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Permafrost soils contain enormous amounts of organic carbon
whose stability is contingent on remaining frozen. With future
warming, these soils may release carbon to the atmosphere and act
as a positive feedback to climate change. Significant uncertainty
remains on the postthaw carbon dynamics of permafrost-affected
ecosystems, in particular since most of the carbon resides at depth
where decomposition dynamics may differ from surface soils, and
since nitrogen mineralized by decomposition may enhance plant
growth. Here we show, using a carbon−nitrogenmodel that includes
permafrost processes forced in an unmitigated warming scenario,
that the future carbon balance of the permafrost region is highly
sensitive to the decomposability of deeper carbon, with the net bal-
ance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil
nitrogen mineralization reduces nutrient limitations, but the impact
of deep nitrogen on the carbon budget is small due to enhanced
nitrogen availability from warming surface soils and seasonal asyn-
chrony between deeper nitrogen availability and plant nitrogen
demands. Although nitrogen dynamics are highly uncertain, the
future carbon balance of this region is projected to hinge more on
the rate and extent of permafrost thaw and soil decomposition
than on enhanced nitrogen availability for vegetation growth
resulting from permafrost thaw.
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As Earth warms in response to human CO2 emissions, a crit-
ical uncertainty in the magnitude of expected warming is the

degree to which changing climate will lead to changes in the
carbon balance of terrestrial ecosystems and thus feed back on
climate. High-latitude ecosystems underlain by permafrost soils
are a plausible candidate to amplify warming, because they con-
tain an enormous amount of soil organic carbon (1) that is cur-
rently stabilized by being frozen or saturated, but may warm and
thaw in the future (2). However, high-latitude plant productivity is
tightly linked to soil nutrient cycling; in these strongly N-limited
ecosystems, increases in decomposition may lead to greater N
availability and a consequent increase in plant growth that may
mitigate C losses (3). Currently, the high latitudes appear to be
undergoing a period of carbon cycle intensification characterized
by both greater inputs and outputs (4), and central estimates of a
synthesis of site-level observations, regional inversion studies, and
process models suggest an overall strengthening of the regional
C sink (5). Continued warming of these ecosystems will likely be
accompanied by continued increases in plant growth and soil
C losses; ecosystem models suggest a near cancellation of C gains
and losses (6). However, these estimates may underestimate the
role of deeper soil C stored in permafrost, whose magnitude is
now thought to be larger than earlier estimates suggested (1). Site-
based accounting of permafrost C stocks suggests that the quantity
of such carbon made vulnerable with warming can be large (7),
and that losses from this deep, old C may be the dominant long-
term high-latitude response to warming (8).

Most Earth system models (ESMs), which to date have not
accounted for many processes associated with thawing perma-
frost, project high-latitude carbon sinks accompanying warming
(9–11). The unique feature of permafrost-affected soils is that
there exists a depth beyond which summertime warmth is in-
sufficient to thaw the soil. This limit leads to a separation be-
tween surface layers (in which there are both plant-derived
C inputs and respiratory losses) and deep layers, which, while
they remain frozen, have little C cycle activity but, upon thaw, can
potentially have large respiratory losses that are not compensated
by inputs (12). Several recent climate-scale land models have in-
cluded a vertical dimension to soil biogeochemical cycling to
resolve depth-dependent changes in soil organic matter (SOM)
respiration rates, with either carbon initialization to match soil
C maps (13) or via slow mixing by cryoturbation between the
seasonally thawed active layers and deeper permafrost layers
(14). Including these processes leads to a sign change in the pro-
jected high-latitude carbon response to warming, from net C gains
driven by increased vegetation productivity and storage resulting
from warming and CO2 fertilization to net C losses from enhanced
SOM decomposition (13, 15). This qualitative result is supported
by simplified permafrost models (7, 16, 17). However, many un-
certainties remain on the response magnitude, including (i) the
extent and rate of physical active layer deepening and permafrost
loss with warming (18, 19); (ii) the role of water-saturated anoxic
soils in reducing CO2 losses (20), increasing CH4 emissions, and
generating fine-scale heterogeneity in responses; (iii) the degree
that N mineralized with decomposing permafrost C can fertilize
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plant productivity to offset C losses (21, 22); and (iv) the rate and
extent to which decomposition occurs in deeper soils after thawing.
The purpose of this paper is to explore the relative magnitudes

