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The functional and taxonomic biogeography of marine microbial systems reflects the current state of an evolving
system. Current models of marine microbial systems and biogeochemical cycles do not reflect this fundamental organ-
izing principle. Here, we investigate the evolutionary adaptive potential of marine microbial systems under environ-
mental change and introduce explicit Darwinian adaptation into an ocean modelling framework, simulating evolving
phytoplankton communities in space and time. To this end, we adopt tools from adaptive dynamics theory, evaluating
the fitness of invading mutants over annual timescales, replacing the resident if a fitter mutant arises. Using the evolu-
tionary framework, we examine how community assembly, specifically the emergence of phytoplankton cell size diver-
sity, reflects the combined effects of bottom-up and top-down controls. When compared with a species-selection
approach, based on the paradigm that “Everything is everywhere, but the environment selects”, we show that (i) the
selected optimal trait values are similar; (ii) the patterns emerging from the adaptive model are more robust, but
(iii) the two methods lead to different predictions in terms of emergent diversity. We demonstrate that explicitly
evolutionary approaches to modelling marine microbial populations and functionality are feasible and practical in
time-varying, space-resolving settings and provide a new tool for exploring evolutionary interactions on a range of
timescales in the ocean.
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I N T RO D U C T I O N

Phytoplankton appeared 3 billion years ago (Hedges
et al., 2001) and were the main actors responsible for the
increase of oxygen in the atmosphere. Since then, they
have become key regulators of the chemical composition
of both the atmosphere and the oceans through processes
such as photosynthesis (now contributing half of Earth’s
primary production) and the biological carbon pump
(Falkowski et al., 1998; Field, 1998; Katz et al., 2004).
Understanding the interaction between marine microbial
systems and their environment is thus important. To real-
istically simulate the response of oceans and atmosphere
to global changes, modelling approaches must there-
fore take microbial processes into account. Integrating
the dynamics of marine communities and their physico-
chemical environment (e.g. ocean vertical and horizontal
turbulence, nutrient availability, light and temperature
variations) in a practical way is a major objective. In this
perspective, ocean circulation models are an efficient tool
to produce realistic spatio-temporal structures as eco-
logical “habitats” for plankton communities. However,
coupling ecological models with highly complex physical
models poses several challenges: the dimensionality, the
number of parameters and the non-linearity of the
system are high, as well as the required computational
resources. Marine ecologists have therefore yet to set up
efficient models of ecosystems as adaptive systems (i.e.
whose fundamental characteristics may vary in response
to changing environmental conditions), to identify and
parameterize their different components (geo-physical
parameters, phytoplankton and zooplankton populations,
higher trophic levels) and their interactions.

The first nutrient–phytoplankton–zooplankton models
(NPZ) were developed more than 65 years ago (Riley et al.,
1949, and then Steele, 1958) but were coupled into three-
dimensional global circulation models only much later
(referred as GCMs) (Fasham et al., 1990; Sarmiento et al.,
1993). In these studies, the plankton ecology was de-
scribed by a set of three relatively simple equations for
nutrients, phytoplankton and zooplankton dynamics,
coupled by consumption, grazing and remineralization
terms. The values of the biological parameters were
chosen in order to make the model fit the observation
data. The model ecosystem consisted of ad hoc ecological
“black boxes”, useful to reproduce and describe observed
patterns, but not adequate to provide details about the

functional diversity characterizing marine microbial
communities, nor to infer the functioning of the feedback
loop between their characteristics and those of the envir-
onment. More recently, due to the increased amount of
data about phytoplankton physiology from laboratory
studies, some functional diversity has been resolved in
models in order to take into account the complexity of
ecological processes (Litchman et al., 2006; le Quéré et al.,
2005). Finally, allometric trade-off-based approaches
have been developed linking traits together and to phyto-
plankton cell size (Chisholm, 1992; Litchman and
Klausmeier, 2008; Litchman et al., 2007, 2009; Verdy et al.,
2009). Such allometry and trade-offs have been incorpo-
rated into community ecology approaches (Baird and
Suthers, 2007; Banas, 2011; Follows et al., 2007; Ward
et al., 2012), thereby introducing more realistic physiologic-
al and ecological mechanisms into the descriptions of
plankton community dynamics.

Tackling the subject of functional diversity raises the
issue of the multi-dimensionality of the traits space that
defines the main characteristics of the considered organ-
isms. In Follows et al. (Follows et al., 2007), the trait space de-
fining phytoplankton is described as a multi-dimensional
continuum and is explored by random seeding of the
system by a large but finite number of species, each of
them corresponding to a particular strategy (i.e. trait
combination). An ecologically robust set of strategies then
emerges from this initial diversity through species sorting
(variation of the relative abundance of the species of the
system) as a result of the imposed environmental conditions.
Alternative approaches to explore the trait space can be
random seeding spread over time as in Record et al. (Record
et al., 2013) or discretization of the trait space as in
Bruggeman and Kooijman (Bruggeman and Kooijman,
2007). Such methodologies are close to the posit that “every-
thing is everywhere but the environment selects” (Becking,
1934) which is a keystone concept of the niche-assembly
theory (for a review of the concept and its articulation in
diverse fields in ecology, see de Wit and Bouvier, 2006).
Population dynamics lead to the emergence of an ecologic-
ally “optimal” community from an initial species pool.

Everything-is-everywhere approaches implicitly hypothe-
size that the emerging community is equivalent to one that
would result from the ecological and evolutionary history
of the system even though the evolutionary processes
themselves are not made explicit. It can, however, be
argued that the evolutionary processes (mutation and
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selection) could affect the final outcome of the selection
among the initial diversity and the final state of the adaptive
process in particular because the everything-is-everywhere
approach by definition is not appropriate to simulate
the process of trait loss. In order to predict properly
what the adaptive responses of marine systems would
be, it is important to investigate this potential effect.
Also, the everything-is-everywhere approach is not
particularly economical in terms of computational
demands due to the number of required species whose
ecological dynamics must be solved in order to obtain
robust patterns.

Eco-physiological trade-offs, when implemented in
everything-is-everywhere models, can be used to con-
veniently tackle some fundamental ecological questions
by predicting the optimal strategies for a given ecosystem,
i.e. a successful set of traits, emerging from the biodiver-
sity initially present through competitive exclusion. An
important structuring variable that can be used to define
such trade-offs in plankton communities is organism size
(cell or body size). The causes of size diversity in plankton
communities have been a recurrent subject of debate
among marine ecologists. Empirical studies have revealed
a strong allometric component to the variability of phyto-
plankton eco-physiological traits such as nutrient affin-
ity, maximum growth rate and maximum uptake
capacity (Litchman et al., 2007). Defining model para-
meters as a function of a single trait variable such as size
enables one to considerably simplify the task of charac-
terizing species (Baird and Suthers, 2007; Banas, 2011;
Ward et al., 2012).

Based on the observed allometric scaling of the differ-
ent physiological parameters related to population
growth, the classical model for phytoplankton population
dynamics [the variable-internal-stores model (Droop,
1973; Grover, 1991)] predicts that the minimum required
nutrient concentration N* increases with cell size (Box 1
and Fig. 1). The quantity N* is defined as the nutrient
concentration below which a phytoplankton population
declines and above which it grows. It is hence analogous
to Tilman’s R* in his resource competition theory
(Tilman, 1977), and the prediction is thus that nutrient
competition (i.e. bottom-up regulation) should favour the
dominance of phytoplankton communities by the smal-
lest cell sizes in accordance with the “principle of com-
petitive exclusion” (Gause, 1934; Hardin, 1960). The
strong size structure of phytoplankton communities, in-
cluding coexisting small and large cell sizes, therefore
raises an interesting ecological question first coined by
Hutchinson (Hutchinson, 1961) as the “paradox of the
plankton”: how do such diverse phytoplankton species,
often limited by the same nutrients, coexist in ocean habi-
tats (Chisholm, 1992; Falkowski and Woodhead, 1992)?

