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Abstract

High-throughput Affinity Purification Mass Spectrometry (AP-MS) experiments can identify a 

large number of protein interactions but only a fraction of these interactions are biologically 

relevant. Here, we describe a comprehensive computational strategy to process raw AP-MS data, 

perform quality controls and prioritize biologically relevant bait-prey pairs in a set of replicated 

AP-MS experiments with Mass spectrometry interaction STatistics (MiST). The MiST score is a 

linear combination of prey quantity (abundance), abundance invariability across repeated 

experiments (reproducibility), and prey uniqueness relative to other baits (specificity); We 

describe how to run the full MiST analysis pipeline in an R environment and discuss a number of 

configurable options that allow the lay user to convert any large-scale AP-MS data into an 

interpretable, biologically relevant protein-protein interaction network.
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Introduction

Affinity Purification Mass-Spectrometry (AP-MS) is one of the primary methods to discover 

the protein interactions in an unbiased manner. In recent years, due to advances in bottom-

up mass-spectrometry and affinity tagging methods, this method has been applied in high 

throughput to chart the protein-protein interaction networks or ‘interactomes’ from entire 

pathways to complete eukaryotic, bacterial and even viral organisms (Arifuzzaman et al., 

2006; Jäger et al., 2011; Sowa et al., 2009). A high-throughput dataset containing hundreds 

of replicated AP-MS samples poses a clear challenge for human processing, but also 

presents an opportunity to mine the data collectively with computational algorithms. To this 

end, a number of recent studies, which used AP-MS in a high-throughput fashion, developed 

computational algorithms that transform such a dataset into a list of bait-prey pairs ranked 

according their predicted biological significance (Jäger et al., 2011; Sowa et al., 2009; Choi 

et al., 2011). Knowing that a cellular protein is predicted to have on average 5-8 biologically 

relevant interactions (Grigoriev, 2003), prioritizing these from over hundreds of proteins and 

thousands of spectra identified by MS is far from trivial.

To understand the high number of ‘false positives’ identified by AP-MS it helps to 

categorize interactions into 4 broad classes: (I) biologically relevant interactions (II) 

specific, non-biologically relevant interactions between proteins from different cellular 

compartments in lysed cells (III) unspecific interactions with contaminants or highly 

abundant proteins and (IV) nonexisting interactions caused by residual peptides from 

previous runs or MS identification errors. Conversely, ‘false negatives’ occur because not 

every biologically relevant interaction is reproducibly detectable, especially if the protein is 

not very abundant, has peptides difficult to detect by MS or interacts only transiently (Yu et 

al., 2009; MacLean et al., 2010). To account for both false positive and false negative errors, 

high-throughput experimental setups need to be designed with proper controls and a 

sufficient amount of biological replicates (at least triplicates) and processed with a 

computation AP-MS scoring algorithm to separate signal from noise (Jäger et al., 2011).

The protocol we present here outlines our ‘best practices’ approach to convert a large data 

set of replicated AP-MS experiments into a list of bait-prey pairs ranked according to their 

predicted biological relevance. After installing MiST as described in the support protocol, 

the data is preprocessed in Basic Protocol 1 to generate a bait-prey matrix that can be 

subjected to the quality control protocol in Basic Protocol 2. Basic Protocol 3 is then used to 

calculate a MiST score.

Support Protocol 1: Installation of MiST

This MiST pipeline is implemented in R, an open-source programming language for 

statistical computing and graphics. Here, we describe how the most recent version of the 

MiST pipeline can be downloaded from GitHub and installed by any user with access to an 

online computer.

Necessary Resources

Hardware—Workstation running any current OS, Unix environment recommended
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Software—R package (http://www.r-project.org)

R packages: getopt, optparse, reshape2, pheatmap, RcolorBrewer, ggplot2, MESS, yaml

MiST source code (https://github.com/everschueren/MiST)

Git (optional) (http://git-scm.com)

Setting up MiST

1. Downloading the MiST source code to your workstation.

a. Download the MiST package as a .zip archive from the public GitHub 

repository by clicking on the “Download ZIP” button on the bottom right, 

unzip the files and move the directory to a permanent location.

