite was
true for the clusters of QTLs on chromosome 9, with
the additive effect of average root width being due to

the Ki3 allele and the additive effect of the remaining
QTLs being due to the B73 alleles.

Traits could be clearly partitioned into two opposing
groups, with the smaller group composed of average
root width, solidity, median and maximum number
of roots, and width-depth ratio and the larger group
composed of the remaining traits. In those cases where
significant QTLs from different groups were located in
the same cluster, they had additive effects due to dif-
ferent parents, emulating the same tradeoffs seen in
the parental lines. A single exception was the cluster
on chromosome 6, which was composed of only two
traits, bushiness and length distribution, for days 6
and 8, both of which resulted in larger values for those
traits due to B73 alleles.

Figure 5. Distribution of traits
across all imaging days for network
convex area, solidity, and average
root width. Histograms are based
on the means of the RIL family,
while horizontal lines indicate the
means for the parent lines.

Table I. Broad-sense heritability and number of QTLs found

The heritability was calculated using an ANOVA after least square
means transformation.

Trait Day 4 Day 6 Day 8 No. of QTLs

Median no. of roots 18.85 13.47 22.16 2
Volume 34.13 31.51 16.67 2
Bushiness 8.11 6.8 15.66 3
Maximum width 30.53 34.14 36.65 3
Length distribution 13 13.46 26.86 3
Ellipses axes aspect ratio 19.7 29.89 48.78 3
Specific root length 32.31 33.63 36.93 3
Perimeter 31.12 33.27 44.13 4
Surface area 30.54 31.25 31.77 5
Network area 30.94 32.38 34.8 6
Total length 29.45 32.82 43.1 6
Width-depth ratio 21.79 28.8 40.49 6
Maximum no. of roots 17.6 30.21 40.84 6
Average root width 27.59 38.69 49.84 7
Solidity 30.62 43.1 43.21 7
Minor ellipse axes 32.22 44.27 54.99 8
Depth 29.55 42.22 49.85 8
Network convex area 31.81 42.64 49.79 9
Major ellipse axes 29.86 41.57 43.75 12
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DISCUSSION

By scaling up the various components of the gel RSA
imaging platform, we adapted it for maize roots. We
used this system to phenotype a number of genetically
diverse maize lines and observed a large number of
variable root architectures bounded on the extremes
by two distinct ideotypes. One is a larger, more ex-
ploratory RSA that encompasses a large amount of
space but occupies that space sparsely, resulting in
empty pockets of space surrounding individual roots.
This type of strategy could allow for rapid expansion of
the primary and seminal roots, serving to locate resource-
rich areas before committing to denser growth via lat-
eral branching. Additionally, it has been suggested that
this type of RSA would be much better at reaching deep
subsurface water sources (Hammer, 1999), giving it a
potential advantage in drought-prone conditions. Due
to the reductionist nature of our system and the ability
of the nutrients to rapidly and uniformly diffuse through
the medium (Fang et al., 2013), we believe that the phe-
notypic differences we observed between the RSAs of
the different founders were due to genetic differences
and not to root plasticity or scale foraging (Campbell
et al., 1991).

On the other extreme, we observed genotypes with
small and compact RSAs that could thoroughly explore
sites proximal to the soil surface. This growth pattern
might favor varieties that grow in phosphorous-poor
soils (Jobbágy and Jackson, 2001; Ho et al., 2005). Al-
though shorter roots would not allow access to deep
water resources, management practices could mitigate
this need, and a more compact RSA may contribute to
increased tolerance to planting density.

Between these two extremes, we observed a spec-
trum of diverse architectures. Despite this, it is striking
that no NAM founder line had an RSA with an ex-
tensive root system that also thoroughly explores all of
the encompassing space. Although the underlying
mechanism is unknown, it suggests constraints on the
pattern of root distribution and highlights the tre-
mendous amount of phenotypic variability in maize
RSA. Additionally, although these experiments only
followed root growth for 12 d, the growth rate and
direction suggest that these patterns could continue
into adulthood, such that plants with compact young
RSAs produce compact adult RSAs and plants with
exploratory young RSAs produce large and wide-
ranging adult RSAs.