Box 1: Critical nutrient concentration N* in the
variable-internal-stores model, without grazers

In the variable-internal-stores model initially des-
cribed by Droop (Droop (1973) and Grover (Grover,
1991) and slightly modified by Flynn (Flynn, 2008),
phytoplankton population growth (dP/dt) is decoupled
from the extra-cellular nutrient concentration N by
assuming that dP/dt is a function of the within-cell nu-
trient quota Q. The dynamics of Q , in turn, equal the
difference between nutrient uptake and the conversion
of cellular nutrient into growth:

dQ

dt
¼ Vmax �

Qmax � Q

Qmax � Qmin

� �
� N

N þ KN
Uptake

� mmax �
Q � Qmin

Qmax � Qmin

� �
� Q

Growth

ðB1Þ

Here, Vmax is the maximum nutrient uptake rate, Qmax

and Qmin limit the values the internal reserves Q can
reach, KN is the half-saturation constant and mmax the
maximum growth rate. From the set of differential
equations for P, Q and N [see the Supplementary data,
Equations (S1), (S2) and (S3)], the equilibrium solution
for the nutrient concentration N* can be derived as:

N �¼ KN �mmax �ðQ ��QminÞQ �
Vmax �ðQmax�Q �Þ�mmax �ðQ ��QminÞ�Q �

ðB2Þ

In which Q* is the quota value at equilibrium:

Q � ¼ ðQmax � QminÞ �
m

mmax

þ Qmin ðB3Þ

where m is the size-independent death rate for
phytoplankton.

N* is analogous to R* used by Tilman in his resource
competition theory (Tilman, 1977): when competing for
a single resource (N), the species with the smallest N* will
outcompete all other species (in equilibrium). When the
allometric scaling relations between model parameters
and cell volume are known, we can hence compute N*

as a function of cell size (Fig. 1b). Here, we assume that
the allometric functions have the general form given by
(some of these relations are plotted in Fig. 1a):

logðxÞ ¼ aþ b � log ðVCellÞ ðB4Þ

where x is a given model parameter, Vcell is cell volume
and a and b are allometric scaling constants. The allo-
metric constant a for mmax is modified by functional
type, explaining the four mmax and N* curves.
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The basic prediction of competitive exclusion naturally
assumes population dynamical equilibrium and the
absence of predators. Many ecological factors may cause
the coexistence of multiple competitors: non-equilibrium
dynamics (Armstrong and McGehee, 1980); predation
(Armstrong, 1994; Holt, 1977); and non-linearity of the
ecological processes (Record et al., 2014). Furthermore,
Cropp and Norbury (Cropp and Norbury, 2011) search
through mathematical analysis the general conditions of
stable species coexistence in food web models and de-
scribe it as a rather general case. Under the light of these
studies, competitive exclusion appears as only one among
many possible ecological scenarios. The consequences of
some of these complicating factors, specifically grazing,
were initially elucidated by studying such allometric NPZ
models with size-dependent grazing without spatial struc-
ture (Baird and Suthers, 2007; Banas, 2011), and later in
the context of a 3D global ocean model (Ward et al.,
2012). In the latter study, both nutrient competition and
predator–prey interactions are modelled in a size-
dependent way (Fig. 1c and cf. Supplementary data,
Section S2). Using the everything-is-everywhere ap-
proach to resolve the optimal strategies in terms of cell
and body sizes of phytoplankton and zooplankton, Ward

et al. (Ward et al., 2012) investigate the dual effect of top-
down and bottom-up control on the possibility of eco-
logically stable coexistence of multiple size classes of
phytoplankton and zooplankton, and the modification of
this effect by local environmental conditions.

One of the objectives of this study is to develop an al-
ternative mechanistic approach for the exploration of
the trait space in global ocean models: we propose to
explicitly simulate the trait evolution of phytoplankton
species in competition for shared resources and subject to
shared predators, and the assembly of communities
resulting from these interactions. Here, we present this
approach in the context of an ocean model that repre-
sents a vertical water-column subject to seasonal forcing
(Fig. 2a and Supplementary data, Figs S1a and S2). We
introduced a simple evolutionary algorithm into a 1D
version of the global (3D) ocean model used in Ward et al.
(Ward et al., 2012). This algorithm periodically generates
heritable intra-specific phenotypic variability within an
initial pool of species, by introducing mutants whose
invasive potential depends on their traits and the environ-
mental conditions. It allows us to test the similarity of the
communities selected when everything is everywhere,
and when everything is not necessarily everywhere but
species can evolve.

Our evolutionary model is inspired by the theoretical
framework of adaptive dynamics (AD) (Metz et al., 1992).
The idea of AD is to describe the trait evolution of a
(group of ) population(s), in an environment that is (at
least partly) shaped by the trait-mediated impact of the
population(s), assuming that evolution results from a suc-
cession of successful replacements of resident populations
by invasive mutants. A characteristic of AD is that fitness
is not considered as a fixed function of the characteristics
of individuals. Instead, for a mutant with a given trait
value, the invasion fitness is defined as the per capita
growth rate of a negligibly small population of such
mutants, in an ecosystem whose ecological dynamics
have settled on its attractor. It is therefore a function of
both the mutant’s trait values, as well as the environmen-
tal conditions that depend on the resident populations’
trait values. A mutant is considered successful if its inva-
sion fitness is positive; its population will grow exponen-
tially and it is generally assumed that it will replace the
(ancestral) resident population through competitive ex-
clusion. Once it has replaced its ancestor, the environ-
mental conditions, and thus the fitness landscape (i.e. the
invasion fitness of all mutants as a function of their traits),
will be shaped by the traits of the newly installed popula-
tion, now itself referred to as the resident. AD is therefore
a practical method to represent fitness as a dynamical
function of the traits of an ecosystem’s evolving resident
populations.

Fig. 1. Size is a key physiological parameter: (a) log–log allometric
relation linking cell volume to maximum photosynthetic rate (mmax),
maximum nitrate uptake rate (Vmax) and nitrate half saturation constant
(KN). Note here that the allometric exponent for mmax varies among the
four functional types, resulting in four curves. (b) Log–log relation
between N* and the cell volumes and functional types of phytoplankton
(crosses for Synechococcus, triangles for Prochlorococcus, plain circles for
small eukaryotes and empty circle for diatoms). (c) Palatability of prey as
a function of its cell volume.
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In our model, it is impossible to derive analytically the
invasion fitness from the dynamical equations of the state
variables (see Supplementary data, Section S2), due to
the complexity of the dynamical system, its spatial struc-
ture and its time-varying forcing field (Fig. 2b and c). We
thus have to explicitly model the mutants’ dynamics and
to compute their population growth rate. The evolution-
ary algorithm must be sufficiently simple to be easily
implemented in an ocean model, but sufficiently sophisti-
cated to allow (i) the introduction of mutants in the
system when it has reached its current attractor; (ii) the
computation of their invasion fitness; (iii) resident to be
replaced by the successful mutant; and (iv) the new
system to settle on its new attractor. We can then com-
pare communities emerging from methodologies based
on the everything-is-everywhere paradigm with commu-
nities resulting from the dynamics of evolving species.

The questions behind our study are: (i) how is the pre-
dicted ecosystem influenced by the assumptions made
about the source of the diversity (e.g. migration vs. muta-
tion)? (ii) Does an assembly process with or without trait
evolution select equivalent traits? And (iii) what is the influ-
ence of initial conditions on the emerging communities?

M E T H O D S

We extend the model presented by Ward et al. (Ward
et al., 2012) by accounting for evolutionary dynamics of
the phytoplankton species, using the AD framework to
represent evolution. Below we briefly outline the model
in terms of its ecological, physical/oceanographical and
evolutionary components. A more complete description
of the model can be found in Supplementary data,
Section S2 and in Ward et al. (Ward et al., 2012).