accompanying warming of carbon losses due to enhanced de-
composition versus carbon gains due to increased vegetation
productivity in response to elevated CO2 mole fraction, amelio-
rated growing condition, and N fertilization resulting from en-
hanced decomposition. In particular, we are interested in the
question of how deep SOM initially in permafrost layers may
behave after thawing, via its role as both a source of C to the
atmosphere and N to stimulate vegetation productivity.

Materials and Methods
We have includedwithin the Community LandModel, version 4.5 (CLM4.5BGC)
(23–27), a basic set of permafrost processes to allow projection of permafrost
carbon−climate feedbacks. This model differs from previous permafrost C cycle
models by also including a full N cycle, which allows consideration of N limi-
tations on plant productivity, and therefore allows changing soil decomposition
to affect productivity via N availability.

Soil C turnover in CLM4.5 is based on a vertical discretization of first-order
multipool SOM dynamics (23, 24),
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where Ci is the carbon in pool i at vertical level z, Ri are the carbon inputs to
pool i, Tji is a transfer matrix of decomposition from pool j to pool i, ki is the
decay constant of pool i, and D and A represent vertical transport by dif-
fusion and advection, respectively. The ki is modified by the soil environment
for all pools,

ki =k0,i rT rwrOrz,

with k0,i an intrinsic, pool-specific rate, rT the direct temperature control
(Q10 = 1.5), rw the liquid moisture control, rO the oxygen control, and rz the
direct depth control, which is defined as
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with Zτ a depth control parameter discussed below.We use a vertical grid with
30 levels that has a high-resolution exponential grid in the interval 0–0.5 m
and fixed 20-cm layer thickness in the range of 0.5–3.5 m to maintain reso-
lution through the base of the active layer and upper permafrost, and reverts
to exponentially increasing layer thickness in the range 3.5–45 m to allow for
large thermal inertia at depth. All other parameters are as listed in ref. 24.

To understand the role of N cycle inmediating C cycle responses, we define
a C-only model, following the approach of ref. 28, in which gross primary
productivity (GPP) is not limited by soil mineral nitrogen, but instead each
Plant Functional Type (PFT) has a constant fractional reduction in the rate of
photosynthesis to give equivalent preindustrial net primary productivity
(NPP). This reduction is calculated by finding the time-constant N limitation
factor for each PFT that gives the same total PFT-integrated NPP for pre-
industrial conditions (repeating 1901–1920 meteorology, 1850 CO2) as the
coupled C−N model (SI Appendix, Table S1).

Our experimental design is an offline analog to a Coupled Carbon Cycle
ClimateModel Intercomparison Project (C4MIP) experimental setup (29) under an
unmitigated CO2 increase scenario, and includes (i) control; (ii) biogeochemically
forced, i.e., plants experience the physiological effects of elevated CO2 while
climate is not impacted by CO2 radiative effects; (iii) climatically forced, i.e.,
ecosystems respond to warming but not the physiological effects of CO2; and
(iv) fully forced, so that both physiological and climate effects of increasing CO2

are considered. Land use and N deposition are identical for all cases.
We force CLM4.5BGC with time-varying meteorology, CO2 concentration,

N deposition, and land use change to estimate the C cycle response to global
change. The atmospheric forcing data for 1850–2005 are taken from the
combined Climatic Research Unit and National Center for Environment
Predication (CRUNCEP) dataset (data available at dods.ipsl.jussieu.fr/igcmg/
IGCM/BC/OOL/OL/CRU-NCEP/), which merges high-frequency variability from
the National Centers for Environmental Prediction−National Center for At-
mospheric Research reanalysis (30) with the monthly mean climatologies
from the CRU temperature and precipitation datasets (31). Projection
period forcing is calculated by applying monthly climate anomalies/
scale factors from a Community Earth System Model, version 1 (CESM1)