b. Alternatively, you can check out the MiST package through Git as follows: 

git clone https://github.com/everschueren/MiST.git MiST

2. The MiST pipeline is designed to run from a terminal using R. This requires the 

user to have executable permissions. To set these permissions in a Unix 

environment, navigate in the terminal to the MiST directory, hereafter referred to as 

the $INSTALL_DIR, then type: sudo chmod -R 775 *

Basic Protocol 1: Data pre-processing

Prior to computing MiST scores, it is required to convert the search results into a format 

compatible with the MiST algorithm. The MiST pre-processing pipeline was initially 

designed to work with a Prospector (Clauser et al., 1999) (http://prospector.ucsf.edu) protein 

report file but virtually any report file that lists uniquely identified proteins, their observed 

peptide frequencies in tabular format is supported currently. Additionally, we built a number 

of filtering steps, such as contaminant removal and carryover removal, into the pre-

processing and formatting steps. The result of the first basic protocol is a bait-prey matrix 

that can be subjected to the quality control protocol (Basic Protocol 2) and scored by the 

MiST protocol (Basic Protocol 3) (See Figure 1).

Necessary Resources

Hardware—Workstation running any current OS, Unix environment recommended

Software—MiST pipeline (installed as described in Support Protocol)

Files—Data file and Keys file, see below

Remove file and Collapse file, optional, see below

Data preparation

Prior to running the MiST pre-processing protocol the user needs to have at least the two 

following files available (See Figure 2A and Table 1):
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1. Data file (required): the data file should be in tab-delimited format with a 

descriptive header for each column. The number of features in this file is in 

principal unconstrained but following are required:

a. Sample identifier: a unique identifier per AP-MS run

b. Protein identifier: a unique identifier per protein (i.e. Uniprot accession 

code)

c. Observed peptide frequency: a quantitative value per protein, for example 

(from less to most quantitative):

i. Number of unique peptides per protein or

ii. Summed spectral counts per protein or

iii. Summed MS1-intensities per protein, preferably log2-transformed

d. Protein molecular weight: The molecular weight will be used as a scaling 

factor to normalize the quantitative value for each protein to its size

2. Keys file (required): The goal of the keys file is two-fold: 1) describing which bait 

and experimental conditions are in the sample with a human readable description 

and 2) provide a unique name to group biological replicates. This file also needs to 

be tab-separated with two columns created by the user:

a. Sample identifier: a unique identifier per AP-MS experiment that matches a 

sample identifier in the data file

b. Bait name: A unique identifier per bait, grouping all replicates. This can be 

the bait's Uniprot accession number or a more easily readable name (i.e. 

gene name).

3. Remove file (optional): The remove option is a feature we put in place to 

dynamically exclude entire samples from the scoring process while keeping the 

original data files intact. Single samples might need to be removed for quality 

reasons, which we will address later, while an entire range of samples might be 

excluded to score subsets of the complete data set. This file is formatted as a single 

column, consisting of all sample identifiers that need to be excluded (one sample 

per line).

4. Collapse file (optional): The collapse option serves to merge samples belonging to 

different baits into a single group while keeping the original data files intact. This is 

useful when a particular experimental condition (i.e. compound addition, bait 

mutation, different affinity tags, differently tagged termini, organelle extraction) 

shows no perceivable difference to the wild type experiment. In this case it might 

be desirable to treat these samples as additional replicates of the wild type bait to 

improve reproducibility estimates. In the following section we will discuss how 

you can use a clustered heat map to reveal such patterns. The collapse is formatted 

as tab-separated entries: one for the original bait name, corresponding to an entry in 

the keys file, followed by the new name or composite group name.
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To guide the reader through the various protocols we prepared an example project in 

$INSTALL_DIR/tests/small/, including example input files and a sample configuration file 

mist_small_test.yml, which can be run after installation to verify that all necessary resources 

are in place. The configuration file follows the Yaml Ain't Markup Language (YAML) 

(http://www.yaml.org) format that allows defining conceptual blocks of parameters. The 

first parameter block deals with file input/output (See Table 1) and the consecutive blocks 

correspond to configuration options for the three basic protocols outlined in this unit. The 

enabled [0/1] parameter in each parameter block turns each basic protocol off or on 

respectively. Finally, the MiST pipeline is run as follows:

$INSTALL_DIR/main.R --config [path to YML file]

Running the pre-processing protocol (See Table 2)

1. The first pre-processing step is to remove common contaminants such as all the 

keratins and known cross-reacting proteins with beads or affinity tags during 

purification. To enable this option turn on filter_contaminants in the configuration 

file and define the path to a text file listing all contaminants using the same 

identifiers as in the data file.

