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The emergence and sustenance of cooperative behavior is funda-
mental for a society to thrive. Recent experimental studies have
shown that cooperation increases in dynamic networks in which
subjects can choose their partners. However, these studies did
not vary reputational knowledge, or what subjects know about
other’s past actions, which has long been recognized as an impor-
tant factor in supporting cooperation. They also did not give sub-
jects access to global social knowledge, or information on who is
connected to whom in the group. As a result, it remained un-
known how reputational and social knowledge foster cooperative
behavior in dynamic networks both independently and by comple-
menting each other. In an experimental setting, we show that
global reputational knowledge is crucial to sustaining a high level
of cooperation and welfare. Cooperation is associated with the
emergence of dense and clustered networks with highly coopera-
tive hubs. Global social knowledge has no effect on the aggregate
level of cooperation. A community analysis shows that the addi-
tion of global social knowledge to global reputational knowledge
affects the distribution of cooperative activity: cooperators form
a separate community that achieves a higher cooperation level
than the community of defectors. Members of the community of
cooperators achieve a higher payoff from interactions within the
community than members of the less cooperative community.
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Cooperation among a group of individuals can create a surplus
that benefits everyone, but it is often undermined by self-

interested incentives to free ride on others’ contributions (1).
What drives the emergence of cooperative behavior and how it is
possible to sustain it over time are fundamental questions that
have been of long-standing interest to social scientists (2). The
most common abstract representation of the trade-off individu-
als face between cooperating and free-riding is the prisoner’s
dilemma game, which has been widely studied both theoretically
and experimentally (3, 4).
Recent simulation-based (5, 6) and experimental (7–10)

studies investigating individuals playing the prisoner’s dilemma
game in a group have shown that the ability to form and break
connections, and thereby select with whom to play the game, has
a significant effect on the level of cooperation. The possibility of
forming new connections with cooperative individuals encour-
ages defectors to switch to cooperative behavior even if many
of their neighbors are defecting (11). The process of network
formation relies on two dimensions of information available to
individuals, which we dub reputational and social knowledge.
Reputational knowledge is what individuals know about the
previous actions of others in the group. Social knowledge is what
individuals know about the structure of the social network within
the group, which determines who plays the game with whom.
In the context of repeated interactions between two players,

reputational knowledge has long been recognized as an important
factor in determining cooperation both in theoretical (2, 12, 13)
and experimental (2, 14–17) settings. In the two-player case, it is
indifferent whether information about the other player’s previous
actions comes from a player’s past interaction or from an external

reputational mechanism because the two channels coincide.
However, this is not the case in a group of individuals in whom the
social network determines interactions. If the information about
others’ previous actions comes from the social network and in-
direct communication is infeasible, reputational knowledge will
only be available about an individual’s connections, whereas if
a reputational mechanism external to the network is present, then
an individual will have reputational knowledge about everyone
independent of the network. Previous experimental studies have
focused on the specific cases in which reputational knowledge
is available for either every other individual (7, 9, 10) or only the
neighbors (8), and therefore they cannot disentangle whether an
external reputational mechanism is necessary for cooperation or
whether reputational knowledge available through the social net-
work itself may suffice.
Social knowledge matters in the link formation process be-

cause it aids individuals in identifying opportunities in the net-
work (18, 19). For instance, in the context of cooperation, it may
help identify loci of cooperative activity in the group, which in
turn may have an effect on the aggregate level of cooperation.
Surprisingly, the role that differences in the level of social
knowledge have in the network formation process, and the in-
fluence they have on individual behavior in games on networks,
have received little attention in both the theoretical (20) and
the experimental (21) literatures. Previous experimental studies
about cooperation on networks provide subjects only with in-
formation on the identity of their neighbors, and therefore do
not investigate the role of social knowledge in determining the
network structure and the level of cooperation.
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Reputational and social knowledge are not just independent
channels but also interact to determine the social network that
emerges, and consequently the level of cooperation. Individuals
use information about previous actions to decide to whom to
connect (9), and therefore the extent of reputational knowledge
available may matter in determining the density of the network.
As already mentioned, individuals use information about the
network to decide to whom to link; for example, they may decide
to link to the connections of their neighbors, thereby increasing
the level of clustering of the network. The presence of both
reputational and social knowledge may combine to further en-
hance these effects. Previous studies do not vary the level of
reputational and/or social knowledge available to subjects, and
therefore, in addition to not being able to identify their in-
dependent influence, they cannot explore the combined effects
of reputational and social knowledge in determining the network
structure and, ultimately, the level of cooperation.
Using web-based experiments, we aim to identify the role of