Fig. 2. An illustration of the model dynamics, showing time series of key ecological variables over a 3-year period. (a) Nutrient (NO3) depth profile.
(b) Depth profile (top 400 m only) of total phytoplankton carbon biomass (all species summed up). (c) Cumulative representation of surface layer
biomass of 20 phytoplankton species. Colour indicates species cell size. Four species make up 99% of total biomass: one Prochlorococcus, two
Synechococcus and one small eukaryote species, respectively. (d): as (b) but for zooplankton. (e): as (c) but for zooplankton.
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Ecological model

We use a plankton food-web model accounting for the
dynamics of nutrients (three forms of nitrogen: NO3,
NO2

�, NH4) and a variable number of phytoplankton
and zooplankton species (Fig. 3). The groups of species
that occupy the same function in the trophic network (i.e.
primary producers or grazers) are referred to as guilds.
Each guild is assumed to contain multiple species, cover-
ing several orders of magnitude of organism size (cell
volume or body size) and several trophic layers for the
zooplankton guild.

As in many previous studies (among others Follows
et al., 2007; Gregg et al., 2003; le Quéré et al., 2005;
Moore et al., 2001), phytoplankton species are divided
into four functional groups, Prochlorococcus, Synechococcus,
small eukaryotes and diatoms. The idea that NPZ
models—in which the functional diversity of the plank-
tonic community is aggregated into two categories—are
not adequate to mirror the complexity of its response to
environmental variations was originally noted by Armstrong
(Armstrong, 1994) and lead to the introduction into the
models of plankton functional types. In our study, the
functional groups are characterized by specific size ranges
(Fig. 1), by specific allometric functions for the maximum
growth rate (Fig. 1a) as well as by the impossibility for
Prochlorococcus to use nitrate. Note here that the group-
specific size dependence of the growth rate explains the
difference between the four N* curves in Fig. 1b.

Zooplankton are predators of both phytoplankton and
smaller zooplankton (the latter is referred to as intra-guild
predation). Following Ward et al. (Ward et al., 2012), we
assume a Holling type 3 functional response for the
grazing interaction. In addition to grazing mortality,
phytoplankton and zooplankton are subject to a constant
background mortality rate. Once the living organic
biomass is transformed into organic detritus by grazing
loss or mortality, it is then remineralized.

The following eco-physiological traits depend on
phytoplankton cell size: maximum nutrient uptake rate
(Vmax), half-saturation concentration (K), cellular carbon
content, minimum and maximum nitrogen quota (Qmin,
Qmax), maximum growth (mmax) and sinking rate. For
zooplankton, the maximum prey ingestion rate is a func-
tion of body size. For any pair of potential prey and
predator, the grazing efficiency is described by a log-
normal function of the predator-to-prey cell size ratio
centred around an optimal value [cf. Supplementary
data, Section S2 and Equation (S11)]. Equations and
parameters are fully described in Supplementary data,
Section S2 and in Ward et al. (Ward et al., 2012).

Physics of the water column

The depth-structured model consists of a 3275-m deep
water-column divided into 35 levels (cf. Ward et al.,
2012). Forcing fields (light, temperature, winds) are used

Fig. 3. Compartments composing the ecological module of the model. N availability profile is set by the physics of the model and the consumption
by P, which is itself regulated by Z through size-directed grazing. Loss is represented by a constant exponential mortality rate, and dead organic
matter is then remineralized.
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to annually constrain the vertical mixing of the water
column (Supplementary data, Figs S1a and S2). This
forcing corresponds to environmental conditions in a
high latitude ocean as described by Dale et al. (Dale et al.,
1999) for the Norwegian Sea: high annual variations of
the light and temperature conditions as well as the level
of stratification of the water column. The seasonality of
the forcing of the abiotic conditions shapes the habitat of
plankton populations and therefore their population dy-
namics. For instance, annual variation of the vertical
movements in the water column can result through
mixing processes in the periodic transfer a significant pro-
portion of the phytoplankton biomass outside of the
euphotic zone and thus limit their growth, or conversely
in significant injection of nutrients into the euphotic
zone.

The dynamics of the biomass of both phytoplankton and
zooplankton modelled in the water column is similar to
observed systems in the Norwegian Sea (see Supplementary
data, Figs S1b and S2). Two main phases can be charac-
terized: (i) a winter period (between December and
March) during which the lack of light is limiting for
phytoplankton growth, and (ii) bloom and post-bloom
periods (respectively, April to June and July to November)
during which the living biomass increases due to stratifica-
tion of the water column and an increase in light intensity,
followed by a decrease in phytoplankton when nutrients
are exhausted and grazing dominates.

Evolutionary model

The novel part of this study is the implementation of AD
of the phytoplankton populations into a 1D configuration
of the MIT GCM, structured both in time (annual peri-
odicity) and in space (depth). The evolving trait we chose
is cell volume. Since phytoplankton are defined in terms
of cell volume and functional type, the whole set of size-
dependent traits is affected by the evolution of cell
volume. We use the term “residents” for the phytoplank-
ton species that are present at a given time. Their evolv-
ing traits are denoted by Xj with j¼1, . . ., k, where k is
the current number of residents.

Our evolutionary algorithm periodically generates two
hypothetical mutants for each resident phytoplankton
species; one is slightly bigger (10% of cell volume), and
the other slightly (10%) smaller. The mutation step size is
assumed to be constant (we have verified that the value of
the mutation step size does not qualitatively affect the
results). The introduced mutants are assumed to be very
rare which allows the further assumption that the mutant
population does not impact the environment (resources,
grazers), while it does experience it. After an initial transi-
ent, the mutant population will start growing exponentially

with a constant rate (on a year-to-year basis) once it has
reached its stable relative depth profile (of biomass and
quota). Biologically, a mutation would appear highly local-
ized in space, and therefore the transient can be consider-
able before the mutant population reaches the stable
relative depth profile. Invasion fitness is computed as the
mutant’s asymptotic exponential growth rate. In order to
shortcut the long transient, we assume that a mutant
population’s initial vertical biomass and quota profiles
are identical to that of the ancestral resident. Biologically,
this modelling trick can be interpreted as assuming that
(i) the mutant spreads quickly across the water column;
(ii) the mutant’s relative depth profile is similar to the resi-
dent’s which seems likely due to the similarity in trait
value; (iii) the transient to the relative depth profile is
rapid enough for the assumption of rareness of the
mutant population to remain valid until it reaches the
stable distribution.

Once introduced into the water column, the popula-
tion dynamics of the mutants are computed during a
single year. Over this period, mutant invasion fitness is
computed (see below). The evolving trait of mutant i of
resident j is denoted by Y j;i. A mutant’s invasion fitness
depends on its evolving trait but also on the traits of all
the residents because the residents contribute to shape
the environmental conditions (resource and zooplankton
densities). Invasion fitness s can hence be written as
(Geritz et al., 1998; Metz et al., 1996):

s j;i ¼ f ðY j;i j ½X1; . . . ;XK �Þ ð1Þ

Conversely, the population dynamics (and hence fitness)
of resident species is not affected by the presence of the
mutants in the system, due to their rareness. The system’s
dynamics are assumed to be on the attractor when the
mutants are introduced and so the dynamics of the resi-
dent population is supposed to be on an annual limit
cycle. Hence, the annual resident’s population growth
rate is supposed to be zero.

