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Abstract

Recent results from laboratory investigations and clinical trials indicate important roles for 

estrogen receptor (ER) agonists in protecting the central nervous system (CNS) from noxious 

consequences of neuroinflammation and neurodegeneration. Neurodegenerative processes in 

several CNS disorders including spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's 

disease (PD), and Alzheimer's disease (AD) are associated with activation of microglia and 

astrocytes, which drive the resident neuroinflammatory response. During neurodegenerative 

processes, activated microglia and astrocytes cause deleterious effects on surrounding neurons. 

The inhibitory activity of ER agonists on microglia activation might be a beneficial therapeutic 

option for delaying the onset or progression of neurodegenerative injuries and diseases. Recent 

studies suggest that ER agonists can provide neuroprotection by modulation of cell survival 

mechanisms, synaptic reorganization, regenerative responses to axonal injury, and neurogenesis 

process. The anti-inflammatory and neuroprotective actions of ER agonists are mediated mainly 

via two ERs known as ERα and ERβ. Although some studies have suggested that ER agonists may 

be deleterious to some neuronal populations, the potential clinical benefits of ER agonists for 

augmenting cognitive function may triumph over the associated side effects. Also, understanding 

the modulatory activities of ER agonists on inflammatory pathways will possibly lead to the 

development of selective anti-inflammatory molecules with neuroprotective roles in different CNS 

disorders such as SCI, MS, PD, and AD in humans. Future studies should be concentrated on 

© 2014 Elsevier Inc. All rights reserved.
*Correspondence to: Swapan K. Ray, PhD, Department of Pathology, Microbiology, and Immunology, University of South Carolina 
School of Medicine, Building 2, Room C11, 6439 Garners Ferry Road, Columbia, SC 29209, USA. Tel: +1 803-216-3420, Fax: +1 
803-216-3428., swapan.ray@uscmed.sc.edu. 

Conflict of interest: Authors have no conflict of interest to declare.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Brain Res Bull. Author manuscript; available in PMC 2015 October 01.

Published in final edited form as:
Brain Res Bull. 2014 October ; 109: 22–31. doi:10.1016/j.brainresbull.2014.09.004.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



finding the most plausible molecular pathways for enhancing protective functions of ER agonists 

in treating neuroinflammatory and neurodegenerative injuries and diseases in the CNS.
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1. Introduction

Estrogens are involved in the development and maintenance of normal reproductive 

functions. They also play very important roles in the immune system as well as in the central 

nervous system (CNS) in human body (Warner and Gustafsson, 2014). Especially, 17β-

estradiol (E2) is the most potent estrogen produced in the human body. Estrone and estriol, 

the other two active metabolites of E2, are found to be less potent than E2 on estrogen 

receptors (ERs). Recent studies indicated the organ specific roles of these two estrogen 

metabolites (Watson et al., 2008).

Elwood Jensen and co-workers first discovered the estrogen binding protein known as ERα 

(Jensen et al., 1962). The first ERα knockout mouse was created in 1993 (Lubahn et al., 

1993) but the knockout mouse showed normal functions of life. Following characterization 

of ERβ, researchers speculated that ERβ would imitate the action of ERα and support the 

survival of the ERα knockout mouse. Then, ERβ and double ERαβ knockout mice were 

created to solve the question (Krege et al., 1998). All single and double knockout studies 

involving ERα and ERβ showed the drastic impairment of reproductive function without 

much alteration in normal functions life (Couse et al., 1999). Recently, ER agonists have 

clearly been shown to possess neuroprotective effects in spinal cord injury (SCI) in rats 

(Sribnick et al., 2009a). Reduced levels of estrogen are associated with the development of 

neurodegenerative disorders such as Alzheimer's disease (AD) (Launer et al., 1999; Zandi et 

al., 2002) and Parkinson's disease (PD) (Currie et al., 2004; Ragonese et al., 2004). Recent 

clinical trials in post-menopausal women demonstrated deleterious effects of estrogen-based 

hormone therapy (Lai et al., 2013). So, development of synthetic estrogenic molecules that 

selectively mimic estrogen can greatly improve the outcomes in the hormone-based therapy 

(McDonnell et al., 2000). Most synthetic estrogens have been evaluated for their binding 

affinities to the ERα or ERβ and their ability to regulate ER-dependent transcription in 

reporter systems (Sun et al., 1999) but their neuroprotective potentials remain to be fully 

elucidated.