reputational and social knowledge in the emergence of co-
operation and the structural features of the network associated
with cooperative activity. The general set-up is a group of sub-
jects playing several rounds of a prisoner’s dilemma game on
a network, with each round consisting of a network formation
stage followed by the game played on the resulting network. The
treatment variables are reputational and social knowledge. In
our baseline treatment, subjects only know who their neighbors
are and what the neighbors’ previous actions were. Two further
treatments build on the baseline by adding reputational and
social knowledge about everyone respectively, allowing a separate
investigation of the two channels. A final treatment has reputational
and social knowledge about everyone, allowing an exploration of
their combined effect on cooperation and the network structure.

Experimental Setup
We recruited 364 US-based subjects using the online labor
market Amazon Mechanical Turk (AMT), which provides a
more diverse subject pool compared with the typical student
samples used in laboratory studies (22, 23). Each subject is as-
signed to a group of 13 and participates in the experiment only
once. Unlike some other studies that use subjects from AMT (9,
24, 25), we emulate the workflow and procedures of lab-based
experiments by requiring subjects to read the instructions and
complete the experiment in a single uninterrupted session, and
by preventing multiple participation even by subjects who have
only seen the instructions (see SI Appendix for details), which is
analogous to the procedures of two recent contributions (7, 10).
An experimental session consists of 13–16 rounds of a multi-

player prisoner’s dilemma game on an endogenous network. The
first round starts with the empty network with no link between
subjects. After round 13, there is a 50% probability that the game
terminates in each of the following rounds. Each round consists
of three stages. The first two stages determine the network on
which subjects play the game. In stage 1, subjects can propose
costless links to any of the other subjects and can unilaterally
remove any of their existing links. There is no limit to the
number of links each subject can remove or propose. If two
subjects both propose a link to each other, or if a subject removes
a link, then the link is added or removed, respectively. If a sub-
ject has proposed a link to another subject who has not done the
same, then in stage 2 the recipient of the proposal can accept or
reject the proposal. At the end of stage 2, the network is updated
with all of the linking decisions.
In stage 3, subjects play a prisoner’s dilemma game by choosing

a cooperate (C) or defect (D) action that applies to all their
neighbors. The game is completely symmetric in payoffs: (C,C)
gives 3 points to each subject, (D,D) gives −3 points, (C,D) gives
5 points to the defector and −5 points to the cooperator, and
both subjects get 0 points if they are not linked. The symmetry of
the payoff structure leads to intuitive welfare implications: a so-
ciety of social isolates has welfare 0, and changes to welfare are
exclusively driven by the (C,C) and (D,D) links. In the data, the

welfare level is driven by the number of (C,C) links, so our
analysis focuses on the level of cooperation, which we define as
the links where both subjects choose a cooperative action as
a proportion of the 78 potential links in the network.
At the end of a round, subjects receive the following in-

formation: a reminder of the action they chose, the actions
chosen by each neighbor (or everyone, depending on the treat-
ment), and the number of points they receive from the game with
each of the other subjects. The current network is carried over to
the next round. At the end of the experiment, for each subject,
we select 12 pairings between the subject and one of the other
subjects (two random pairings in each of six randomly selected
rounds) and convert the sum of points won in those pairings into
dollars for payment.
The choice of payoffs and the payment method in our ex-

perimental design provides the correct incentive structure to
allow the formation of meaningful and realistic network struc-
tures, and consequently the isolation of which network features
are generated by global reputational and global social knowl-
edge, respectively. The symmetry of payoffs in the gains/losses
domains means that both the absence of a connection and con-
nections between a defector and a cooperator lead to no change
in social surplus. The only way to produce social surplus is a
connection between two cooperators, and, conversely, the only
way to reduce social surplus by an equal amount is a connection
between two defectors. This is in contrast to other studies that
have nonnegative (10) or small negative (8, 9) payoffs, which
lead to the emergence of overconnected networks because the
losses from being connected to a defector are nonexistent or
negligible. Moreover, the random selection of pairs for payment,
independent of whether a connection exists or not, ensures that
there are uniform incentives throughout the experiment in
forming connections, so the payment system does not introduce
biases in the emerging network structure. For instance, if we had
excluded unconnected pairs from the random selection for
payment, then subjects would have incentives to form just one
(or very few) link(s) with a cooperator to ensure a specific
pairing is picked. This choice is in contrast to previous studies
that pay the cumulative number of points subjects have earned
(8–10), which may lead to satisficing in the latest rounds, and
therefore lower incentives to change the network.
We conduct four treatments to examine the relative impor-