Even though it's up to the user to define a custom set of contaminants we 

provided a minimal list, based on the Maxquant (Cox and Mann, 

2008)contaminant file augmented with most Keratin proteins we regularly 

come across and a ‘decoy’ entry for Prospector false hits. Since 

contaminants might be condition and even machine specific we encourage 

users to search the recently published Crapome (Mellacheruvu et al., 

2013) database for cell-, tag- or bead- specific contaminants matching 

their experimental setup.

2. The second pre-processing step is to computationally remove peptide counts of 

proteins that are due to sample ‘carryover’ from a previous run on the MS. To 

enable this feature turn remove_carryover on.

Accurately preventing and detecting sample carryover between 

consecutive MS runs is not a trivial problem and an active topic of 

discussion in the MS community. Carryover is caused by residual peptides 

from a previous sample and is generally serial in nature, often affecting 

several samples in a sequence (Hughes et al., 2007). We empirically 

observed that hydrophobic proteins in combination with over-expression 

of the bait protein can lead to a higher number of carryover peptides. We 

recommend addressing this issue by 1) testing various experimental 

conditions that minimize sample carryover and 2) shuffling the order in 

which biological replicates of samples are run. A third option is to remove 

any false hits that are detectable after the facts by a computational 

procedure similar to the one we implemented. The current procedure 

checks for carryover in up to four samples following the current sample. 

Carryover is determined if the following conditions are met in the samples 

tailing a sample: i) there is a positive number of unique peptides for a 
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specific protein, ii) the number of unique peptides is less than half of the 

current sample, iii) the number of occurrences of this prey in the data set is 

less than one third of the number of total experiments.

3. Map the values of the column names in the tab-delimited data file to the column 

description parameters (See Data preparation section for details):

a. id_colname : Sample identifier

b. prey_colname : Protein identifier

c. pepcount_colname : Observed peptide frequency

d. mw_colname : Protein molecular weight

4. Inspect the bait-prey matrix called preprocessed_MAT.txt in the output folder 

defined by output_dir, or the processed directory in the executable path if no output 

directory was defined. The bait-prey matrix is formatted according the data 

preparation guidelines in the next section (See Figure 2B).

Basic Protocol 2: Quality Control

We built a number of quality control and data summary plots such as MS yield statistics and 

a hierarchically clustered heat map of the experiment matrix into the MiST package. The 

output of these quality control scripts can help to decide critical parameters that influence 

the MiST scores, such as samples to remove or conditions to group together as replicates.

Necessary Resources

Hardware—Workstation running any current OS, Unix environment recommended

Software—MiST pipeline (installed as described in Support Protocol)

Files—Data pre-processed as described in Basic Protocol 1

Data preparation

After the preprocessing protocol of the MiST pipeline has been run, the input data should be 

properly reformatted for the quality control algorithm. For convenience, the quality control 

and scoring input follows the same formatting guidelines as the SAINT algorithm bait-prey 

input matrix. If the pre-processing step was skipped, the user should make sure to format the 

input for all subsequent steps as follows (See Figure 2B):

• Columns:

a. (Preys) all distinct protein identifiers found as preys in the complete set of 

samples. These correspond to the unique identifiers in the prey_colname of 

the data file

b. (PepAtlas) If Peptide Atlas counts are not known set this to 1. PepAtlas 

counts are for SAINT compatibility.(Choi et al., 2012).

Verschueren et al. Page 6

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2016 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



c. (Length) scaling factor derived from the indicated molecular weight per 

protein in the mw_colname column

d. (PreyType) prey type is set to “N” to maintain matrix structure compatible 

with SAINT.