To find loci controlling RSA, we phenotyped the B733
Ki3 RIL population and performed QTL mapping.
Interestingly, the effect sizes of the QTLs were sub-
stantially higher than those found for flowering time
(Buckler et al., 2009), suggesting that there are fewer
and stronger effect loci that control RSA. QTLs from
different imaging days for the same trait tended to
cluster together, suggesting that the causative alleles
have persistent effects on RSA development. Clustering
of different traits to the same region of the genome in-
dicates that one locus, either a single gene or a number

of linked ones, has multiple effects on many aspects
of RSA.

We detected the same kind of phenotypic tradeoffs
in the maize NAM founders as in rice (Topp et al.,
2013). The RSA traits can be divided roughly into two
groups: those that support a compact RSA and those
that support an exploratory RSA. For most QTL clus-
ters, traits that have strong additive effects due to the
parent exhibiting the first group of traits would have
strong additive effects in the other group due to the
other parent. Prime examples of this are the clusters
found on chromosomes 9 and 10, with the former having
mostly strong overall additive effects for compact archi-
tecture and the latter having strong overall additive ef-
fects for exploratory root architecture. With the exception
of the chromosome 6 cluster, which was composed of
four QTLs with additive effects due to B73, all clusters
contained some QTLs that favored either compact or
expansive RSA.

We show that some profound quantitative differences
in RSA can be controlled by a few large-effect loci,
consistent with what has been observed with the two
crop root QTLs for which genes have been identified,
Deep Rooting1 and Phosphorus-Starvation Tolerance1
(Gamuyao et al., 2012; Uga et al., 2013). It is possible that
the maize loci we characterized are the result of single
strongly acting genes or groups of tightly linked genes.
Since the effect size of our QTLs was larger than those
found previously in flowering studies (Buckler et al.,
2009), there is greater potential for their use in marker-
assisted breeding. It also should be noted that previous
QTLs mapped in the NAM population were associated
with the entire NAM population with QTL segregating
across multiple families, which likely would result in
smaller effect sizes. Since, in our work, we focused on a
single RIL subpopulation, the QTLs may segregate only
in this population, resulting in larger effect sizes.

A valid concern in the use of artificial medium such
as gellan gum is the question of the transferability of
findings to soil-grown plants. Although there is no
definitive study, there is some evidence for positive
correlations between controlled environment and field
traits. The rice QTLs mapped in the gel system had a
strong correlation to QTLs mapped for the same
population in soil (Topp et al., 2013). Additionally, a
number of the QTL clusters reported here have good
overlap with meta-QTLs found in several studies for
yield and root traits (Lynch, 1995; Tuberosa et al., 2003;
Wang et al., 2012; Semagn et al., 2013), despite those
studies being based on plants of different ages, dif-
ferent growth conditions, and different traits. To date,
large numbers of QTLs have been reported. However,
due to the difficulties of fine-mapping, few causal al-
leles have been found (Gamuyao et al., 2012; Uga et al.,
2013). This is especially true for maize root traits, for
which some QTLs have been fine-mapped but none
has been cloned. The rapid phenotyping made possible
by the gel platform, as well as other controlled envi-
ronment systems, offers an efficient method for fine-
mapping and cloning RSA QTLs.
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MATERIALS AND METHODS

Plants and Growth Conditions

Maize (Zea mays) seeds were sterilized with 35% (v/v) hydrogen peroxide
for 20 min on a shaker, followed by three washes with sterile water. Seeds
were then incubated partially submerged in water at 28°C for 8 h, resterilized,
and transferred to individual 30-mm petri dishes filled with enough water to
keep them partially submerged (approximately 25 mL). The plates were then
incubated in dark conditions at 28°C until germination (2 or 3 d). Develop-
mentally similar seedlings (emerged coleoptile and approximately 1-inch-long
primary root) were planted in 28-L custom glass cylinders filled with 14 L of
one-half-strength Hoagland solution, pH 6 [3.01 mMKNO3, 2.53 mM Ca(NO3)2∙4H2O,
2.10 mM MgSO4∙7H2O, 1.03 mM NH4H2PO4, 84.61 mM KCl, 23.45 mM H3BO3,
3.52 mM ZnSO4∙7H2O, 2.31 mM MnSO4∙H2O, 0.51 mM NH4NO3, 0.17 mM

CuSO4∙5H2O, 0.1 mM Na2MoO3∙2H2O, and 7.5 mg L21 diethylaminoethyl acid
iron(III) disodium salt hydrate (Sequestrene 330; phytotechlab.com)]. Plants
were grown on a 16-h-day/8-h-night cycle, 28°C day and 25°C night, with 800
mmol m22 s21 photosynthetically active radiation. NAM founders were imaged
at 3, 6, 9, and 12 dap, while the B73 3 Ki3 RILs were imaged at 4, 6, and 8 dap.