tance of reputational and social knowledge. In the baseline (B)
treatment, subjects only have access to local reputational knowl-
edge: a list of their current neighbors with the last five actions
chosen by each one of them and a list of the nonneighbors
without any information on their past actions. They also have
access to local social knowledge only, so they have no in-
formation on the structure of the network beyond their neigh-
bors. In the reputation (R) treatment, they have access to global
reputational knowledge, so they see a list of the last five actions
for every other subject, but they are still limited to local social
knowledge. In the network (N) treatment, they have access to
global social knowledge, so they see a network figure that shows
the connections among all of the subjects in the group, but they
only have access to local reputational knowledge. Finally, in the
reputation and network (RN) treatment, they have access to
global reputational and social knowledge by seeing the whole
network and the last five actions for all other subjects. The
network figure is interactive, allowing subjects to hover over
a node to highlight its neighbors and to drag nodes around to
rearrange the network visualization.

Results
We begin by investigating how the cooperation level, payoffs,
and structure of the network vary at the aggregate level across
treatments. In the statistical analysis, we aggregate the data at
the session level (n = 7 for each treatment) and apply the non-
parametric Kruskal-Wallis test to compare across multiple
groups to detect treatment effects, followed by the Dunn’s test
with Benjamini-Hochberg adjustment for multiple comparisons
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to explore differences between any two treatments. The choice
of a nonparametric test and the application of a correction for
multiple comparisons with a small (n = 7) sample per treatment
after aggregation is very conservative, and therefore any statis-
tically significant finding denotes a sizable treatment effect. The
aggregate analysis focuses on rounds 6–13, when information
about the previous five actions is available. In this section, KW-D
refers to the combination of these tests, and we report adjusted
P values for the Dunn’s test (the Kruskal-Wallis is always signif-
icant; see SI Appendix for all of the details and P values, including
a separate analysis of the interaction effect between the treat-
ment variables).
Fig. 1A shows the evolution of the level of cooperation: the

availability of global reputational knowledge is the main de-
terminant of the emergence and sustenance of a high level of
cooperation. Subjects in the RN treatment achieve an average
cooperation level that is larger than in the B (KW-D, P = 0.036)
and N (KW-D, P = 0.060) settings. Likewise, the cooperation
level in the R treatment is higher than the B (KW-D, P = 0.032)
and N (KW-D, P = 0.036) settings. There is no significant dif-
ference in cooperation level between the RN and R treatments,
and between the N and B ones. The evolution of the payoffs
subjects receive follows closely the evolution of the level of
cooperation. Fig. 1B shows that a consequence of the observed dif-
ferences in cooperation is that subjects in the global reputation
R and RN treatments achieve average payoffs that are approxi-
mately twice as large as those of subjects in the B and N settings
(KW-D: RN vs. B, P = 0.041; RN vs. N, P = 0.032; R vs. B, P =
0.031; R vs. N, P = 0.063).
The differences in cooperation and payoffs across treatments

are mainly driven by the dynamics, rather than the initial play in
the first round, as there is no significant difference at the 5%
level in first-round cooperation or payoffs between any of the
treatments. However, treatments R and RN begin with qualita-
tively higher cooperation levels, and the effect is significant at
the 10% level for R compared with treatments B and N (KW-D,
R vs. B, P = 0.084; R vs. N, P = 0.050). As a result, subjects earn
a marginally higher average payoff in the first round in R and RN
compared with B and N, and the effect is significant at the 10%
level for R (KW-D, R vs. B, P = 0.058; R vs. N, P = 0.088). A
potential explanation is that subjects are more cooperative in the
first round because they are aware that their actions will be
common knowledge to the group, and this effect is slightly more
pronounced in the R treatment because the lack of global net-
work information makes the presence of reputational informa-
tion more salient. This is consistent with previous findings that
contributions in a public good game are higher if subjects are
aware that their decisions will affect their reputation in a sub-
sequent indirect reciprocity game (26).
High cooperativeness is associated with the emergence of