• Header rows:

a. (row 1) all unique sample identifiers. Sample identifiers correspond to the 

unique identifiers in the id_colname of the data file and the first column in 

the keys file.

b. (row 2) bait names for samples on row 1. Bait names correspond to the 

mapping of baits to samples described in the keys file.

c. (row 3) specificity exclusions for baits on row 2. Specificity exclusions are 

described in the specificity_exclusions file and will be discussed in the 

section on MiST scoring (Basic Protocol 3)

• Row 4-[unique preys] x Column 5-[samples]: peptide counts per prey/sample from 

the pepcount_colname column in the data file

Running the quality control protocol (See Table 3)

1. If matrix_file is left blank then the output matrix produced by the pre-processing 

step (Basic Protocol 1) is used, otherwise this parameter should point to the path of 

a correctly formatted bait-prey matrix as described above.

2. If ip_distributions is enabled then a number of plots summarizing sample features 

per group of biological replicates (See Figure X) are saved into the output_dir:

a. _proteincounts.pdf shows the total number of identified proteins with unique 

peptides. (See Figure 2C)

b. _NumUniqPep.pdf shows the distribution via boxplot of the peptide counts 

by the replicates grouped by bait. Replicate distributions that are very 

different may imply something went wrong with that sample, leading to it 

being removed in future scoring.

3. If cluster is enabled then a hierarchically clustered heatmap showing the pair-wise 

signal correlation between all samples is saved into the output_dir (See Figure 2D).

The correlation between the observed peptide counts for each pair of 

samples is measured by the Pearson correlation coefficient. Proteins that 

were not identified in a sample are given a zero peptide count. The 

resulting symmetric correlation matrix is then clustered with R's ‘hclust’ 

algorithm using the default Euclidian distance metric and visualized with 

R's ‘pheatmap’ library. Except the cluster_font_scale parameter, which 

can be decreased or increased for larger or smaller datasets respectively, 

the remaining described parameters are currently not configurable.
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Basic Protocol 3: Calculating the MiST score

The MiST score is a weighted sum of three features: 1) normalized protein abundance 

measured by peak intensities, spectral counts or unique number of peptide per protein 

(abundance); 2) invariability of abundance over replicated experiments (reproducibility); 

and 3) a measure of how unique a bait-prey pair is compared to all other baits (specificity). 

The weights of the three features are configurable in three different ways: first, pre-

configured fixed weights can be used; second, they can be trained de-novo on a custom list 

of trusted bait-prey pairs identified in the data set; lastly, a principal component analysis 

(PCA) can be run to assign the feature weights according their contribution to the variance 

in the data set.

Necessary Resources

Hardware—Workstation running any current OS, Unix environment recommended

Software—MiST pipeline (installed as described in Support Protocol)

Data preparation

After the preprocessing protocol of the MiST pipeline has been run, the input data should be 

properly reformatted for the main scoring algorithm. For convenience, the scoring input 

follows the same formatting guidelines as the SAINT algorithm bait-prey input matrix. If the 

preprocessing step was skipped, the user should make sure to format the input for all 

subsequent steps as described in the data preparation section of the Quality Control step (See 

also Figure 2B).

In addition to the bait-prey matrix input file, the user also has the option of setting bait 

exclusion rules when calculating the MiST scores. These rules only apply when computing 

MiST's specificity feature value. In brief, every exclusion rule defines which baits should be 

excluded from the specificity denominator. Even though the definition of bait exclusion 

rules is an optional parameter, it can highly influence the results. Therefore, we further 

discuss its proper in the critical parameters section of this protocol.

To apply specificity exclusion rules, create a tab-delimited file (See Figure 2A) where every 

row consists of:

○ (column 1): the name of the bait, whose specificity exclusion rules you would like to 

define. Make sure that the bait name corresponds to the name that was used in the keys 

or collapse file.

○ (column 2): the names of the baits that you would like to exclude when specificity is 

being computed for the bait listed in column 1. Multiple baits can be excluded by 

separating them with a pipe (‘|’) symbol. Again, make sure that all bait names 

correspond to names that were used in the keys or collapse file.
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Running the MiST scoring protocol (See Table 4)

1. (Optional) Create a specificity exclusion file (See data preparation) and define the 

path to this file through the specificity_exclusions entry in the files block of the 

configuration file.

2. If matrix_file is left blank then the output matrix produced by the pre-processing 

step (Basic Protocol 1) is used, otherwise this parameter should point to the path of 

a correctly formatted bait-prey matrix.