In the simulations, invasion fitness is computed as
follows:

s j;i ¼ log
B jiðt þ 1Þ

B jiðtÞ

� �
ð2Þ

where Bji(t) is the total biomass of mutant population i of
resident population j (summed over the water column)
at the time of introduction and Bji(t þ 1) is its biomass
1 year later. For each phytoplankton species, the evolu-
tionary algorithm computes the invasion fitness of each
mutant and of the resident. Note that according to the
definition of invasion fitness, a mutant with the same trait
as the resident has fitness equal to zero (implying steady
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population dynamics), whereas a slightly smaller mutant
or a slightly larger mutant may have negative or positive
invasion fitness. In practice, the system does not always
reach its ecological attractor, and the resident fitness sj

is thus close to but not equal to zero. We therefore
assume that the condition required for a mutant to
replace a resident population is to have a higher invasion
fitness than the resident, while the second mutant has a
fitness lower than the resident (i.e. directional selection).
However, for the sake of clarity, we keep to using the
terms “positive” and “negative” invasion fitness. Three
scenarios can thus be encountered: (a) directional selec-
tion: one of the mutants has positive invasion fitness,
whereas the second has a negative one; (b) stabilizing se-
lection: both mutants have negative fitness; (c) disruptive
selection: both mutants have positive fitness.

In the case of scenario (a), which is the most common
one, we assume that “invasion implies replacement”
meaning that the mutant with a positive fitness replaces
the resident population. This corresponds to what Geritz
et al. (Geritz et al., 2002) call “attractor inheritance” and
hold under fairly mild conditions if the mutation is suffi-
ciently small for the invading mutant to be sufficiently
similar to the former resident [which forbids cases of at-
tractor switching and “the resident strikes back” phenom-
ena described by Mylius and Diekmann (1995)]. In our
algorithm, the trait of the successful mutant is attributed
to the old resident population, its spatial distribution
remaining the same. During a period of 2 years, the
system is then allowed to converge to the new ecological
attractor corresponding to the trait values of the new resi-
dents, before a new set of mutants is introduced. The full
mutation–invasion–replacement–transient cycle thus
lasts 3 years and shapes the AD through repetition.

Such directional selection eventually results in evolu-
tionary convergence towards a so-called singular strategy
in trait space, which is either a fitness maximum (scenario b)
or a fitness minimum (scenario c). In scenario (b), the resi-
dent is an evolutionarily stable strategy (ESS). The fact
that the population has converged to this ESS through dir-
ectional selection further implies that it is also convergence
stable; it is therefore referred to as a continuously stable
strategy (CSS, Eshel, 1983). In scenario (c), the resident is
an evolutionary branching point (EBP; a convergence
stable strategy with disruptive selection). Both mutants can
invade (and probably replace) the resident, resulting in di-
vergence of two new, sister resident populations (Geritz
et al., 1998). In our system, all the converging singularities
are of the CSS type (scenario b). Disruptive singularities
do exist, but they are repelling and hence not EBP (see
Supplementary data, Section S3).

To summarize, our method is valid if (i) the mutation
step is sufficiently small to assume attractor inheritance

when selection is directional, (ii) a 2-year period is suffi-
cient for the new resident’s system to be sufficiently close
to its attractor for fitness evaluation to be reliable, and (iii)
the system’s attractor is annually periodic. Verification of
the first and second hypotheses can be found in
Supplementary data, Section S3, and we know that the
third is true due to the strong forcing that the ecological
dynamics is submitted to.

Simulation protocol

Each simulation is seeded with a variable number of
phytoplankton species (8, 20, 40 or 80). Each species is
first allocated to one of the four functional types
(Prochlorococcus, Synechococcus, small eukaryote or diatom).
A cell volume is then drawn randomly from the size
range that is specific for the functional type. The system
is also seeded with nine species of zooplankton whose
body sizes are spread in such a way that the range of
grazed phytoplankton size covers the entire range of pos-
sible phytoplankton sizes. The resulting grazing back-
ground is log-periodic with regions of phytoplankton size
submitted to a low grazing pressure, referred to as
grazing refuges, and others for which the grazing pres-
sure is high (cf. Fig. 1c). It should be noted, however, that
the realized grazing background depends on the popula-
tion dynamics of the zooplankton species (assumed to be
identical in Fig. 1c). The initial depth profile of these
species is uniformly low (6 � 1029 mmol C m23). The
initial environmental conditions correspond to winter
(January) temperature and light conditions.

Each simulation consists of two phases: the “ecological
phase” without evolution and the “eco-evolutionary
phase” with evolution. During the first, ecological phase
species sorting occurs among the initially present species
with their fixed traits. The population dynamics are
determined by the specific characteristics of each species,
i.e. by their size and functional type, and eventually con-
verge to an attractor with 1-year periodic dynamics. This
attractor defines a community of coexisting species (phyto-
plankton and zooplankton) that can be considered as a set
of the best competitors among the initially randomized set
of strategies; the remaining species go extinct. It is also char-
acterized by a specific environment in terms of the grazing
profile, nitrate availability, etc. The convergence towards
this ecological attractor is relatively quick (about 10–20
years). In our simulations, this period lasts 100 years to
ensure that we obtain the asymptotic dynamics.

During the second eco-evolutionary phase, the phyto-
plankton traits evolve. The ecological interactions are
thus repeatedly modified by trait evolution within the
community resulting in an eco-evolutionary transient.
The characteristics of the system do not change solely
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due to changes in the relative abundances of the species,
but also through their adaptive response to environmen-
tal conditions. The eco-evolutionary transient is usually
longer than the ecological one. We set, after numerous
test simulations, the duration of this phase to 250 years to
make sure that the second attractor is reached. We also
verify at the end of each simulation that the system is on
its attractor. The second community thus obtained is
composed of a set of evolutionarily attracting strategies
(CSS or EBP). At the end of the run, we check whether
selection is stabilizing (CSS) or disruptive (EBP). In all
our runs, the final community consists exclusively of CSS.

The succession of the two phases allows us to compare
the characteristics of the two emerging communities and
the evolutionary stability of the first one. The set of four
seeding conditions also allows testing the effect on the two
attractors of the initial level of trait diversity in the system.

Indicators and statistics

In order to characterize the two phases, we focus on a
small number of characteristics. We measure biodiversity
in two different ways. First, species richness R is defined
as the number of species with abundance above an arbi-
trary extinction threshold. (In this implementation of the
model, species abundance cannot reach values below an
artificial threshold (10215 mmol C m23), an assumption
that mimics the effect of immigration from the surround-
ing water column).

Second, we use the Shannon index to measure numer-
ical diversity, which characterizes how uniformly biomass
is distributed among the present (non-extinct) strategies:

S ¼
PN

i¼1 pi logð piÞ
logðN Þ ð3Þ

here N is the number of discrete size classes (we arbitrar-
ily fix it to 100), and pi is the proportion of the total
biomass belonging to organisms of the size class i. Note
that a given size class may contain more than one species
with very similar sizes.

Third, we use the Canberra distance (denoted by CD)
to measure the distance between two cell-volume distri-
butions among the discrete size classes (comparing
before and after evolution, or between two runs). We
compare the biomass in each size class i within each of
the two distributions x and y. The CD is computed as:

CDðx; yÞ ¼
XN

i¼1

jxi � yij
jxij þ jyij

ð4Þ

In order to estimate the intra-group variability between
cell size structures of the different communities, we

measure the mean square distance among them based on
the CD:

MSD ¼
PK

k¼1 CD ðxk; x̂Þ2

K
ð5Þ

with K being the number of simulations for each seeding
conditions (24 here) and x̂ the mean cell size distribution
within this group.

Fitness landscape

For a single example run, we compute the full fitness
landscapes at the end of the two phases. To do so, we
introduced for each functional type exhibiting at least
one resident in the eco-evolutionary attractor of the simu-
lation a large number of mutants (200) in order to cover
an almost continuous and broad size spectrum, and com-
puted the mutants’ invasion fitness.

R E S U LT S

We will describe separately the two phases of the ex-
perimental protocol, focusing first on the patterns emer-
ging from one illustrative simulation seeded with 20
phytoplankton species (5 for each of the functional
types) with randomly generated cell sizes (Fig. 4a), and
then looking at the whole set of runs for each seeding
condition.