specific structural properties of the network. Fig. 1C shows the
evolution of the density of the network, which is the ratio of the
connections in the realized network to the number of con-
nections in the complete network, where all subjects are con-
nected with each other. All treatments start with the same, very
high level of density. However, after a few rounds there is a clear
differentiation between treatments R and RN with global repu-
tation, where the network remains dense, and treatments B and
N with local reputation, where the network becomes sparser
(KW-D: RN vs. B, P = 0.017; RN vs. N, P = 0.028; R vs. B, P =
0.012; R vs. N, P = 0.014). Fig. 1D shows the evolution of the
clustering level of the network, which captures the extent to
which a subject’s connections are connected to each other.
Similar to the evolution of density, the networks that form in the
first round display the same high level of clustering, and the
presence of global reputational knowledge leads to the emer-
gence of highly clustered networks (KW-D: RN vs. B, P = 0.017;
RN vs. N, P = 0.022; R vs. B, P = 0.030; R vs. N, P = 0.048).
We can gain additional insight on the relation between co-

operation and network structure by conducting an individual-
level analysis to investigate how the association between the

position of an individual in the network and the individual’s
cooperativeness depends on the availability of reputational and
social knowledge. For each treatment, we conduct a logit panel
estimation with SEs clustered at the session level, where the
dependent variable is the action taken by subjects. We focus on
several covariates that capture an individual’s position in the
network structure, and we include a large number of controls
(see SI Appendix for details).
In the baseline treatment B, no network metric is a significant

correlate of cooperativeness, suggesting that the formation of
a social structure associated with cooperativeness is not possible
when subjects only know the identity and the previous actions of
their neighbors. However, network metrics become significant
once we add global reputational and global social knowledge
independently in the R and N treatments, respectively, and
these differ depending on the treatment, which suggests that
each type of knowledge plays a different role in the network
formation process.
The availability of global reputational knowledge is necessary

for the emergence of cooperative hubs: in the R and RN treat-
ments, the number of connections (Degree) of an individual is
a highly significant (R: coefficient = 13.38; RN: coefficient =
36.80; P < 0.001 for both) positive correlate of cooperative be-
havior, whereas the correlation is insignificant in the B and N
treatments, in which only local reputation about the neighbors is
available. In other words, cooperators thrive and amass more
connections when reputational knowledge about others is avail-
able, increasing in this way the density of the overall network.
When global reputational knowledge is available, the other sig-
nificant negative correlate of cooperativeness is Betweenness
(27): individuals who connect otherwise separate parts of the
network tend to be defectors in both the R (coefficient = −10.85;
P < 0.001) and RN (coefficient = −19.61; P < 0.01) treatments,
but the correlation is again insignificant in the N and B treatments.
The addition of global social knowledge to the baseline leads to

a significant positive correlation (coefficient = 1.21; P < 0.05)
between the level of clustering and cooperativeness in the N
treatment. This is because the probability that a subject proposes
a link to another subject in the N treatment is increasing in the
number of neighbors they have in common (coefficient = 0.18; P <
0.001), but this relation is insignificant in any of the other treat-
ments (see SI Appendix for details). Interestingly, in the R treat-
ment, where global reputational knowledge is available but global
social knowledge is absent, clustering is negatively associated with

Fig. 1. (A) Cooperation level, (B) average payoff, (C) density, and (D) clus-
tering over 13 rounds of play for treatments B (yellow), N (red), R (green),
and RN (blue). See SI Appendix, Aggregate level for a full statistical analysis
and results.
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cooperativeness (coefficient = −2.08; P < 0.05). In the RN treat-
ment, the two effects cancel out, and clustering is not correlated
with cooperativeness.
In summary, our analysis so far shows that the availability of