3. Decide on a strategy to combine the abundance, reproducibility and specificity 

features into a single MiST score. To do so, set the weights parameter to either:

a. fixed: Choose a decimal value between 0 and 1 for reproducibility, 

abundance and specificity.

When choosing fixed values, make sure the sum of these values 

sums up to 1. If no weight values are chosen the weights default to 

0.309 for reproducibility, 0.685 for specificity and 0.006 for 

abundance. These weights were established in the first MiST 

publication (Jäger et al., 2011)and are a good choice to select 

reproducible, specific bait-prey pairs.

b. training: MiST will use a training_file to exhaustively test the performance 

of different parameter combinations and select the optimal configuration.

We recommend using this option only when a sufficiently large 

benchmark set is available. See the advanced parameter section 

below for details.

c. PCA: MiST will perform a Principal Component Analysis (PCA) on the 

three-dimensional feature matrix and select weights that project the feature 

values on the first principal component.

We recommend using this option only when the suggested fixed 

weights do not perform well and insufficient training data is 

available.

Result file—The result file is tab-delimited file with a unique entry for observed bait-prey 

pair organized in the following columns:

○ Bait: Bait name as described in the keys or collapse file

○ Prey: Protein identifier as listed in the prey_colname column of the data file

○ Abundance: MiST abundance feature value of the bait-prey pair

○ Reproducibility: MiST reproducibility feature value of the bait-prey pair

○ Specificity: MiST specificity feature value of the bait-prey pair

○ MiST: The total MiST score value of the bait-prey pair

○ Ip: All samples where the bait-prey was observed in.
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Guidelines for Understanding Results

Quality Control Plots—Different protein baits can have drastically different amounts of 

interacting proteins.

Nevertheless, these levels should be consistent across biological replicates. A simple bar 

plot grouping all replicates for a single bait can help spotting samples of lower quality, 

which can consequently be removed from the dataset (See Figure 2C and 3A).

The primary use of the hierarchically clustered heatmap is to validate that samples are 

indeed more correlated within their group of replicates compared to negative controls and 

different baits. If this is not the case and a sufficient number of replicates are available, the 

sample can be removed from the data by adding its identifier to the remove file. In addition, 

carefully inspecting clusters can reveal accidentally mislabeled samples. For example, if one 

sample clusters more tightly with an unrelated group of baits compared to the other samples 

in its group this could be an indication that the sample was accidentally mislabeled. If this is 

the case, it is helpful to inspect the number of bait peptides that should be detected at high 

levels in the sample. Lastly, if a bait is purified under multiple experimental conditions 

(mutations, beads, tags, drugs, etc.), the correlation between these conditions can be an 

indication of the effect of the condition. Instead of discarding these samples the user can 

make a conscious choice to treat the conditional purifications as replicates of the wild type 

(See Figure 2D and 3B).

MiST Score—MiST aims to predict whether a protein-protein interaction detected in a set 

of repeated AP-MS experiments is biologically relevant using three features: reproducibility, 

abundance and specificity. To get as close to the optimal MiST score of 1 for an interaction, 

it is important that this interaction scores well across all features (See Figure 4A). Since 

values of 1 or close to 1 are rare, a minimum threshold can be applied to separate the 

predicted true interactions from the rest. However, choosing the appropriate threshold that 

makes a good trade-off between prediction sensitivity (detecting all true interactions) and 

specificity (minimizing the number of false positives) can be challenging and depends on the 

choice of feature weights.

The easiest way to pick a threshold is therefore to stick to the recommended value for 

specific weights. For example, for the previously published HIV–host interaction network, a 

MiST lower bound threshold of 0.75 was recommended. When your dataset is comparable 

to a reference set this is an easy and sound solution.