The innate immune responses are regulated by the complex signaling pathways between the 

immune system and the CNS in the brain (Rivest 2009). Microglia are involved in activation 

of astrocytes and migration of peripheral immune cells (Voskuhl et al., 2009; Sofroniew and 

Vinters, 2010) to respond to infection or injury in the brain. Estrogens and ER agonists 

could modulate the activation of many different cell types of the immune system (Straub, 

2007) and the CNS (Spencer et al., 2008; Dumitriu et al., 2010). Recent investigation 

suggests that estrogens can suppress the activation of microglia and recruit the blood-

derived monocytes in rat brain after intracerebroventricular injection of bacterial 

lipopolysaccharide (LPS) (Vegeto et al., 2003). This investigation also showed an increase 
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in expression of C3 receptor and matrix metalloproteinase-9 (MMP-9) following LPS 

exposure (Vegeto et al., 2003). Estrogens can also inhibit expression of pro-inflammatory 

cytokines such as IL-1β and TNF-α in primary astrocytes following LPS exposure (Lewis et 

al., 2008). These studies suggest that depending on the signaling mechanisms, estrogens can 

play dual roles for attenuation of neuroinflammation and neurodegeneration by inhibiting 

activation of microglia and astrocytes (Fig. 1).

The effects of estrogen and ER agonists are mainly mediated by two genetically distinct 

receptors, ERα and ERβ, of the nuclear receptor superfamily (Gronemeyer et al., 2004). 

ERα and ERβ regulate gene expression upon binding to estrogen-responsive elements in 

target gene promoters, by interfering with other transcription factors, or by modulating a 

variety of signaling pathways (Schultz et al., 2005). Estrogen and ER agonists are capable of 

altering the transcription of a large number of genes (Madak-Erdogan et al., 2013) that are 

known to participate in neuroinflammatory responses in astroglia (Barreto et al., 2009), 

interneurons (Kritzer 2002), and microglia in frontal cortex (Sierra et al., 2008). Still the 

involvement of estrogen and ER agonists in regulation of many neuroinflammatory genes in 

the cerebral cortex remain to be evaluated.

2. Estrogen receptors (ERs) and their subtypes

Estrogen and ER agonists modulate cell signaling pathways mainly through binding to ERα 

and ERβ, which belong to the nuclear receptor family of transcription factors. It is well 

established that ERα and ERβ harbor evolutionarily preserved and functionally dissimilar 

domains as well as high degree of specific sequence homology. The DNA-binding domain 

at the center is the most preserved part, which participates in binding to specific DNA 

sequence in the promoter region of the target gene. The C-terminal part is used for ligand-

binding. The N-terminal part appears to be variable in length as well as in sequence. 

Otherwise, ERα and ERβ have substantial sequence homology and comparable affinities for 

binding to estrogen and ER agonists. Both ERα and ERβ are capable of binding to the same 

DNA sequence in the promoter of the target gene.

The binding of ER agonists to the ERs triggers estrogen signaling pathways in the target 

cells. ER agonists can also activate different signaling pathways such as PI3K/Akt and 

MAPK/ERK to provide neuroprotection (Bourque et al., 2012). Upon activation, ERs act as 

transcription factors and modulate the expression of many estrogen responsive target genes 

and this process depends on the presence of other signaling molecules in the cells (Nilsson et 

al., 2001; Katzenellenbogen and Katzenellenbogen, 2002).

The ERα and ERβ genes are located on different chromosomes and code for 66 and 59 kDa 

proteins, respectively (Enmark et al., 1997). Mutiple splice variants of both ERα and ERβ 

have been characterized. Different ERs and other receptor isoforms contribute to the 

complexity of estrogen signaling. Although various splice variants of ERs have been 

discovered, their biological functions are not yet clearly determined. A recent investigation 

indicates that determination of functions of different ERα splice variants and their 

specificity in the cells may be helpful in understanding the estrogen-based therapy in CNS 

diseases (Ishunina et al., 2013). Majority of ERα variants have variation in 5′-untranslated 
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region (UTR) but their coding sequence is same. Although some alternative ERβ isoforms 

are produced in different cells and tissues at different stages (Saji et al., 2002), only the ERβ 

isoform with 530 amino acids is recognized as the wild-type ERβ in humans (Leygue et al., 

1998). Recent investigations indicate that different ERβ isoforms can differently modulate 

estrogen signaling for regulation of expression of the target gene (Leung et al., 2006; 

Ramsey et al., 2004). The existence of some common isoforms and species-specific 

isoforms of ERβ has been reported (Lewandowski et al., 2002). Interactions of different 

isoforms of ERβ and ERα have not yet been investigated in details. The human ERβ2 

isoform is not capable of binding to ligand and does not possess transcriptional ability. It is 

possible that abolition of transcriptional activity occurs due to dimerization of ERβ2 with 

ERα (Ogawa et al., 1998).