global reputational knowledge increases the level of cooperation,
payoffs, and the density and clustering level of the network,
whereas global social knowledge does not have an effect on these
aggregate metrics. However, mouse movement tracking data
reveal that subjects make active use of the network information.
The information about the network is displayed using an in-
teractive figure that allows subjects to highlight the neighbors of
a node by mouse hovering and to rearrange the network layout
by dragging nodes around. On average, subjects hover over 4.3
(SD = 1.5) and 4.9 (SD = 1.3) nodes in each round of the RN and
N treatments, respectively. Moreover, subjects drag a node to
rearrange the network 10.5% of the times they hover over it in
the N treatment and 11.8% of the times in the RN treatment (see
SI Appendix for details). For what purpose are subjects using the
interactive figure, and does it have any effect on outcomes?
As we have seen, in the N treatment, subjects use the network

information in the network formation process: the probability
that a subject proposes a link to another subject is increasing in
the number of neighbors they have in common. The aggregate
data analysis may hide the more subtle role played by global
social knowledge in the network formation process, so we further
explore its role by conducting an analysis of the communities that
emerge in the evolution of the network. We use the well-known
Louvain (28) algorithm to detect communities within the net-
work (see SI Appendix for details).
We rank the communities according to their size and focus on

the largest (C1) and second largest (C2) ones after they have
reached a stable composition. The most frequent outcome of the
algorithm is the decomposition of the network into two com-
munities, and C1 and C2 together make up, on average, 85% of
the group for all treatments. C1 has an average size of 8.0 and
8.1 subjects in treatments R and RN, respectively, and an average
size of 6.6 and 6.8 subjects in B and N, respectively. The size of
C2 is about five subjects, on average. There is no significant
difference in the size of C1 or C2 across treatments. In the sta-
tistical analysis, we aggregate the data at the session level and
explore within-treatment differences between C1 and C2 by us-
ing the nonparametric Mann–Whitney test (M-W hereafter). A
stability analysis reveals that the composition of the communities
becomes more stable after round 5, which further corroborates
the choice to conduct the analyses by aggregating the data from
round 6 onward (see SI Appendix for details).
An analysis of the dynamics of link formation within treatment

at the community level reveals that the presence of both global
reputational and global social knowledge creates a differentia-
tion in the behavior of subjects in C1 compared with that of
subjects in C2. Fig. 2A shows that in the RN treatment subjects
in C1 remove more connections on average than subjects in C2:
the difference between the average number of connections re-
moved by a member of C1 and by a member of C2 is significant
in RN (M-W, P = 0.018), but it is insignificant in any of the other
treatments. The mirror image of this metric is the number of
links that are removed by others, and the results are consistent:
RN is again the only treatment in which there is a significant
difference between C1 and C2 (M-W, P = 0.002), and as we
would expect, it is members of the C2 community that have more
links removed than members of the C1 community (Fig. 2B).
The removal of connections by members of C1 is only effective

if the subjects who are outside (or have been expelled) are un-
able to (re)join the C1 community. Fig. 2C shows that this is
indeed the case: the difference between the average number of
link proposals rejected by a member of C1 and those rejected by
a member of C2 is significant in RN (M-W, P = 0.018), but it is
insignificant in any of the other treatments. This shows that there
are differences in the network formation process between
members of C1 and C2 that are only present when both global

reputational and global social knowledge are available, but do
these differences have an effect on outcomes?
The addition of global social knowledge to global reputational

knowledge has an effect on the distribution of cooperative
activity in the group. Fig. 3A shows the difference in the co-
operation level between communities C1 and C2 for each
treatment. In the RN treatment, community C1 has a 37% higher
level of cooperation than community C2 (M-W, P = 0.025),
whereas in all other treatments there is no significant difference
between the level of cooperative activity in C1 and C2. In other
words, the availability of both global reputational and social
knowledge allows cooperators to form their own community by
actively removing links from defectors and refusing to link with
them again, and therefore relegating them to the C2 community.
When either global reputational or global social knowledge is
unavailable, this process does not occur and cooperators are
evenly distributed between the two communities.
The regression analysis at the individual level confirms that

the presence of both global reputational and global social
knowledge leads to an uneven distribution of cooperative activity
in the group. In all of the regressions, we include a Community
dummy that is equal to 1 if the individual belongs to C1 and
equal to 0 if the individual does not belong to C1. In the RN
treatment, there is a positive and significant association between
the Community dummy and the level of cooperation (coefficient =
2.02; P = 0.01), whereas there is no significant association for any
other treatment. In other words, cooperators congregate in the
same community when both global reputational and social
knowledge are available, while they are spread out across dif-
ferent communities otherwise.
When both global reputational and global social knowledge

are present, members of C1 generate, on average, more surplus
from each interaction with another member of their own com-
munity compared with members of C2. Fig. 3B shows the dif-
ference between the average payoff generated by an interaction
with a neighbor within community C1 and by an interaction with
a neighbor within community C2 for each treatment, which we
can interpret as a measure of how much surplus a community
generates. In the RN treatment, each interaction in the C1
community generates, on average, 0.74 additional payoff points
than an interaction in the C2 community (M-W, P = 0.018),