A slightly harder but more preferred way of picking a threshold is by making prediction 

plots such as a Receiver Operating Curve (ROC) or a precision-recall curve and computing 

prediction accuracy statistics like the f1 score. The main drawback of this approach is that 

these metrics depend on the presence of ‘true’ positive and negative bait-prey interactions in 

the MS data set. While the so-called ‘negative’ interactions are often picked randomly from 

the data, the absence of known ‘positive’ interactions for a protein is often the very reason to 

perform an AP-MS experiment. When compiling a benchmark set we recommend using a 

positive set of at least 20 interactions and picking a negative set roughly 100 times larger 

than the positive set.
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Finally, if neither of the aforementioned strategies for choosing a threshold is feasible, we 

advise to respect two rules of thumb. First, never pick a threshold lower than the highest 

feature weight value. For example, if specificity has the highest weight of 0.68, the MiST 

threshold should be strictly greater than 0.68. As explained before, biologically relevant 

interactions are expected to be reproducible and specific (See Figure 4A). Interactions with a 

perfect reproducibility score but zero specificity score are most likely ‘background’ 

interactions with highly abundant proteins. Conversely, interactions with a perfect 

specificity score and zero reproducibility score are likely to be ‘one-hit-wonders’. Second, 

keep in mind that the goal of scoring an AP-MS data set should be to approach the true 

biologically relevant interaction network as close as possible. Even though it is known that 

some proteins act as hubs and others have just one single interaction partner, current studies 

estimate the average number of interactions to be around 5-8 per protein. This expected bait-

prey ratio could therefore be used to determine a reasonable cutoff for the MiST scores. 

Since the primary purpose of an AP-MS experiment is to discover new interactions and 

these studies are often followed up with a more targeted experiment, it is still acceptable to 

consciously allow a higher number of potential false positives.

Commentary

Background Information—The MiST score was originally developed to rank bait-prey 

pairs in an ex vivo HIV-human data set (Jäger et al., 2011). When this data set was being 

produced, SAINT (Choi et al., 2011, 2012; UNIT 8.15) and the CompPASS-D (Sowa et al., 

2009) score were the two main computational algorithms that were suited to analyze large-

scale AP-MS data sets. However, their prediction performance was only reported on a data 

set of human-human protein interactions. The uniqueness of the HIV-human data sets 

became the primary reason to develop MiST, a custom AP-MS scoring algorithm. Although 

MiST and CompPASS both use exclusively abundance, reproducibility and specificity as 

predictive features, making them therefore somewhat comparable, MiST scores are easier to 

interpret because their feature value and total score varies between 0 and 1. Even though a 

ranked bait-prey list based on CompPASS scores is quite accurate, the actual scores are by 

definition harder to interpret because they vary between 0 and extremely high numbers.

SAINT scores, on the other hand, vary between 0 and 1 but are conceptually very different 

because they describe the probability that a bait-prey pair is true based on a distribution 

model of its abundance values. For optimal SAINT performance it is therefore 

recommended to have a well-defined set of negative control affinity purifications to 

compare against. Neither MIST nor CompPASS requires explicit definition of negative 

controls; in fact negative controls are treated just the same as any another bait purification in 

the dataset.

To assess the accuracy of MiST, we compared it to the SAINT, and CompPASS scores. The 

accuracy of each score was evaluated by its recall rate for the set of 39 well-characterized 

biologically relevant HIV-human bait-prey pairs. The MiST score was the most accurate 

among all the tested scores (Jäger et al., 2011). For example, at the threshold of 0.75, the 

recall number of known bait-prey pairs for the CompPASS, and MiST scores was 19, 29, 

and 32, respectively. Furthermore, 97 out of 127 (76% recall) top-ranked interactions 
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predicted by MiST were validated using co-immunoprecipitation followed by Western-blot 

as an orthogonal assay. For an additional test, we counted bait-prey pairs involving 

ribosomal proteins, which are a good indicator of biologically irrelevant bait-prey pair 

predictions (Ewing et al., 2007). Again, MiST was the most accurate score, resulting in only 

3 HIV-ribosomal protein bait-prey pairs, compared to 32 and 75 for SAINT and 

CompPASS, respectively.

Critical Parameters

Specificity exclusions: We repeatedly observed in gold-standard data sets that good 

prediction performance goes hand in hand with a high weight for specificity. Preys 

exclusively identified with a single bait protein will receive a high specificity value, 

therefore these preys will overall get high MiST scores. Conversely, prey proteins identified 

with several baits are not bait specific and will receive overall lower scores. However, often 

large-scale interrogations of biological systems are designed in a way that inherently 

introduces a bias into the number of times preys are identified across multiple baits. For 

‘specificity’ to optimally work the way it is intended to, it is therefore important to remove 

design bias from the calculations. Here, we illustrate how you can achieve this by describing 

the three most common examples:

○ Conditional interactions: When an experiment is designed to determine whether a 

drug or mutation influences one specific interaction between two proteins, most of the 

unaffected interactions will still be detected in the samples with the drug or mutation. 