The ecological phase

During this first phase, the convergence of the system
towards its attractor is relatively fast: about 20 years or so.
Figure 4a shows the rapid emergence of four dominant
species among which two are particularly abundant (a
Synechococcus and “small eukaryote” species). As the popu-
lation dynamics converge towards annual limit cycles, all
their competitors go to quasi-extinction, shaping an eco-
logically stable community. At the same time, zooplank-
ton populations also tend towards their asymptotic cycle
resulting in a periodically stable grazing background
(Fig. 4b). Note that the emerging phytoplankton species
are characterized by a large diversity of cell volume, as
well as by a variety of functional types. Nevertheless, they
share one characteristic: their cell sizes correspond to
what we will refer to as “grazing refuges”, i.e. cell sizes
for which the predation pressure is relatively low (clear
areas in the background of Fig. 4a), suggesting that
predator avoidance is a key factor regarding species
success.

Looking at the whole set of runs (Fig. 5a), we can first
note that the communities emerging from the species
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sorting during the first phase are highly diverse: the
example (Fig. 4a, t ¼ 100) is not representative of what
we observe in the other runs (Fig. 5a). First, in terms of
cell size composition of the community, a clear size
pattern cannot be identified in Fig. 5a for low seeding
resolution (8 and 20 phytoplankton species), and the cor-
responding intra-group mean square distances are par-
ticularly high (Fig. 6a). However, at higher seeding
resolution (40 and 80 species), the average MSDs are
lower (Fig. 6a) and the selected cell sizes appear to be
centred around four values (Fig. 5a), corresponding to
the emergence of four dominant species.

It thus appears that the ecological system we model is
characterized by a set of four “niches” corresponding to
four optimal competitors that can coexist and that can
exclude all the other species by competition when they
are in the system. But when (some of ) these four species
are not in the system, phytoplankton populations with

diverse cell sizes are allowed to settle in, as in the example
shown in Fig. 4. In addition, it appears that these optimal
species minimize the grazing pressure they are submitted
to by having cell volumes corresponding to grazing refuges
set up in the grazing background of our simulations, con-
firming the idea that the sensitivity to grazing is as expected
an important characteristic determining the competitive
ability of a species (Supplementary data, Fig. S6).

Finally, it appears that the distribution of biomass
across size classes is highly dependent on the initial con-
ditions. Figure 6b shows the average Shannon index
value for each seeding condition. The figure shows that a
higher seeding resolution results in a more even biomass
distribution among species. The effect is saturating for
high seeding resolutions and can be described by a
power law (after log-linearizing the data, a linear regres-
sion shows a positive effect of the seeding resolution with
a P-value of 1.35 � 1026).

Fig. 4. Illustrative example of model dynamics. The vertical line at t ¼ 100 separates phase 1 (fixed traits) from phase 2 (phytoplankton trait
evolution). (a) Each coloured line is a phytoplankton species; its width represents its log-abundance; the ordinate represents the trait value
(cell volume). The smallest line width represents quasi-extinct species maintained by immigration. Colours represent functional groups:
orange ¼ Prochlorococcus, cyan ¼ Synechococcus, magenta ¼ small eukaryotes and green ¼ diatoms. The background grey-shaded map represents
the grazing pressure depending on the zooplankton dynamics and the size of the phytoplankton. (b) Population dynamics of the zooplankton
species.
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Fig. 5. Heat map of the phytoplankton species size distribution (the functional types are merged here) at the end of the first phase (t ¼ 100 years) in
(a) and the second phase (t ¼ 350 years) in (b) in each of the 24 simulations, for each of the four seeding conditions (8, 20, 40 or 80 phytoplankton
species). The colour of each grid represents the number of individuals with the corresponding size in the system. From light blue for absent or
negligible sizes (i.e. maintained only by migrations) to red for abundant species. Similar species are grouped into the same size interval.

Fig. 6. (a) Average Canberra distance between the mean distribution and the individual simulations, for each attractor (light for t ¼ 100 years, dark
for the t ¼ 350 years), and for each seeding condition (8, 20, 40 or 80 initial phytoplankton species). (b) The mean Shannon index for the same
groups.
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The eco-evolutionary phase

Let us come back to the example run shown in Fig. 4a.
The starting point of the second phase of the simulation
is the ecological attractor described above. The evolution
of the traits disturbs the ecological state of the system
(thus ecologically but not evolutionarily stable): some
species decline (the Prochlorococcus), some species slightly
adjust their cell volume and remain stable (the two previ-
ously highly abundant species), some switch from one
grazing refuge to another and some new species evolu-
tionarily emerge and settle as new dominant species
(diatoms). Because the ecological interactions in the
system are being constantly renewed by the AD, the tran-
sient is much longer than in the first period: the new
eco-evolutionary attractor is reached after almost 100
years. This new attractor is also composed of four
species, whose sizes are grazing refuges; however, these
cell sizes are not equivalent to those present at t ¼ 100.

Conversely to the attractor of the ecological phase in
the example run (Fig. 4a), it appears that the state of the
system of our example at t ¼ 350 properly reflects the
general patterns observed in the whole set of ecological
runs (cf. Fig. 5a). In general, the states of the system at t ¼

350 are much more conserved among runs, and among
groups than they were at t ¼ 100 (and thus less dependent
on the initial conditions): intra-group MSD is much lower
(Fig. 6a), as well as the intra- and inter-group variability of
the Shannon index (Fig. 6b) and the variability of the
number of species the community is composed of (Fig. 7).

The characteristics of the attractors of the eco-
evolutionary phase are furthermore very similar to what
has been observed in the ecological phase with 80 species
seeding. More precisely, for each seeding condition, the

majority of the runs at t ¼ 350 displays an evolutionarily
stable community of four species whose cell sizes are ex-
tremely conserved (Figs 5b and 6a), and correspond to
the size ranges identified as grazing refuges, given the
grazing background (note that the phytoplankton cell
size values corresponding to grazing refuges depend on
the zooplankton sizes that are fixed and on their abun-
dances that are dynamic). These four cell sizes are similar
to the four optimal competitors identified in the ecological
phase for the runs with 80 species (Fig. 5a).

In the eco-evolutionary phase, the Shannon index is
generally high (Fig. 6b), and the positive effect of seeding
resolution, though significant (P ¼ 1.34 � 1024), is much
weaker. As a consequence, when seeding resolution is low
(i.e. with 8 and 20 initial species), the Shannon index
increases significantly during the eco-evolutionary phase
(the Kruskal–Wallis test, respective P-values are 4.6 �
1024 and 2.4 � 1022). Interestingly, the opposite pattern
can be observed regarding species richness (Fig. 7).
Although there is no significant effect of the seeding
resolution on the number of species in the ecological
attractors (still relatively high), the number of species in
the eco-evolutionary attractors increases with seeding
resolution, converging towards values similar to those of
the ecological attractor (a linear regression gives a signifi-
cant positive effect with a P-value¼ 4.2 � 1022, Fig. 7b).
Hence, when seeding resolution is low (eight initial species),
species richness decreases during the eco-evolutionary
phase (the Kruskal–Wallis test, P-value of 5.6� 1024).

Periodicity of the system

Supplementary data, Figure S7a and b shows details of
the population dynamics of both phytoplankton and

Fig. 7. Number of viable populations (excluding quasi-extinct species, i.e. species whose abundance is below the arbitrary threshold of 1�1023

mmol C of total biomass) at the end of the two phases and for each seeding condition. The size of a dot reflects the number of simulations with the
considered final number of species. The black dashes represent the average of each group.