Unlike other nuclear receptors such as the retinoic acid receptor (RAR) and thyroid hormone 

receptor (TR), ER ligand cavity can vary in size for estrogen and ER agonists (Brzozowski 

et al., 1997). Thus, many compounds with diverse molecular structures can bind to ERs. Not 

only synthetic compounds but also environmental pollutants such as polynuclear aromatic 

hydrocarbons, phthalate esters, xenohormones, and many pesticides have high affinity for 

binding to ERs (Bolger et al., 1998). Phytoestrogens, which are estrogen-like compounds 

derived from plants, have estrogenic properties when used in humans and ranch animals 

(Oostenbrink et al., 2000). Some of the phytoestrogens can modulate the activities of 

endocrine signaling pathways and thus they are described as the endocrine disruptors. 

Exposure to endocrine disruptors may be related to induction of breast cancer and 

impairment of reproductive function (Witorsch, 2002a). In contrast, many other studies 

suggest that dietary phytoestrogens in soy and grain products can reduce the risk of some 

hormone-associated cancers (Witorsch, 2002b). Genistein, which is an abundant 

phytoestrogen in soy, has much higher selectivity for ERβ than for ERα and can inhibit 

cancer growth (Barkhem et al., 1998). Based on various exciting results from recent 

investigations, it appears that genistein is on its way to be an important replacement for 

estrogen in the treatment of cancer, cardiovascular incidences, diabetes, inflammatory 

diseases, and metabolic diseases (Heldring et al., 2007; Rimbach et al., 2008; Węgrzyn et 

al., 2010). These studies suggest that careful use of ER agonists including phytoestrogens 

can engage specific ERs for providing therapeutic benefits in a number of challenging 

diseases in humans.

3. Potential therapeutic effects of ER agonists in CNS disorders

Many recent investigations indicated that ER agonists play crucial roles in enhancing 

memory and cognition and ameliorating neuroinflammation and neurodegenerative diseases. 

But the beneficial role of ER agonists in acute injury has only recently been a focus of 

intense investigation. Previous acute injury experiments were performed using males to 

determine the initiation, progression, and pathophysiological mechanisms with the 

assumption that results obtained from these studies using males might be applicable to 

females as well. But recent results suggest that both sex and ER agonists are equally 

important in producing specific outcomes from the treatment of neurodisorders. Various 

investigations further showed that females are less affected due to acute insults such as brain 

ischemia (Green and Simpkins, 2000; Hurn and Macrae, 2000), traumatic CNS injury (Roof 
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and Hall, 2000), hypoxia (Saiyed and Riker, 1993), and toxicity induced by a drug (Cadet et 

al., 1994). Some of the recent advances in molecular mechanisms of estrogen and ER 

agonists mediated attenuation of neuroinflammation and neurodegeneration are being 

described below.

3.1. Traumatic brain injury

Traumatic brain injury (TBI), which is an injury in the brain, causes serious disability and 

even death. Various studies clearly show that significant gender differences in the 

occurrence and pathophysiology of TBI do exist. Males have been reported to encounter 

TBI more frequently than females due to sporting disasters, motor vehicle accidents, combat 

operations, and street violences. Similarly, occurrence of cerebrovascular stroke (CS) is 

more frequent in males than the pre-menopausal females (Barrett-Connor and Bush, 1991). 

The occurrence of CS in older post-menopausal females is almost same when compared 

with the age-matched males (Wolf, 1990). Following ischemia, hypoxia, or TBI, young 

female rodents could survive longer than their male counterparts, as shown by number of 

studies (Zhang et al., 1998; Carswell et al., 1999; Hall et al., 1998). Administrations of ER 

agonists can provide neuroprotection against different type of neuronal injury in vitro and in 

vivo and the treatments reduce the extent of injury and, in some cases, decrease mortality 

and behavioral deficiency (Shao et al., 2012; Schreihofer and Ma, 2013). Various 

investigators have examined many ER agonists with different doses. ER agonists have been 

administered at physiological and pharmacological levels at different time points before or 

after TBI. Results indicated that lower physiological concentrations of ER agonists should 

be administered before the injury to exert protective actions, while pharmacological doses of 

ER agonists may be protective even when administered at 3 h following induction of injury 

(Yang et al., 2000). Although ER agonists provide neuroprotection against neural injury, the 

precise molecular signaling pathways by which they achieve neuroprotection still remain 

mostly unclear. Studies in numerous cell culture models have indicated inhibition of the 

neuronal death after treatment with the ER agonists following toxic insults. Similarly, many 

animal model studies demonstrated that different doses of ER agonists could produce 

different outcomes in toxic insults such as oxidative stress, glucose deprivation, hypoxia, 

and physical injury (Wise et al., 2001). More investigations in animal models will be needed 

to establish the optimum doses of ER agonists in the treatment of TBI and other injuries in 

the brain.