simulation for the scenarios Representative Concentration Pathway 8.5
(RCP8.5) for the years 2006–2100 and Extended Concentration Pathway 8.5
(ECP8.5) for the years 2100–2300 to repeating 1996–2005 CRUNCEP mete-
orology. For constant climate (control and biogeochemically forced) runs,
atmospheric data are repeated over the period 1901–1920. CO2 concen-
trations follow transient historical (1850−2005), RCP8.5 (2006−2100), and
ECP8.5 (2101−2300) concentrations for biogeochemically and fully forced
runs, and remain fixed at 1850 levels (284.7 ppm) for control and climati-
cally forced runs. Atmospheric N deposition is from coupled atmospheric
chemistry−climate runs (32), land use follows the historical (1850−2005)
and RCP8.5 (2006−2100) scenarios (33), and both are transient in all cases.
After 2100, land use is static and wood harvest is zero.

We consider sensitivity of the model to two separate processes: N mod-
ulation of C cycle feedbacks and the role of deep versus shallow SOM. To
examine N control on C cycle feedbacks, we compare the C−N and C-only
model configurations discussed above.

To understand the role of deep versus shallow C, we vary the de-
composability of deep C in the model. As discussed above, heterotrophic
respiration (HR) is limited in CLM4.5 by temperature, moisture, and oxygen
(resolved controls). Our previous work with CLM4.5 showed that these re-
solved controls are insufficient to predict both observed total C and 14C SOM
profiles in temperate soils (23). This result is consistent with some (34), but
not all (35), recent modeling analyses using similar vertically resolved carbon
decomposition models. To address this issue, we defined in CLM4.5 an
e-folding distance, Zτ, that modifies HR by decreasing the respiration flux from
each pool as an exponential function of depth (23). This depth control of HR is
intended to represent net impacts of soil microbial controls, pore-scale oxygen
transport, mineral sorption, priming effects, aggregation, and other un-
resolved processes, which observations suggest reduce decomposition rates at
depth beyond the limitations of temperature, moisture, and bulk oxygen
availability (36, 37). To the extent that such direct depth effects are due to
long-term processes such as limitation by microbial activity or priming, they
may not apply to highly nonequilibrium cases such as thawing permafrost, and
because there is a large amount of SOM C in the 1- to 3-m depth interval in
permafrost regions (1, 7), the decomposability of this carbon to warming
represents a potentially important feedback with climate. We explore the
sensitivity of the permafrost carbon−climate feedback to vertical (0−3 m)
gradients in soil decomposability with a perturbed parameter experiment,
comparing cases with high (Zτ = 0.5 m), medium (Zτ = 1 m), and low (Zτ = 10 m)
additional limitation on decomposition with depth.

A recent model intercomparison (38) highlighted the large uncertainties
in a broad suite of terrestrial carbon cycle models. We note that the model
used here (CLM4.5) was not present in that intercomparison but does per-
form relatively well compared with the FLUXNET (39) estimates for GPP
(SI Appendix, Fig. S1). We also not that, while CLM does include the hydrological
impedance of drainage by permafrost (27), it does not include subgridscale
heterogeneity in soil moisture, and therefore may overestimate overall respira-
tion rates as it does not maintain a fully saturated fraction of grid cells.

Results and Discussion
The imposed warming leads to large losses of near-surface per-
mafrost area and volume by 2300 (Fig. 1A and SI Appendix, Fig.
S2); most of the thaw occurs in the period 2050–2150, which is
somewhat delayed relative to losses seen in fully coupled land−
atmosphere modeling experiments using an earlier version of CLM
(40). This relative delay is due partially to our use here of obser-
vationally derived atmospheric forcing data, which leads to colder
simulated preindustrial soil temperatures. Taking the mean across
the permafrost domain, defined as areas initially having permafrost
within 3 m of the surface, the environmental changes have a strong
effect on soil decomposition rates (Fig. 2 A−D). The direct tem-
perature effect is modest, as the temperature control is represented
with a Q10 value of 1.5. The stronger controls on SOM turnover are
liquid moisture availability, which is a function of unfrozen water
content and therefore is sharply increased when soils thaw, and
oxygen, which becomes a weaker limitation when permafrost thaws
and water is able to drain from the soil. The product of these terms
thus reverses its vertical profile from the initial period in which
decomposition proceeds more slowly at depth (in permafrost) than
at the surface (active layer) to one in which decomposition pro-
ceeds more rapidly at depth (in perennially thawed talik) than at
the surface (seasonally frozen ground).
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In the climatically forced simulation with strongly inhibited de-
composition at depth (Zτ = 0.5 m), vegetation C initially increases
relative to the control run due to improving growing conditions (Fig.
1B). As warming progresses, vegetation C is lost starting around
2100 due to increasing fire frequency in the boreal zone. The pro-
jected vegetation response to CO2 shows that the permafrost do-
main is highly N limited, and thus the vegetation C in the coupled