B. SAUTEREY ET AL. j EVERYTHING IS NOT EVERYWHERE BUT SPECIES EVOLVE

39

http://plankt.oxfordjournals.org/lookup/suppl/doi:10.1093/plankt/fbu078/-/DC1


zooplankton species for the last 15 years of the two
phases. It is clear that the system is annually periodic
between t ¼ 85 and t ¼ 100 years in the ecological phase
(and as expected phytoplankton and zooplankton are in
phase opposition), as a direct consequence of the physical
forcing. The dynamics of the system in the eco-evolutionary
phase between t ¼ 335 and t ¼ 350 years is more com-
plex: a 6-year periodical component is superimposed on
the annual forcing. This 6-year period corresponds to an
evolutionary oscillation of the traits of the dominant
species (Supplementary data, Fig. S7c) and is hence an
artefact of our chosen time schedule of mutant invasion
and resident replacement, as well as our assumption of a
fixed mutation step size.

D I S C U S S I O N

We have introduced AD into an ecological model with a
very complex spatial and temporal structure. Based on
the MIT general circulation model, our model represents
a vertical water column of 3000 m in which the physical
forcing in terms of temperature oscillation, vertical
mixing and diffusion are parameterized to represent con-
ditions in the Norwegian Sea. The ecological model itself
is highly dimensional, representing an ecosystem of nine
zooplankton species, between 8 and 80 phytoplankton
species, 4 different nutrients as well as 4 compartments of
dead-organic matter. Ignoring the spatial structure, the
ecological model itself requires between 59 and 275 or-
dinary differential equations. This is far more complex
than common applications of AD that are usually studied
in simple and unstructured population or community
models, or in models with a single structuring dimension
[i.e. either spatial structure (Haller et al., 2013) or size
structure (Claessen and Dieckmann, 2002)]. Not surpris-
ingly, the ecological dynamics in such a complex and
high-dimensional model are complex as well (cf. Fig. 2).
Yet in spite of this complexity, introducing AD has
enabled us to elucidate the ecological and evolutionary
dynamics of the phytoplankton species in terms of basic
ecological concepts such as bottom-up vs. top-down
regulation. A number of our main conclusions can be
illustrated in an intuitive way by considering the shape of
the fitness landscape in the two scenarios we consider:
without evolution (Fig. 8, top panel) and with evolution
(Fig. 8, bottom panel). Figure 8 shows for each functional
type the shape of the invasion fitness as a function of cell
size. We can recognize the effect of the two main con-
straints in the shape of the curves: (i) the grazing pressure
results in oscillations (fitness is higher where grazing is
lower; compare the dotted curve of grazing pressure);
and (ii) each functional type shows an overall decrease of

the invasion fitness with cell volume which results from
the relative size disadvantage of bigger cells in terms of
nutrient uptake and requirements. The top panel of
Fig. 8 is an example in which seven species coexist after
the non-evolutionary phase. These species all have zero
fitness [which follows from the definition of invasion
fitness (Metz et al., 1992)]. None of the species is CSS; al-
though two diatoms are relatively close to the same
fitness maximum. One diatom is even at a fitness
minimum. The bottom panel of the same figure clearly
illustrates why evolution can reduce species richness: all
remaining species are CSS (situated at fitness maxima).
Whereas in the top panel, two species can share the same
“hill” in the fitness landscape; once the hilltops are
reached, this is no longer possible. We also observe that
an entire functional group (Prochlorococcus) has disap-
peared; the evolution of the smallest possible Synechococcus

size has made persistence of any Prochlorococcus size impos-
sible, which is empirically supported (Flombaum et al.,
2013). Below we give a more detailed interpretation of
the effect of evolution on the emergent diversity, and in
particular of the effect of the initial species richness on
the resulting patterns.

Periodic grazing background

Our results are strongly influenced by two basic ecologic-
al constraints that result directly from our model assump-
tions: nutrient competition favours small cell sizes; a
periodic grazing background favours cell sizes in grazing
refuges. The observed communities at the end of our
simulations contain species that perform well under these
two basic constraints. Whereas the first assumption is
emerging from the size dependence of the biological
rates as documented in the literature (Chisholm, 1992;
Litchman and Klausmeier, 2007; Litchman et al., 2009),
the second is imposed to the system by the number and
body size of zooplankton species, as well as by the shape
of the grazing efficiency function. Whereas predation is
generally size dependent (Cohen et al., 1993; Fuchs and
Franks, 2010) and its efficiency may be described by a
log-normal function of the predator-to-prey biovolume
ratio (Hansen et al., 1994, 1997; Kiørboe, 2008), several
arguments can be forwarded for a grazing background
smoother than the log-periodic one we choose to use in
this study. First, increasing the number of phytoplankton
species of different body sizes will gradually smooth out
the periodic grazing background. Second, each zoo-
plankton population may be (and, in the real world, most
certainly is) characterized by an intra-specific size vari-
ation resulting from inter-individual differences and also
from a variation of an individual’s cell size during its de-
velopment. The size range thus exhibited by a specific
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grazer species will result in a corresponding range of opti-
mally grazed prey size, again smoothing the grazing
background (Claessen et al., 2002). In situ, the actual
shape of a local grazing background is difficult to assess
but would be a most interesting empirical element in this
context. We choose here to hypothesize a log-periodic
grazing background which generated fixed CSSs and
simplified the analysis of the results. Theoretically,
however, the shape of the grazing background (periodic
or smooth) is likely to influence the outcome of the eco-
logical and evolutionary dynamics. Indeed, in reality, it is
almost certainly a result of the predator–prey coevolution.
However, a full implementation of a co-evolving preda-
tor–prey system is beyond the scope of this article but is
the focus of a further study (Sauterey et al., in preparation).

High initial richness: “everything
is everywhere”

In our scenario with the maximum initial level of species
richness (80 species, Fig. 4a), the phytoplankton trait

space is practically fully covered, and so we are close to
the “everything is everywhere” situation: all possible
strategies compete with each other at any given time
(a scenario very similar to the approach in Ward et al.

(Ward et al., 2012)). In the absence of evolution, species
sorting results in a robust pattern among runs of the
dominance of the phytoplankton community by four
sizes (cf. Figs 4a and 5a). The repeatability of this pattern
suggests that these four trait values are ESSs (Smith and
Price, 1973) in the sense that once they occupy the system
they cannot be beaten by any other strategy. More pre-
cisely, the community of four phytoplankton species
resembles an evolutionary stable coalition (Geritz et al.,
1997). The evolutionary stability of this phytoplankton
community is confirmed by the fact that, in the second
phase of the simulations, the evolutionary process does
not alter the trait composition of the phytoplankton com-
munity. Metz et al. (Metz et al., 1992) show that an ESS,
despite its evolutionary stability, is not necessarily an evo-
lutionary attractor, and so not necessarily likely to be the
end result of the evolutionary process. In our case, the

Fig. 8. Fitness landscapes (invasion fitness as a function of cell volume) corresponding to an attractor with species whose traits are fixed on the top,
and with adapting species on the bottom. Colours represent functional groups: orange ¼ Prochlorococcus, cyan ¼ Synechococcus, magenta ¼ small
eukaryotes and green ¼ diatoms. The dotted line represents the grazing pressure that the phytoplankton are submitted to as a function of their size.
The cell sizes of the coexisting species are represented with red dots.
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adaptive process almost systematically converges to the
above-mentioned ESSs—whether they are present in
the initial community or not (Figs 3a and 4b). We can
thus consider that these four strategies are not only ESS,
but are also evolutionarily attractive. We conclude that
the final result of natural selection in our model ecosys-
tem does not depend on whether the species sorting
occurs on populations with fixed or evolving traits, as
long as “everything is everywhere”, i.e. as long as the
initial species diversity is sufficiently high.