3.2. Spinal cord injury

Spinal cord injury (SCI) is a highly complex CNS injury that can be associated with 

different levels of contusion, axonal damage, oxygen depletion, hemorrhage, and 

pathophysiological mechanisms. Primary injury to the spinal cord causes the immediate 

insults to the neurons, axons, glial cells, and blood vessels at the site of injury (Ray et al., 

2003; Samantaray et al., 2010; Ray et al., 2011). Secondary injury involves devastating 

pathophysiological mechanisms including increase in reactive oxygen species (ROS), 

reperfusion, glutamate concentration, and mitochondrial damage (Carlson et al., 1998; Mills 

et al., 2000). Mitochondrial damage in SCI alters Na+/K+-ATPase activity, increases 

intracellular Ca2+ level, and activates glutamate receptors (Agrawal et al., 2000; Li et al., 

2000; Wingrave et al., 2004). Increase in intracellular free Ca2+ level following SCI leads to 
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activation of the Ca2+-activated protease calpain and phospholipases (Dhillon et al., 1999; 

Ray et al., 2003). Upon activation, calpain can degrade a number of cytoskeletal proteins 

such as neurofilament proteins, α-spectrin, and myelin basic protein (Ray et al., 2003). A 

sustained activation of calpain can cleave calpastatin, which is an endogenous calpain 

inhibitor, resulting in an uncontrolled calpain mediated proteolysis in tissue (Pang et al., 

2003). Altogether these effects cause biochemical and metabolic changes in the spinal cord 

leading to neural cell death and progressive tissue damage (Sribnick et al., 2009a). Both 

primary and secondary injury mechanisms of SCI can result in significant neurological 

deficits, permanent paralysis, or even death of the SCI victim.

Recent studies suggest that estrogen and ER agonists can protect neurons and inhibit axonal 

degeneration during early phase (48 h) following SCI in rats (Sribnick et al., 2005; Sribnick 

et al., 2009a). Similar outcomes have been observed in ischemia and TBI (Dubal et al., 

2001; Jover et al., 2002). Experimental TBI in animal models indicate that TBI females 

recover better than TBI males after treatment with ER agonists (Bayir et al., 2004). A 

number of cell culture studies established the impressive neuroprotective potential of ER 

agonists in glial cells as well as in neurons following exposure to oxygen free radicals or 

glutamate toxicity (Sribnick et al., 2004; Das et al., 2005; Sribnick et al., 2009b). Other 

studies also confirm that ER agonists can be used as potent anti-oxidant (Moosmann and 

Behl, 1999) and anti-inflammatory agents (Dimayuga et al., 2005) to provide functional 

neuroprotection. We recently reported that miR-7-1 potentiated ER agonists for functional 

neuroprotection in VSC4.1 motoneurons (Chakrabarti et al., 2014). Indeed, the multi-action 

characteristics of ER agonists make them very attractive therapeutic agents for treatment of 

SCI.

3.3. Cerebral ischemia

Cerebral ischemia or stroke is the sudden loss of CNS function due to inhibition in the blood 

supply to the brain. Low physiological levels of estrogen can dramatically reduce overall 

infarct size in the middle cerebral artery with permanent occlusion (Dubal et al., 1998), 

indicating the therapeutic potentials of estrogen and ER agonists in cerebral ischemia. The 

risk of stroke treatment outcomes clearly depend on the gender of the stroke victims (Hurn 

and Macrae, 2000; McCullough et al., 2001). Young women with normal endogenous levels 

of estrogen have significantly less risk and severity of stroke than age-matched men. Both 

the vasoprotective and neuroprotective roles of estrogen have been documented in 

experimental cerebral ischemia (McCullough et al., 2001). It is interesting to note that ER 

agonists through activation of ERα and ERβ can exert their vasodilatory and neuroprotective 

effects in systemic circulation (Luksha et al., 2009). Recently, it has been reported that 

another G protein-coupled ER, called GPR30, is involved in acute vasodilatory effect of ER 

agonists in arteries and veins in humans (Haas et al., 2007; Murata et al., 2013). Another 

recent study suggests that GPR30 agonists have the potential to reduce neuronal injury 

following global cerebral ischemia (Kosaka et al., 2012). Hyper-activation of N-methyl-d-

aspartate receptors (NMDARs) has been observed in different neurodegenerative conditions 

(Vizi et al., 2013). NMDARs consist of three different subtypes: NR1, NR2, and NR3. The 