Fig. 2. Difference between members of the largest and the second-largest
communities in average (A) links removed, (B) removals received, and (C)
proposals rejected per round for treatments B, N, R, and RN. Analyses are
based on aggregated data at the session level after round 5. Error bars
indicate ±1 SEM. Here we only present the P values for significant comparisons
(M-W, P < 0.05). Between C1 and C2 within each treatment: (A) links re-
moved: RN, P = 0.018; (B) removals received: RN, P = 0.002; and (C) proposals
rejected: RN, P = 0.018. See SI Appendix, Community level for a full statistical
analysis and results.
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whereas the difference is insignificant for any of the other
treatments. This effect is sizable: a member of C1 in RN has, on
average, 6.4 links with other members of C1, so if the subject
were instead a member of C2, and had the same number of
links with C2 members, then the potential loss in payoff would
be 4.7 points per round, or approximately 23% of the average
payoff per round in RN.

Discussion
The point of departure of this study was recent experimental
literature showing that the possibility for subjects to choose their
partners by forming and breaking connections leads to the
emergence of cooperation in the prisoner’s dilemma game. In
these studies, reputational knowledge was kept fixed, so subjects
knew either only the previous actions of their neighbors (8) or
the previous actions of everyone in the group (7, 9, 10). More-
over, subjects only had access to local social knowledge, and thus
had no information about the structure of the network with the
exception of their neighbors. Our contributions are to show that
the extent of reputational knowledge and the extent of social
knowledge play crucial and different roles for the emergence and
distribution of cooperation, as well as the network features as-
sociated with cooperative activity.
Our first contribution is to show that the presence of global

reputational knowledge is crucial for the emergence and suste-
nance of a high level of cooperation. This highlights that the
main driver of the results in previous experiments (7, 9, 10) was
the implicit assumption of the availability of global reputational
knowledge. The treatments in which subjects have access to the
previous five actions of everyone in the group achieve a signifi-
cantly higher level of cooperation than the treatments in which
they only have access to the neighbors’ previous five actions.
These findings are in agreement with a recent, similar experi-
ment (29) that shows that reputation fosters cooperation by
varying the number of past actions available to subjects. The
results show the crucial role of global reputational knowledge
in determining the emergence of cooperative hubs: individuals
who have a high number of connections because they are highly
cooperative.
Our second contribution is to show that the availability of

global social knowledge on its own affects the process of net-
work formation but has no effect on the overall level of co-
operation, payoff, and aggregate network metrics. Specifically,
we show that the availability of global social knowledge is as-
sociated with a subject’s tendency to propose connections to
other subjects who are already connected to her neighbors,
which leads to a positive correlation between the individual’s
clustering coefficient and her cooperativeness. Previous theo-
retical work (18, 19) has highlighted the importance of social
knowledge in the process of network formation, and our study

shows the first evidence to our knowledge of its influence in the
network formation process. Moreover, the role of social
knowledge in games on networks has so far been almost com-
pletely unexplored experimentally, with the exception of a re-
cent experiment showing that social knowledge matters in
public good games on networks (21). The systematic experi-
mental study of the role of social knowledge in network for-
mation and in game play across different types of games is
a promising area of future studies.
Our third contribution is to show that the availability of both

global reputational and global social knowledge has an effect on
the distribution of cooperative activity in the group. The pres-
ence of both types of knowledge allows cooperators to remove
links from defectors and reject their link proposals in future
rounds. In this way, cooperators are able to form a community
that is more cooperative than the community of defectors, and it
generates a larger social surplus from within community inter-
actions. An open question for future research is the scalability
and robustness of these findings to the overall size of the group.
It is reasonable to imagine that the complexity of processing
information about the network grows exponentially with the size
of the network, making it more challenging to use it in the
process of network formation. However, at the same time, the
benefits from belonging to the cooperative community grow with
the size of the community, making the establishment of a large
cooperative community more attractive in a larger group.
The finding that global reputational information is crucial for