This first analysis also allows hypotheses on the co-
existence from an eco-evolutionary point of view. We
showed that, as a consequence of the existence of grazing
refuge in the grazing background, the ability of phyto-
plankton species to avoid predation is fundamental
regarding their competitive ability. Altough this predic-
tion depends on the existence of grazing refuges, and
therefore on the design of the model, it is particularly
consistent with the hypotheses presented by Smetacek
(Smetacek, 2012) who argues, based on observations,
that the predator–prey coevolution is very important
regarding the structure of the marine ecosystem.
However, we also noted that not all the grazing refuges
are CSSs, but only the four smallest ones. This can be
explained by considering a second factor: nutrient limita-
tion. Figure 9 shows the N* and the grazing background
as a function of phytoplankton cell size and at the same
time the N surface concentration corresponding to a
community comprising the four CSSs. All the CSSs have
N* lower than or equal to the minimum N concentration
(note, however, that in order to compare these values, we
assume that the light and temperature limitations we
removed from the N* calculation are negligible). The

other grazing refuges correspond to N* values much
higher than the minimum N concentration, meaning that
these species met conditions for which their intrinsic
population death rate is higher than their growth rate
during an important part of the year, and thus are un-
likely to maintain themselves in the system. Hence,
though the non-linearity of the nutrient supply forbids
any simple investigation, it appears that due to the log-
periodic shape of the grazing background, top-down con-
trols narrow down the possibility of coexisting species to
grazing refuges, and that bottom-up control allows only
the smallest of them to persist. In our system, the emer-
ging community progressively shapes the environmental
conditions, in particular in terms of nutrient availability.
As the number of species in the system increases, and
therefore the phytoplankton organic biomass, these con-
ditions are depleted to a point that no supplementary
species can invade or be maintained in the ecosystem
(Armstrong, 1994; Ward et al., 2012). Note here that
ecological interactions other than top-down regulation
by grazers, such as host-parasites/pathogens, are ex-
pected to have the same structuring effect on phyto-
plankton population. Viruses especially appear to be an
important component of phytoplankton population dy-
namics (Brussaard, 2004; Fuhrman, 1999; Suttle, 2007).
Exploration of the effect of viruses on the structure of
plankton communities could therefore be an interesting
lead to follow by completing the range of ecological inter-
actions taken into account in models of microbial com-
munities. While this study confirms that dual effect of
top-down and bottom-up controls generate ecologically
stable coexistence of multiple phytoplankton size classes,
we also show that this coexistence is evolutionarily stable

Fig. 9. The large curves are the ideal N* curves, without considering light or temperature limitation (the realized N* may thus be higher) as a
function of cell size, for the four functional types. The dotted curves represent the grazing pressure applied on each size. The horizontal line is the
annual mean N concentration conditions a phytoplankton cell meet during the last year of simulation, and the grey-shaded area is delimited by its
min and max. The dots mark the cell sizes of the CSSs.
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and attracting. However, this evolutionary convergence
occurs for a rather artificial grazing context given the
imposed log-periodic shape of the grazing background
and the fact that zooplankton cannot adapt in response
to prey evolution. Modelling predator–prey coevolution
could give different results. Previous theoretical studies
suggest that for similar systems, predator–prey co-
evolution could under certain conditions favour evolu-
tionary emergence of diversity from monomorphic
populations (Brown and Vincent, 1992; Dercole and
Rinaldi, 2008; Dercole et al., 2003; Ito and Ikegami,
2006; Loeuille and Loreau, 2005).

Low initial richness: “everything is not
everywhere”

The probability of the presence of the four ESSs in the
initial set of species increases with the level of initial trait
diversity. Hence, at low initial diversity, the probability of
the emergence of all four ESSs (or at least species suffi-
ciently close to the four ESS strategies) is low in the eco-
logical phase. A system that does not initially include
species close to all optimal strategies allows for the persist-
ence of “non-optimal” species, i.e. species that would be
outcompeted by the nearest ESS species, if the latter are
present (Figs 4a and 8). In such cases, selective pressure is
released by the lack of optimal competitors: a single pre-
dation refuge may be occupied by none, one or more
non-optimal species. This fact is apparently contradictory
with the “competitive exclusion principle” (Gause, 1934;
Hardin, 1960) which formalized the idea that if one re-
source is shared by more than one species, only the best
competitor persists, excluding the others. However, as
explained by Armstrong (Armstrong, 1994), two different
populations sharing one resource can coexist, even in
equilibrium, if their populations are regulated by two
specific grazers (or other specific density-dependent loss
terms). In our model, when one of the four ESSs is
absent, the corresponding predation refuge may be occu-
pied by two species (one for each specific grazer).
Ultimately, this means that the number of species in the
system may in fact exceed the number of evolutionarily
viable predation refuges, resulting in the coexistence of
more than four phytoplankton species. High levels of
species richness can thus occur (Figs 7 and 8). Yet overall,
due to the fact that few of these species are sufficiently
well adapted to the environmental conditions (especially
to grazing) to reach high levels of abundance, the
Shannon index is usually rather low for these cases of
high species richness (Fig. 6b). To summarize, in the eco-
logical phase, the selection of a specific strategy relies on
its presence in the initial trait composition but also on the
ecological interactions between the initially present
species (including zooplankton). Species sorting results

in the emergence of the best viable strategies (yet not
necessarily ESSs) within the initial pool of species. On
average, for low initial trait diversity, the emergence of
non-optimal strategies is frequent, often resulting in high
species richness but low Shannon diversity.

With evolution (the eco-evolutionary phase), the selec-
tion of a specific strategy does not only rely on the initial
trait composition and the resulting ecological interac-
tions, but also on whether the strategy is evolutionarily at-
tractive. We have underlined the fact that all the ESSs of
the system are also CSSs, and so the probability of evolu-
tionary emergence of the optimal size values is high
whether the initial trait richness is high or not. Due to
this almost systematic evolutionary convergence towards
unbeatable strategies, non-optimal species are not main-
tained in the second phase. This explains the fact that in
terms of species richness, the communities emerging
from the ecological phase are on average richer than
communities emerging from the eco-evolutionary phase
for low seeding resolutions (Fig. 7). However, whereas the
sizes selected by species sorting among evolving species
are systematically CSSs, all the CSSs are not necessarily
always simultaneously present (especially in the lowest
seeding conditions), stressing the dependence of the
adaptive process on the initial state of the system. This
dependence can be explained by the fact that the evolu-
tionary optima are local and are surrounded by evolu-
tionarily repelling regions (i.e. the grazers’ optimal prey
sizes): if no species initially has a strategy located between
two adjacent repelling regions, the CSS cannot be reached
through a gradual evolutionary process.

The sensitivity to initial conditions can also be
observed in a slight variation in size in the third grazing
refuge (�300 mm3). In the different runs, one of two dif-
ferent sizes dominates in this grazing refuge (Fig. 5).
The smallest systematically corresponds to the function-
al type referred to as “small eukaryote”, the second to a
diatom. These two sizes have their own disadvantages:
the lower boundary of the diatom size range is above
the “valley” of the grazing background, whereas a
small eukaryote is inherently characterized by a higher
N* than a diatom of an equivalent size. However,
Fig. 8 shows that when a diatom dominates the niche,
potential eukaryote invaders have slightly negative inva-
sion fitness. This is confirmed by looking at the eco-
evolutionary trajectories: small eukaryotes are allowed
to invade only if diatoms cannot evolve into this grazing
refuge, depending on the initial condition (i.e. if all the
diatoms initially have sizes superior to the upper
grazing peak and are therefore evolutionarily “stuck”).
The probability that this scenario occurs decreases with
the number of diatom species in the system, as can be
observed in Fig. 5b.
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Computational costs and robustness
of the results

We have shown that the two different approaches (i.e. the
everything-is-everywhere approach and the evolutionary
approach) allow estimations of the “optimal” phytoplank-
ton strategies for the modelled habitat. However, the ro-
bustness of the results is stronger in the evolutionary
approach. The lower dependence on the initial condi-
tions of the eco-evolutionary method has two major con-
sequences. First, the required number of species is much
lower. Without evolution, 80 initial phytoplankton
species are necessary to obtain the four CSSs with a 50%
probability in a single simulation (Fig. 5), whereas with
evolution only 20 species are required. Note, however,
that three times as many tracers are needed due to peri-
odical mutant introduction. Second, we show that the
emerging patterns are much more conserved among
runs thanks to the repeatability of the evolutionary con-
vergence (and hence much less reliant on the initial ran-
domization of traits). Without evolution and with 80
phytoplankton species, the intra-group MSD is 10 times
higher than with evolution and only 20 species.