NR2B subunit is observed in the extra-synaptic sites and it plays a significant role in 

glutamate-mediated neuronal cytotoxicity in both cell culture and animal models (Liu and 
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Zhao, 2013). Neuroprotective potential of estrogen has been reported to be partially 

mediated by GPR30 and the subsequent down regulation of NR2B-containing NMDARs 

(Liu et al., 2012). But, the details about GPR30 mediated vasoactive effects in cerebral 

microcirculation still remain unclear (Murata et al., 2013). The molecular pathways leading 

to vessel dysfunction during cerebral ischemia and reperfusion include inhibition of K+ 

channels (Bari et al., 1996), enhanced oxidative stress (Hossmann et al., 2006), and reduced 

level of nitric oxide (NO) (Cipolla et al., 2008). Studies suggest that ER agonists are capable 

of improving microvascular dysfunction by preserving the process of vasodilation 

(Watanabe et al., 2001) or by reducing oxidative stress (Stirone et al., 2005) in experimental 

cerebral ischemia.

3.4. Multiple sclerosis

Multiple sclerosis (MS) is a heterogeneous neuroinflammatory demyelinating autoimmune 

disease triggered by T helper 1 (Th1) and Th17 cells. Current studies also clearly indicate 

MS as a neurodegenerative disease. Studies performed in many different laboratories have 

shown that the clinical severity of both active and adoptive experimental autoimmune 

encephalomyelitis (EAE), which is an animal model of MS, is reduced by treatment with ER 

agonists in several types of mouse models (Bebo et al., 2001; Ito et al., 2001; Liu et al., 

2002; Liu et al., 2003; Subramanian et al., 2003). Estriol can effectively reduce the severity 

of the EAE in animals when administered after disease onset (Kim et al., 1999). Estriol has 

been shown to inhibit a number of inflammatory cytokines such as IFN-γ, TNF-α, IL-2, and 

IL-6 in the 6 to 8 weeks old C57BL/6 mice (Palaszynski et al., 2004). The 

immunomodulatory effects of ER agonists influence T cell differentiation and effector 

functions including the expansion of the CD4+CD25+ T regulatory (Treg) cells in EAE 

animals (Polanczyk et al., 2004). Estrogen and ER agonists can also modulate the functions 

of many different organ systems including the immune system. ER agonists have also been 

shown to induce apoptosis in T cells through activation of Fas-Fas ligand pathway, thereby 

causing immunosuppression (Do et al., 2002; Singh et al., 2012). Estrogen can influence 

development of CD4+ T cell subpopulations and function through regulation of cytokine 

profiles (Pernis et al., 2007). It also regulates the expression of adhesion and accessory 

molecules on endothelial cells and alters leukocyte migration. Low doses of estrogen have 

been shown to enhance antigen-specific Th1 and Th17 cell responses as well as several 

other IFN-γ-producing cells via differential activation of MAPK, NF-κB, and AP-1 

signaling pathways (Kassi and Moutsatsou, 2010). It is believed that ERα, but not ERβ, is 

necessary for the enhanced estrogen-driven Th1/Th17 cell responsiveness (Fig. 1). Estrogen 

may also influence CD8+ T cells and multiple signaling cascades through cytosolic Ca2+ 

influx. Although estrogen has multiple roles in inflammatory diseases, other ER agonists 

also exert their anti-inflammatory and neuroprotective roles to prevent inflammation and 

autoimmunity in the CNS. Antigen presenting cells (APCs) such as dendritic cells (DCs) 

and macrophages may play important roles in connecting the innate immune system with the 

adaptive immune system. A recent study indicated that endogenous estrogen level can 

modulate the number of APCs (Nalbandian and Kovats, 2005). ER agonists can regulate 

activities of T cells through direct involvement of APC functions. Studies have shown that 

splenic DCs isolated from estrogen-treated animals produce lower levels of TNF-α, IFN-γ, 

and IL-12 upon LPS exposure, while macrophages produce decreased levels of TNF-α 
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(Flohé et al., 2008). One of the major roles for ERα signaling in T lymphocytes is the 

induction of anti-inflammatory effects of estrogen and protection against CNS inflammation. 

Because estrogen treatment provides protective effects in EAE animals, efficacy of estrogen 

and ER agonists are currently being evaluated in clinical trials for treatment of MS patients.

3.5. Parkinson's disease

Parkinson's disease (PD) is a debilitating movement disorder that is mainly characterized by 

the irreversible and selective degeneration of the dopaminergic neurons in the substantia 

nigra pars compacta (Hornykiewicz, 1989). There is no effective treatment for PD although 

L-dopa is an impressive choice in the treatment of some PD patients. All other current 

medications for PD are symptomatic treatments that hardly prevent the progression of PD. 