C−N model responds only weakly to the physiological effects of
increased CO2 concentration alone compared with the C-only
model, but that under the combined effects of warming and ele-
vated CO2, much of this limitation is removed due to additional N
released by mineralization of decomposing SOM primarily near the
surface (as discussed below). Thus, there is a strong N-mediated
synergistic effect between warming and CO2 fertilization (41),

A B

C D Fig. 1. CLM near-surface permafrost area and C
stock responses to forcings (combinations of changing
vs. fixed CO2 and climate), and model configurations
(C only and combined C−N) for the case with relatively
insensitive deep C (Zτ = 0.5 m). (A) Near-surface per-
mafrost area, defined as area with permafrost simu-
lated in upper 3 m of soil. (B) Change in vegetation
C over the permafrost region. Increase in vegetation
C at 2100 is due to a discontinuation of wood harvest
after the end of the RCP8.5 land use dataset and
occurs in all cases. (C) Change in total C of the per-
mafrost region, defined as the geographic area
with permafrost in upper 3 m for 1850–1900 period.
(D) Change in soil and litter C over permafrost do-
main. The solid and dashed lines represent the
coupled carbon and nitrogen simulation and the
carbon-only simulation, respectively.

A B

C D

Fig. 2. Soil decomposition environmental rate scalar
values in the fully forced run, annual mean and
averaged over the permafrost region, shown as a
function of depth and time: (A) temperature scalar,
(B) liquid moisture scalar, (C ) oxygen scalar, and
(D) the product of these three environmental con-
trols on decomposition. The primary limitation to
decomposition associated with freezing is via the
moisture scalar; thus it shows the strongest change
in magnitude and vertical profile with warming
and thawing.
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leading the fully forced C−N model to behave similarly to the
C-only model for total ecosystem carbon: Carbon gains by enhanced
vegetation growth are offset by SOM losses from shallow soils
(Fig. 1C), leading to only a small residual sink (in the C-only
case) or source (in the C−N case) by 2300 (Fig. 1D).
Allowing decomposition to proceed more rapidly at depth by

increasing the value of Zτ results in less preindustrial soil carbon
throughout the permafrost region (SI Appendix, Fig. S3; 1,582 Pg
for Zτ = 0.5 m, 1,331 Pg for Zτ = 1.0 m, and 1,032 Pg for Zτ = 10 m,
compared with 29–30 Pg C in vegetation C). This reduction in
initial C is due to higher decomposition rates at depth during the
model initialization period, and the lower stock (higher value
of Zτ) is in better agreement with estimates of integrated per-
mafrost C to 3 m from observations [1,060 Pg C (7)]. As Zτ

increases, the deeper soil carbon is much more vulnerable to loss
with warming (Fig. 3A), so that by 2300, the total C loss from the
region is 164 Pg for Zτ = 10 m compared with 21 Pg for Zτ =
0.5 m (Fig. 3B).
The additional N released from deeper SOM turnover has

only a small effect on plant productivity, with <5 Pg additional
increase in vegetation C for Zτ = 10 m compared with Zτ = 0.5 m
(relative to ∼40 Pg C increase by 2300, Fig. 3C). This small
sensitivity of vegetation to deep soil N mineralization has two
causes: (i) Much of the N limitation is already relieved by in-