The two phases as analogies for adaptive
responses of ecosystems

The adaptive response of ecosystems to environmental
conditions is a process comprising many mechanisms.
We argue that these mechanisms could be described as
belonging to two conceptual categories. The two phases
and their differences described in this study can be seen
as representatives of these two components of the
general process of modification of the characteristics of
an ecosystem.

The first process could be defined as the ecological
adaptive potential of an ecosystem: the change in an
ecosystem’s properties results from the variation of the rela-
tive abundance of its species. These ecological mechanisms
occur on an ecological time scale and so evolving trait dy-
namics are thus (usually) negligible. The trait diversity
therefore relies on the ecological properties of the system,
such as the connectivity to adjacent systems and their envir-
onmental conditions (Wilson, 1992), its ecological history
(Robinson and Edgemon, 1988) or phenotypic plasticity
(Charmantier et al., 2008). For instance, in our model, the
high diversity that characterizes marine microbial systems,
and their openness, justify the use of randomization to seed
the system.

We refer to the second process as the evolutionary
adaptive potential of ecosystems. In contrast with the first
process, this kind of ecosystem adaptation occurs on an

evolutionary timescale: the modification of the ecosys-
tem’s characteristics is not only due to the variations of
the abundances of its species but also to their individual
adaptation to environmental variations. The adaptive re-
sponse is therefore also influenced by parameters that deter-
mine the evolutionary dynamics: mutation rates, genetic
constraints (a given species is characterized by a range of
trait values it can take), the speed at which the fitness land-
scape varies, etc. Different theories, including AD and
population genetics, describe such evolutionary trajectories,
although usually of much simpler systems than the one con-
sidered in the present study.

The apparent separation between ecological and evo-
lutionary adaptive potential is, however, a rather artificial
consequence of the way the concerned scientific fields
grew independently. We emphasize in this study the en-
tanglement of ecology and evolution: the evolution of the
characteristics of an organism depends directly on its
ecology, whereas in turn the ecological characteristics of
a system constantly vary as a result of the individual evo-
lution of the species living in it. In real conditions, we
could thus expect adaptive responses of ecosystems to
belong to a continuum in which ecological and evolu-
tionary responses vary in proportion depending on the
considered system and timescale. The outcome of the
interaction between ecology and evolution is particularly
of interest in order to understand the response of ecosys-
tems to environmental variations, especially for systems
comprising organisms with short generation times such
as plankton, in which ecological and evolutionary time-
scales are overlapping (Carroll et al., 2007; Hairston et al.,
2005). Previous efforts to tackle the long-term response of
marine systems to environmental changes in three-
dimensional ocean simulations have not considered any
potential evolutionary changes. These attempts, from
“ocean biogeochemical models” by Maier-Reimer and
Hasselmann (Maier-Reimer and Hasselmann, 1987) and
Najjar et al. (Najjar et al., 1992) to the more recent
“dynamic green ocean models” (le Quéré et al., 2005), all
consider fixed ecological properties of marine communi-
ties in a varying environment. Interestingly, “everything-
is-everywhere” approaches are able to solve this problem
by considering that marine systems are characterized by
a quasi-infinite potential of ecological adaptation. One
aspect is nonetheless still missing: evolutionary adapta-
tion is absent from the model, and thus it is impossible to
verify the evolutionary attractiveness of the emerging
communities. But as described in this study, by making
explicit both the ecological and the evolutionary pro-
cesses, a coupled approach allows the simultaneous inves-
tigation of all the components of the adaptive response of
an ecosystem.
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Emerging perspectives

The whole eco-evolutionary feedback loop can thus be
studied: the effect of the environment on trait evolution
of interacting species, the resulting modification of the
ecological interaction between these species and thus
the variation of their relative abundance, and ultimately
the consequences of the modified ecology on the environ-
mental conditions.

Real-time coupling between ecology and trait evolu-
tion allows study of the dynamical properties of the
fitness landscape of a system as a product of the evolution
of the ecological interactions: it allows investigation of the
mechanisms that link the evolution of one species to the
dynamics of the fitness landscape for all the species that
interact directly or indirectly with it. This approach is
thus a convenient tool to study any model of co-evolution
(between prey and predator, competitors, host and para-
sites and so on).

However, a crucial dimension of the eco-evolutionary
dynamics remains absent from our model: although the
evolutionary algorithm allows a successful evaluation of
the direction of the evolution and identification of attract-
ing singularities in the space of traits in terms of CSS or
EBP, it is unable to model what happens in the case of
evolutionary branching, and therefore to describe speci-
ation. This question is of particular importance when
considering predator–prey coevolution, which has
already been described as potentially resulting in a
cascade of evolutionary branching events (Loeuille and
Loreau, 2005). Practically, the number of state variables,
and therefore of the number of species, is usually con-
strained in models such as the GCMs and the addition of
species is therefore problematic. This problem is appar-
ent in the case of sympatric speciation (local disruptive se-
lection; EBP) but also in the case of allopatric divergence
in the case of a spatially structured eco-evolutionary
model: a specific mutant could (and most of the time will)
have positive invasion fitness in some region of the ocean
and a negative one in others. Such a case should lead to
the splitting of a resident population into two sister popu-
lations, geographically separated from each other. In such
scenarios, our evolutionary algorithm would theoretically
be able to identify the possibility of branching, but it is in-
capable of modelling its consequences. An additional,
more conceptual, challenge in such situations is the defin-
ition of invasion dynamics and of invasion fitness. On
large spatial scales, our assumption of using an instantly
stable distribution of mutant biomass and quota (by
copying the resident’s distribution) becomes less and less
valid.

Alternative approaches should therefore be considered.
Agent-based models are often used to model processes of

evolutionary branching (Dieckmann and Doebeli, 1999;
Doebeli and Dieckmann, 2003) and have recently been
applied to global ocean circulation models (Clark et al.,
2013; Daines et al., 2014). The important computational
demand that usually characterizes these models (expected
to be particularly high in a 3D GCM) can be strongly
limited through the use of meta-agents: many individuals
of similar properties are lumped together in “super-
individuals” (Rose et al., 1993; Scheffer et al., 1995). These
increasingly used models could allow explicit implementa-
tion of evolutionary dynamics along the lines of AD to
study the process of evolutionary branching. Another strat-
egy is to use evolutionary models with trait-structured
populations (characterized by a finite number of state vari-
ables), which have been used to approximate and mimic
the behaviour of individual-based models (Champagnat
et al., 2006; Perthame and Gauduchon, 2010; Sauterey
et al., in preparation). In addition, there is no practical con-
straint to the implementation of these latter evolutionary
models into GCMs. They could therefore be satisfac-
tory tools to study spatially structured phytoplankton–
zooplankton co-evolution.

The implementation of such models into 3D ocean cir-
culation models would permit an extension of the work
presented here to the effect of spatial structures on the
interactions between ecology and evolution. For example,
what is the effect of the spatial variation of environmental
conditions on the evolution of the traits of metapopula-
tions? This question is particularly important in marine
systems where both the amplitude of the variations of en-
vironmental conditions and the connectivity between
regions are highly spatially variable and greatly impact
the ecology of the species living there.
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