An important observation is highly notable that ER agonists modulate the dopaminergic 

neurotransmission and may be used to alleviate major symptoms of PD (Session et al., 1994; 

Giladi et al., 1995). Another study reported that estrogen therapy could lower the severity of 

initial phase of PD at least prior to administration of L-dopa in PD women (Saunders-

Pullman et al., 1999), indicating that estrogen and ER agonists could be useful therapy in PD 

patients. Inhibition of neuroinflammatory signaling molecules and blockage of 

neurodegenerative pathways by estrogen and ER agonists may be promising therapeutic 

approach against PD.

So far, several clinical trials have been reported showing no significant effect (Strijks et al., 

1999) or a moderate anti-parkinsonian effect (Blanchet et al., 1999) of estrogen therapy in 

PD. Hence, the exact role of estrogen on the survival of dopaminergic neurons in humans 

still remains a mystery. However, some PD animal model studies with newer selective ER 

modulators (SERMs) like raloxifene supported both pro-dopaminergic and anti-

dopaminergic activities of ER agonists in parkinsonism. Many recent reports indicate that 

incidence of PD is higher in men than in women (Marder et al., 1996; Bower et al., 1999; 

Baldereschi et al., 2000; Bower et al., 2000), while another study shows existence of no such 

sex difference in occurrence of PD (de Rijk et al., 1995). Obviously, more studies are 

needed to resolve this controversy. It should be noted that during progression of PD, men 

manifest more parkinsonian motor features or dyskinesia than women do (Lyons et al., 

1998). Treatment with ER agonists can inhibit development of dementia (Marder et al., 

1996), indicating efficacy of ER agonists in brain disorder. While no proven mechanism yet 

exists for neuroprotective action of estrogen, it is highly plausible that estrogen may reduce 

oxidative stress and inhibit mitochondrial dysfunction so as to prevent progression of 

pathophysiology in PD (Numakawa et al., 2011). Estrogen can prevent degeneration of 

dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrapyridine (MPTP)-induced PD 

animal brain (Numakawa et al., 2011). While the mechanism responsible for degeneration of 

dopaminergic neurons in MPTP animal model of PD is unclear, oxidative stress and 

neuroinflammation are thought to play key roles in ultimate demise of the nigrostriatal 

dopaminergic neurons. Calpain is a proteolytic enzyme that is activated in response to 

increases in intracellular free Ca2+ and oxidatative stress, both of which are presumed to be 

present at high levels in dying dopaminergic neurons in MPTP animal model of PD. In fact, 

recent results indicate a significant role of calpain mediated proteolysis in degeneration and 

loss of dopaminergic neurons in an animal model of PD (Crocker et al., 2003). It will be 
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interesting to examine whether ER agonists can provide neuroprotective functions through 

regulation of expression of the Ca2+-binding protein and calpain so as to prevent loss of 

dopaminergic neurons in the animal model of PD.

3.6. Alzheimer's disease

Alzheimer's disease (AD) is characterized by deficiencies in memory and cognition due to 

degeneneration of mostly hippocampal neurons in the old people. It is the most common 

cause of dementia, which impairs daily life and activities due to abnormal brain functioning 

and behavioral difficulties in the AD patients. Currently available symtomatic treatments do 

not prevent pathogenesis in AD patients. So, innovative and novel therapeutic agents are 

urgently needed for proper treatment and inhibition of pathogenic mechanisms in AD 

patients. The neuroprotective actions of ER agonists in AD are supposed to be regulated by 

activation of ERs in different neurons in different areas of the brain. Both ERα and ERβ 

subtypes are widely distributed in the hippocampus, frontal cortex, and amygdala regions 

(Shughrue et al., 1997; Shughrue and Merchenthaler, 2000; Hart et al., 2001). A very recent 

study identified alteration in normal distribution of ERs in hippocampal neurons in AD (Liu 

et al., 2008). A shift of ERα localization from the nucleus to the cytoplasm has been shown 

to inhibit the development of AD pathology in transgenic mice (Jorm et al., 1987) as well as 

in humans (Henderson et al., 1994). Folstein test scores in women with terminal stage AD 

showed an increase in ERα level in the frontal cortex (Kawas et al., 1997). Also, allele 

differences in ERα appear to correlate well with a high-risk for development of AD in 

women who are already suffering from Down's syndrome (Schupf et al., 2008). When 

compared with the same age control groups, immunoreactivity of ERβ was found to be 

increased in the hippocampal cells in AD (Savaskan et al., 2001). Upregulation of ERs in 

hippocampus of AD patients should provide an advantage to the therapeutic approach using 

ER agonists. Collectively, recent investigations suggest that the levels of expression of the 

ERα and ERβ can play important roles for ER agonists for inhibition of neuroinflammation 

and achieving neuroprotective functions in the AD brain. Several interesting studies have 

already described these phenomena in details (Lee et al., 2014).