creased decomposition in surface soils, and (ii) the phase lag of
heat conduction shifts the deeper SOM mineralization later into
fall and winter, away from the period of peak N demand during
the high-GPP spring and summer periods (Fig. 4). This sea-
sonal offset allows a greater fraction of N to be lost via leaching
and gaseous loss pathways. These losses are consistent with
observations showing that the highest dissolved losses from arctic
ecosystems occur during the spring meltwater pulse (42). We
note that CLM4.5 does not currently represent the complexity of
soil microbial N cycling found in response to experimental winter
warming treatments (43). The large amount of N released, par-
ticularly if not used by plants, may have significant impacts, such
as on N trace gases (44) and aquatic ecosystems. We emphasize
that the representation of such N cycle processes are particularly
uncertain in models such as CLM, and thus this result serves
primarily to underscore the importance of these processes in
governing C cycle responses to warming.
At the regional scale, the projected timing of permafrost C

losses is delayed relative to physical permafrost thaw; while
about half the permafrost area has fully thawed by 2100, the
permafrost soil C losses in the fully forced scenario are only
beginning then. This regional response is the aggregate of dif-
ferent dynamics at the scale of individual grid cells (Fig. 5). Typical
trajectories for the Zτ = 10 m case are that grid cells are initially

A B CPF Domain Total Ecosystem CPF Domain Soil C PF Domain Vegetation C

Fig. 3. C response todecomposability of deepC in the fully forcedC−Ncase. (A) Soil and litterC changes over thepermafrost region. (B) Change in total ecosystemC
as a function of varied Zτ parameter. (C) Change in vegetation C. Slight increase in vegetation between cases is due to enhanced N mineralization from deep soils.

A B

DC

Fig. 4. Mean annual cycles of key ecosystem fluxes
for three time periods of the fully forced C−N case.
(A) GPP, (B) net N mineralization, (C) net ecosystem
exchange (NEE, positive = CO2 source), and (D) het-
erotrophic respiration. Relative increase in GPP be-
tween experiments is smaller than proportional in-
crease in N mineralization with deeper decomposition.
Shift in N mineralization with enhanced deeper SOM
decomposition toward autumn is due to longer
decomposing than growing seasons, and phase lag
of temperature in deep soils. The solid and dashed
lines represent Zτ = 0.5 m and 10 m, respectively. All
cases show the mean of the geographic region in
which permafrost initially occurs in the model.
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neutral or sinks, and then switch to become sources when SOM
decomposition exceeds vegetation productivity. Although some
grid cells either do not transition to sources or do so due to boreal
forest processes (principally fire), the main group of permafrost-
dominated grid cells transition before a 3-m thaw depth, sug-
gesting that initial active layer deepening is sufficient for a source
transition. Once decomposition-driven C losses overtake growth-
driven gains, C losses persist long after the soils have thawed (SI
Appendix, Fig. S4 and Movie S1).
The direct C loss due to climate forcing alone in the presence of

elevated CO2 (i.e., fully forced minus biogeochemically forced)
ranges from 66 Pg (Zτ = 0.5 m) to 207 Pg (Zτ = 10 m), corre-
sponding to a permafrost region feedback factor, γ (10), of
7.3–23 Pg C·K−1 [corresponding to 0.04–0.11 W m−2·K−1 (45)] given
the global mean 9 °C projected warming. For ΔT, we use the global
mean of the anomaly forcing over the period 2005–2300, plus
the observed 20th century warming in the CRU dataset (which
determines the temperature trends over the historical period in
the forcing data). This feedback factor shows a threshold response
with essentially no feedback until global ΔT exceeds 4 °C and in-
creasing rapidly afterward (SI Appendix, Fig. S5). The permafrost
γ calculated here is at the low end of the range estimated in In-
tergovernmental Panel on Climate Change Fifth Assessment Re-
port (IPCC-AR5) (9) based on simplified models; this is partly
because we include both vegetation growth and a set of stabilizing
responses, including the synergistic N mineralization and ele-
vated CO2 effects, within this estimate.
In addition to direct C cycle feedbacks, there is widespread

interest in the greenhouse gas contribution of CH4 emissions from
thawing permafrost. The additional and deeper decomposition
projected here leads to slightly higher CH4 emissions (∼+10 Tg
CH4−C·y−1 with Zτ = 10 m versus Zτ = 0.5 m, which equates
to ∼90 Tg CO2−C·yr−1 equivalent, assuming a global warming