To ensure the scores of both the wild type and conditional sample are not incorrectly 

penalized by their shared interactions, we add exclusion rules between the (bait, bait + 

condition) pair and the (bait + condition, bait) pair (See Figure 3B).

○ Highly homologous baits: When two baits in a data set share a more than expected 

degree of sequence identity, they likely share a significant amount of interactions too. 

The most common examples are intra- or inter-species homologs, different isoforms of 

the same protein and cleaved protein products from poly-proteins.

○ Complex subunits: When subunits of a stable multi-subunit complex are all used as 

baits, the remaining subunits of the full complex will be identified recurrently in all 

samples.

Beyond these obvious cases, we recommend to not get carried away with specificity 

exclusions. Only data sets that have a high percentage of baits that match the conditions 

above should be scored with a specificity exclusion list. If there “might” be set of common 

interactions between baits that could throw of the specificity score, then score the data 

without excluding the baits from each other and look whether the MiST scores are affected 

by a low specificity component.

Advanced parameters

MiST training with gold-standard interactions—The training file contains known 

true interactions that were identified in the data. This file should be tab-delimited, listing 

baits with the bait name described in the keys or collapse file and preys with their name in 

the prey_colname column of the data file. MiST will label these bait-prey pairs as positive 
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interactions set and compile a 100 times larger negative interaction set randomly selected 

from the data.

MiST will then run a simulation that cycles through all possible assignments of the three 

weights with 0.01 increments that together sum to 1, and 0.01 increments of threshold 

between 0 and 1. In every simulation cycle, MiST scores using these weights are computed 

and the subset greater than the threshold is compared to the positive and negative set. We 

compare the performance of the simulated weights at a given threshold by computing the 

precision and recall rates along with the ‘f1 score’ to measure overall accuracy.

Finally, the combination of weights with the best f1 score will be selected to compute the 

MiST scores and an additional file with the summary of all simulations is written to the 

output_dir.

Suggestions for Further Analysis

Here we describe a number of suggestions for further analysis, starting from the MiST 

scores output file.

Protein interaction networks—After MiST outputs the scored list of bait-prey pairs and 

the appropriate threshold to select the high-confidence pairs is determined, the next step is 

usually to convert this filtered list into a more visual representation as a protein interaction 

network. Cytoscape (Shannon, 2003; Su et al., 2014; UNIT 8.13) is by far the most popular 

piece of software used to create such networks. An in-depth tutorial on how to create 

interaction networks using AP-MS data is recently reviewed by Morris et al. (Manuscript in 

press)

Connecting protein complexes—Unlike yeast-two-hybrid, which is binary in nature, 

interactions identified by AP-MS can be either in direct contact with the bait or indirectly 

mediated through members of the same protein complex. By overlaying published 

interaction data as edges between two ‘prey’ proteins, it is easier to see which protein 

complexes a particular bait protein interacts with. There are many online resources that 

collect and curate large-scale interaction data from different experimental sources such as 

the Biogrid (Stark et al., 2006), STRING (Mering, 2003), Corum (Ruepp et al., 2009) and 

Compleat (Vinayagam et al., 2013) that allow queries with a list of proteins to return all 

observed interactions between them (See Figure 4B). If the bait-prey list is imported in 

Cytoscape, this process can be done automatically by using the BisoGenet plugin (Martin et 

al., 2010).

Biological annotation enrichment—To make sense out of larger protein interaction 

data sets it is useful to annotate all identified proteins with meaningful terms describing their 

biological function, domain composition, pathway involvement, disease involvement and 

cellular localization. Again, there are many well-established online resources that collect and 

curate protein annotation terms such as GO (Gene and Consortium, 2000; Blake and Harris, 

2008; UNIT 7.2) KEGG (Ogata et al., 1999; Tanabe and Kanehisa, 2012; UNIT 1.12) or 

PFAM (Finn et al., 2014; Coggill et al., 2008; UNIT 2.5). Next, these annotated protein lists 

can then be analyzed to test whether ontology terms are overrepresented in the full set or 
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specifically with respect to a single bait protein. The Cytoscape software can be a valuable 

tool for this purpose too because plugins such as BINGO (Maere et al., 2005) take care of 

network annotation and enrichment tests in a few easy steps. Alternatively, complete lists of 

scored protein interactions or shorter lists of interactions above a certain threshold can be 

uploaded to online tools such as DAVID (Dennis et al., 2003) or GORILLA (Eden et al., 

2009) respectively.
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Figure 1. 
Flow chart of the Mass Spectrometry Interaction Statistics (MiST) analysis pipeline. 