4. Mechanisms of action of ER agonists for neuroprotection

As mentioned previously, both ERα and ERβ are involved in estrogen mediated 

neuroprotection. Selective expression of ERα could restore protective action of estrogen 

against amyloid-β (Aβ) peptide in HT22 cell line, suggesting a prominent role for ERα in 

estrogen mediated neuroprotection (Kim et al., 2001). The selective ERα agonist 

(propylpyrazole triol, PPT) and ERβ agonist (diarylpropionitrile; DPN) are supposed to 

show similar neuroprotective actions in culture studies. But a previous report showed higher 

neuroprotective potential of the ERα agonist PPT than the ERβ agonist DPN (Behl et al., 

1995). In contrast, another study with primary neuron culture showed comparable levels of 

neuroprotection by estrogen and selective ER agonists against Aβ peptide mediated 

neurodegeneration, indicating the contribution of both ERα and ERβ in neuroprotection 

(Corder et al., 2004). Some other investigations showed that both PPT and DPN can provide 

neuroprotection against glutamate toxicity by increasing the expression of the anti-apoptotic 

Bcl-2 protein and also modulating the stress kinase signaling pathways (Zhao et al., 2007; 
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Zhao and Brinton, 2007). These results suggest that DPN has a higher Ca2+ dependency for 

its activity than other ER agonists (Zhao and Brinton, 2007). Altogether, recent reports 

strongly imply that both ERα and ERβ are involved in achieving significant neuroprotection 

by the ER agonists against different neurodisorders through activation of various cell 

survival signaling pathways.

5. Benefits and limitations of selective ER modulators (SERMs)

The mode of action of ER agonists in different neurodisorders depends mostly on the 

presence of ERs. Therapeutic strategy with SERMs can be another promising option for the 

treatment of neurodegenerative disorders. Some synthetic and natural SERMs like 

tamoxifen, raloxifene, or bazedoxifene (Mickley and Dluzen 2004; Zhao et al., 2005; 

Kokiko et al., 2006; Zhao et al., 2006) and genistein (Azcoitia et al., 2006) are 

neuroprotective (Table I). New neuroprotective SERMs (Neuro-SERMs) may be developed 

to avoid feminizing effects and specifically target the nervous system to promote cognitive 

function and to reduce the risk of neurodegenerative diseases (Brinton., 2004, Zhao et al., 

2005).

Most of the investigations have so far been focused on tamoxifen and raloxifene for 

developing effective SERMs against neurodegenerative diseases (Table I). Further studies 

are needed in animal models with new SERMs like lasofoxifene, bazedoxifene, arzoxifene, 

and ospemifene to identify an effective agent against neurodegenerative diseases. 

Bazedoxifene can provide neuroprotection against kainic acid toxicity in rat hippocampal 

neurons (Kulkarni et al., 2013). Also, combination therapy with ospemifene and 

bazedoxifene can inhibit inflammatory response in astrocytes (Cerciat et al., 2010). Further 

studies are needed to uncover the neuroprotective efficacy of SERMs (Azcoitia et al., 2006; 

Schreihofer and Redmond, 2009).

Clinical application of SERMs as neuroprotective agents will require better permeability of 

the drug molecules so as to cross the blood-brain-barrier in the CNS. Many investigators are 

actively working to overcome the current limitations of SERMs to increase their clinical 

applicability. SERMs with higher affinity to the ERs are also under intense investigation to 

identify an effective neuroprotective agent (Brinton, 2004; Zhao et al., 2005). One such 

SERM is 7α-[(4R,8R)-4,8,12-trimethyltridecyl]estra-1,3,5-trien-3,17β-diol that contains the 

combined structures of vitamin E and estrogen. This molecule has been neuroprotective in 

rat primary hippocampal neurons and it is capable of binding to both ERα and ERβ (Zhao et 

al., 2007). Non feminizing analogs of estrogen are other interesting molecules, which are 

also under intense investigation (Petrone et al., 2014). Other molecules such as ent-17-

desoxyestradiol, 17α estrogen, ent-estrogen, and 2-adamantylestrone also show 

neuroprotective effects in animals with neurodegenerative conditions (Jung et al., 2006; 

Wang et al., 2006).

Although recent investigations have identified several important molecular targets of ER 

agonists and SERMs in the CNS in humans, their precise molecular mechanisms of action 

remain mostly unknown. It has been suggested that ER agonists modulate different signaling 

pathways involing MAPK, PI3K/Akt, CREB, and NF-κB. In general, ER agonists and 
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SERMs can exert their cell specific neuroprotective efficacy by modulating neuronal death, 

remyelination, and inhibiting chronic pro-inflammatory responses.