the emergence of a high level of cooperation is consistent with
previous “theoretical and empirical studies of indirect reciprocity
[that] stress the importance of monitoring not only partners in
continuing interactions but also all individuals within the social
network” (30) and with the finding that cooperation is higher in
connected networks within which everyone is monitored (31). As
predicted by theory (32, 33), experimental studies on indirect
reciprocity with well-mixed populations show that reputation is
important for cooperation (14, 34) and that the level of co-
operation increases with the richness of the reputation in-
formation (35), as well as the punishment/reward technology
(36) available. In this study, we find that, in the context of
dynamic networks, cooperation almost doubles if reputation is
available about everyone, rather than just one’s connections.
The experimental result that the presence of global reputa-

tional knowledge is essential for the emergence of a high level of
cooperation contributes to a growing and fruitful two-way di-
alogue between the theoretical and experimental literatures that
study cooperation in networked contexts. For instance, a recent
experimental contribution has shown that the structural features
of a fixed network have an effect on the level of cooperation if
the benefits from cooperation are large enough (37): this is in
agreement with theoretical studies (38–42) and reconciles the
fact that the theoretical predictions had not received support
from previous experimental studies on fixed networks (24, 43–
46). In an analogous fashion, our experimental results deviate
from several theoretical studies showing that global reputational
knowledge is not necessary for the emergence of a high level of
cooperation (5, 47–52). Our experimental results suggest that
some element of human psychology not included in the theo-
retical models may be the driver of the important role of global
reputational knowledge in the experiment. Investigating the be-
havioral mechanism driving this discrepancy is a fruitful area of
future research.
Mechanisms that collect information about reputation have

existed for a long time (53, 54), but the development of social
networking tools (e.g., Facebook, LinkedIn) that augment indi-
viduals’ social knowledge is a recent phenomenon. We still have
a limited theoretical and empirical understanding of the effects
of having access to this additional social knowledge (19). The
results of our study suggest that an effect of these tools is to
facilitate the formation of communities whose members share
behavioral commonalities. In the context of cooperation, we find
that access to global social knowledge in addition to global

Fig. 3. Differences between members of the largest and the second-largest
communities in (A) cooperation level and (B) average payoff per interaction
with a community member for treatments B, N, R, and RN. Analyses are
based on aggregated data at the session level after round 5. Error bars
indicate ±1 SEM. Here we only present the P values for significant compar-
isons (M-W, P < 0.05). Between C1 and C2 within each treatment: (A) coopera-
tion level: RN, P = 0.025; and (B) community neighbor payoff: RN, P = 0.018.
See SI Appendix, Community level for a full statistical analysis and results.
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reputational knowledge allows the emergence of a community
of cooperators. Exploring whether this type of effect of social
knowledge extends to other domains is an important direction
for future inquiries.

Materials and Methods
We recruited US-based subjects on AMT, using a simple qualification task and
a sociodemographic survey to obtain their AMT ID information. We invited
a randomly drawn subset of these subjects to a total of ninemetasessions that
took place at 11:00 AM EST between December 12 and 21, 2013. Each
metasession comprised between two and five simultaneous experimental
sessions, with the exact number depending on turnout. In each metasession,
subjects signed in using a URL to our UbiquityLab web platform and par-
ticipated in a session by completing the following steps: Waiting Room;
Instructions and Interface Tour; Quiz; Game; Final Questionnaire; and Pay-
ment Confirmation. We paid subjects using AMT within 30 minutes after the
end of each metasession. In total, 390 subjects took part in 30 experimental
sessions: we used 28 sessions (seven sessions per treatment, 364 subjects in

total) because two sessions experienced dropped out subjects after the game
started and were excluded from our main analysis. The average earnings per
subject were $5.13, including a $2 fixed fee for participation (55). Subjects
remained completely anonymous throughout the qualification task and
the experiment. Repeated and multiple participation were prevented by
logging subjects’ AMT IDs and their IP addresses. See the SI Appendix
for further details about the experiment. This research was approved by
the Cambridge Experimental and Behavioral Economics Group on the use
of human subjects, and informed consent was obtained from subjects
before participation.
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