potential (GWP) of 25; SI Appendix, Fig. S6), but these emissions
would contribute only a small extra warming compared with the
increased CO2 emissions (∼+900 Tg C·yr−1 CO2 emissions in
Zτ = 10 m versus Zτ = 0.5 m during 22nd century). We note that
projected CH4 emissions, and their sensitivity to climate forcing,
are highly uncertain (25).
Comparing the control of ecosystem C feedbacks by deep soil

decomposability over the permafrost domain compared with the
mean of the rest of the world where permafrost is not initially
present (SI Appendix, Figs. S7 and S8) shows that the permafrost
region is the primary area in which decomposition dynamics
under warming are qualitatively different at depth than at the
surface, and thus is the primary region where allowing deep C
cycling to proceed rapidly (Zτ = 10 m) vs. slowly (Zτ = 0.5 m) has
a strong effect on the projected overall C budget.
Large uncertainties remain in the ability to project permafrost C

losses in particular, and high-latitude ecosystem C responses to
climate change in general. Arctic ecosystems are complex, and poorly
represented in global-scale terrestrial carbon cycle models (38). The
results shown here, that highly divergent responses arise from
plausibly different decomposition dynamics in deep soils, demon-
strate a need to focus on the mechanistic controls of decomposition
(e.g., microbial community dynamics, mineral surface interactions,
root interactions) in thawing permafrost. Observations of rapid
microbial community adjustment and utilization of frozen carbon
(46), and comparable C loss rates during incubation of SOM from
shallow versus deep soil layers in permafrost-affected soils (47),
suggest that decomposition dynamics may be highly dynamic and
thus follow more closely the Zτ = 10 m scenario outlined here.
However, many relevant processes are still poorly represented in
CLM and analogous models; these include the use of static veg-
etation distributions and simple vegetation community defi-
nitions, poor knowledge of complex C−N interactions such as
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Fig. 5. Timing of C balance and permafrost
thaw. (A) Trajectories of 50-y smoothed carbon
balance for all grid cells in permafrost region.
The regional mean trajectory (red line in A)
begins as a C sink, then switches to a source;
individual grid cells (thin black lines) begin as
either neutral or C sinks, and then some of these
transition to sources. Here we define source
transition timing as the year in which the
smoothed C flux exceeds 25 gC·m−2·y−1. (B) Com-
parison of thaw year against C sink transition
year for each grid cell. (C ) Year in which the
permafrost thaws at each grid cell to a depth of
at least 3 m; red grid cells do not thaw to that
depth during the simulation. (D) Year of source
transition; red grid cells do not become sources
of at least 25 gC·m−2·y−1 at any time during the
experiment. Grid cells in B fall into three groups:
(red) the line of cells at the top that do not
transition from sink to source; (blue) a main
trend of permafrost-dominated grid cells, in
which transition from sink to source generally
leads the thaw of permafrost to 3m depth; and
(green) a smaller set of grid cells that transition
from sink to source after thaw due to increased
boreal fire rather than permafrost processes.
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gaseous and dissolved N losses, plant N uptake and storage dy-
namics, fine-scale processes such as polygon dynamics and het-
erogeneous thaw processes including the possibility of rapid
carbon mobilization due to thermokarst, and biogeophysical
climate feedbacks, in addition to the overarching uncertainties in
permafrost thaw rates and soil C dynamics. Reducing these
uncertainties will require experimental designs to measure cou-
pled C and N dynamics during thaw progression to better un-
derstand both the decomposability of permafrost C and how the N
mineralized during decomposition affects ecosystem productivity.
The results presented here—that large C losses are possible

from the permafrost region, whose magnitude is strongly governed
by the dynamics of deeper decomposition, and that large losses
are unlikely to be compensated by N fertilization accompanying
decomposition—underscore the importance of considering per-
mafrost carbon dynamics in ESMs. Permafrost soils may produce
a strong, albeit delayed, C response to global change, and must

therefore be included in assessments of long-term C cycle feed-
backs to climate change.
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