6. Conclusion and future direction

Estrogen and ER agonists work mainly via ERα and ERβ for mediation of their 

antiinflammatory and neuroprotective effects in many CNS injuries and diseases. Currently, 

cell culture and animal model studies suggest that ER agonists hold great promise for 

amelioration of the devastating consequences of several neurodisorders in humans. In 

addition to ER agonists, vigorous research is focused on SERMs for identification of the 

most appropriate therapeutic agents for treatment CNS injuries and diseases in humans in 

the future. Further studies are needed to establish the exact molecular mechanisms of ER 

agonists and SERMs for inhibition of neuroinflammation and neurodegeneration in diverse 

neurodisoders in the human brain and spinal cord.
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Highlights

• Estrogen receptor (ER) agonists play crucial roles in the immune system and the 

CNS

• Cell signaling pathways are modulated by ER agonists via binding to ERα and 

ERβ

• ER agonists can promote transcription of a large number of neuroprotective 

genes

• Neuroinflammation and neurodegeneration in the CNS are prevented by ER 

agonists

• ER agonists play significant roles in enhancing memory and cognition
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Fig. 1. 
A schematic representation of anti-inflammatory roles of estrogen and ER agonists in 

neurodisorders. Insults to the CNS lead to overactivation of microglia and astrocytes. 

Activated microglia and astrocytes can release pro-inflammatory cytokines and chemokines 

to induce neuroinflammation to promote pathogenesis in different neurodisorders. Treatment 

with ER agonists can be useful to inhibit the activation of microglia and astrocytes after the 

CNS insults. Estrogen driven Th1/Th17 cell response is thought to be carried out via 

involvement of ERα.
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Table 1
Estrogen and SERM derivatives examined for potential neuroprotective functions

Estrogen and SERM 
derivatives

Estrogen or SERM Functions References

Estrogen derivatives 17β-Estradiol Antioxidant, neuroprotective Chakrabarti et al., 2014; 
Mosquera et al., 2014

17α-Estradiol Inhibits GABA receptor-induced cell loss McClean and Nuñez, 2008; 
Rakkestad et al., 2014

Estriol Reduces the disease symptoms in multiple 
sclerosis (MS)

Sicotte et al., 2002; Ziehn et 
al., 2012

Equilin Used in hormone replacement therapy Sawicki et al., 1999; Okamoto 
et al., 2010

Triphenylethylene derivatives Tamoxifen Neuroprotection to Aβ-induced toxicity O'Neill et al. 2004; Herrera et 
al., 2011

4-Hydroxy tamoxifen Neuroprotection to Aβ-induced toxicity O'Neill et al., 2004; Arevalo et 
al., 2011

Droloxifene Inhibits estrogen mediated neuroprotection Christian, 2001; Zhao et al., 
2005

Ospemifene Induces production and release of pro-
inflammatory molecules by glial cells

Cerciat et al., 2010; Arevalo et 
al., 2011

Phytoestrogens Coumestrol Protects hippocampal neurons in cerebral 
ischemia

Castro et al., 2012; Castro et 
al., 2014

Daidzein Decreases cell death and improves synaptic 
function in oxygen–glucose deprivation 
(OGD)

Schreihofer and Redmond, 
2009; Hurtado et al., 2012

Equol Vasorelaxant, anti-oxidant, and 
neuroprotective in transient focal cerebral 
ischemia

Jackman et al., 2007; Ma et al., 
2010.

Formononetin Protects neurons from NMDA-induced 
excitotoxic injury and neurodegenerative 
disorders in central nervous system

Occhiuto et al., 2008; Occhiuto 
et al., 2009; Tian et al., 2013

Genistein Reduces oxidative stress, hippocampal neuron 
death, and cognitive defects in 
neurodegenerative disorders

Azcoitia et al., 2006; 
Malinowska et al., 2010; Wang 
et al., 2013

Benzothiophene derivatives Arzoxifene GPR30-dependent and ER-independent 
neuroprotection

Littleton-Kearney et al., 2002; 
Abdelhamid et al., 2011

Bazedoxifene Anti-inflammatory effects in astrocytes, 
inhibition of IL-6, IFN-ɣ, and NF-κB p65 
transactivation

Cerciat et al., 2010; Arevalo et 
al., 2011

Raloxifene Poor bioavailability, ERα dependent but ERβ 
and GPR30 independent hypoxia induced 
neuroprotection

Kushwaha et al., 2013; 
Rzemieniec et al., 2014
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