Imaging

Imaging was done using the maize imaging platform described above. A
40-image rotational series of each plant was taken and uploaded to a server for
further processing and analysis using the previously described pipeline (Topp
et al., 2013). Six replicates were performed for most NAM founders. M162Wwas
not included in the NAM founder analysis due to its poor germination and
performance in the gel system. Three or more replicates were performed for the
175 RILs that had available seeds and marker data. A total of 25,560 images for
the NAM data set and 80,800 images for the B73 3 Ki3 data set were used.

Image Processing and Phenotyping

All of the image processing and RSA phenotyping were done as described
previously (Galkovskyi et al., 2012; Topp et al., 2013). Each image set was
cropped and segmented using double adaptive thresholding with a set of maize-
specific parameters. Each set underwent an iterative process of thresholding and
quality control aided by a Python script until a set of clean images (an all-
white root on an all-black background) was produced. These underwent two-
dimensional phenotyping and scaling from pixels to appropriate International
System units.

Statistical Analysis

Student’s t test and PCA were performed based on the correlation among
line means as described previously (Topp et al., 2013) using JMP Pro version
11 (www.jmp.com/software/jmp11/).

Logistic Regression

Amachine-learning approach using L1-regularized logistic regression using
the mlpy Python library was performed to isolate the distinguishing traits of
any B73 3 other founder pairs (Albanese et al., 2012). The data were first
normalized to a zero mean and unit variance (in order to improve computa-
tion speed) and then randomly partitioned into two subsets. Half of the data
were labeled as the training set, while the other half were labeled as the val-
idation set. A classification model was constructed using the training set and
used to determine its accuracy by determining the classes of the data in the
validation set. This model was a linear combination of terms composed of a
learned coefficient multiplied by trait value. As such, traits modified by large
coefficient values (orange and red in Fig. 3) point to those being the key traits
that differentiate B73 from any other individual founder. A cross-validation
was performed by permuting the above process 1,000 times and averaging the
coefficients across the runs. A control was performed by randomly permuting
the data labels and running the same analysis (Supplemental Fig. S3).

Heritabilities and Data Transformation

A random-effect model ANOVA (using JMP Pro version 11) for the RIL
families and chambers used was constructed separately for each trait. Broad-sense

heritability was reported as the proportion of the genotypic variance over the total
phenotypic variance of individual plants. The model included plant averages as
well as growth chambers used and the r2 due to the family-estimated individual
heritabilities. Due do the small sample number, this resulted in smaller, but still
robust, heritabilities than those calculated for whole families. Due to the few
analyses showing marginally significant chamber effects, least square means-
adjusted data provided by the ANOVA (which corrected for chamber effects)
were used in subsequent QTL mapping analyses.

Composite Interval QTL Mapping

QTL analysis was performed using the Linux version of QTL Cartogra-
pher, version 1.17 (Basten et al., 1994, 2004). Composite interval mapping
(model 6, 1-centimorgan [cM] walk speed, 10-cM window) was performed
using ranked markers from forward and backward step-wise regression as
covariates. The a = 0.05 and a = 0.01 significance thresholds were obtained
through permutation (1,000), while the confidence intervals were set at 2- and
1-LOD distance from the key marker. Due to the high density of markers used
here, a gap of 5 cM was allowed for confidence interval calculations.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Imaging table used for photographing the root
systems of maize.

Supplemental Figure S2. Representative image of each NAM founder.

Supplemental Figure S3. Logistic regression control.

Supplemental Figure S4. Mean solidity of NAM founder lines versus
imaging day.

Supplemental Figure S5. Distribution of individual trait values in the
B73 3 Ki3 mapping population.

Supplemental Table S1. Trait descriptions.

Supplemental Table S2. Breakdown of the components for the first five
principal components for the PCA analysis on NAM founder lines.

Supplemental Table S3. Logistic regression accuracies.

Supplemental Table S4. List of QTLs.
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