Required input files are marked with (*). Optional steps in the protocol and their 

corresponding input files are indicated in light gray.
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Figure 2. 
A) Tab-separated input files required to run a first pass of MiST B) Output bait-prey matrix 

after the pre-processing protocol (1) that serves as input for the MiST protocol (3) C) Output 

of the quality control protocol depicting the number of detected proteins across replicates for 

a single bait. Samples AP-10 and AP-3 are candidates for removal from the data set D) 

Output of the quality control protocol depicting a hierarchically clustered heatmap of the 

pairwise sample correlation matrix. The signal from sample AP-3 is clearly uncorrelated 

with the VIF+ replicates while hIP34-15 correlation with the GFP group is acceptable.
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Figure 3. 
A) Tab-separated input files adjusted based on the Quality Control observations: (1) sample 

AP-3 is ‘removed’ from the data. (2) VIF and VIF+ are ‘collapsed’ into a VIF_group and. 

Optionally VIF and VIF+ could have been mutually excluded for specificity calculations B) 

The clustered heatmap after adjustments shows no low quality data and clearly distinct 

replicate clusters aligned with the 3 different bait groups.
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Figure 4. 
A) A 3d scatterplot illustrating three different areas in the three-dimensional MiST feature 

space: (1) biologically relevant interactions (red gradient, MiST scores > 0.75) are specific 

and reproducible with variable abundance (2) non-specific, reproducible interactions are 

often background proteins and (3) specific, irreproducible interactions are often one-hit-

wonders including contaminants and MS artifacts B) The scored bait-prey list at a high 

MiST score threshold visualized as a protein interaction network with Cytoscape. Red edges 

depict interactions identified by AP-MS while black edges are mined from the CORUM 
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database. Edge width corresponds to the MiST score. High MiST scores for multiple 

subunits of a described complex add confidence to observed AP-MS interactions.
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Table 1

configurable parameters for file input/output

name type description

data string path to the data file with the identified and quantified proteins (see data preparation)

keys string path to the keys file matching samples to bait names (see data preparation)

remove string path to the file listing samples that should be excluded from analysis

collapse string path to the file listing groups of baits that can be treated as biological replicates

specificity_exclusions string path to the file listing baits to mutually exclude when computing specificity (see basic protocol 2)

output_dir string directory to write output files
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Table 2

configurable parameters for pre-processing

name type description

remove_carryover boolean enables the attempted removal of carryover proteins from a previous run

flter_contaminants boolean enables the removal of known contaminants from the prey list

contaminants_file string path to file listing all known contaminants in FASTA format

ld_colname string column identifier for sample identifier

prey_colname string column identifier for identified proteins in data file

pepcount_colname string column identifier for observed peptides per protein in data file

mw_colname string column identifier for protein molecular weight in data file
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Table 3

configurable parameters for quality control

name type description

matrix_file string Path to preprocessed matrix file. The matrix created in the preprocess step will be used if this is left blank

cluster boolean Whether to perform a hierarchical cluster analysis on the data

cluster_font_scale integer Row/column font adjustment factor for the clustered heat map

ip_distributions string Whether to perform a protein count and peptide distribution analysis per group of biological replicates
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Table 4

configurable parameters for the MiST scoring algorithm

name type description

matrix_file string Path to preprocessed matrix file. The matrix created in the preprocess step will be used if this is left blank

weights string One of three possible values: fixed/training/PCA (See MiST section)

training_file string path the the file containing bait-prey pairs for training (only if weights : training)

reproducibility double MiST weight [0-1] for the reproducibility feature

abundance double MiST weight [0-1] for the abundance feature

specificity double MiST weight [0-1] for the specificity feature
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