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Background 

The primary clinical goal for imaging in patients with 
refractory epilepsy has been the identification and 
localization of a potential surgical target. However, the 
development of the concept of epileptogenic networks, 
in contrast to a single regional source (1), has challenged 
the conventional classification of focal and generalised 
epilepsy. This is encouraging investigators and clinicians 
to pay particular attention to the network dynamics 
of conventionally defined clinical targets, posing new 

challenges to treatment options (2) potentially more 
suited to patients that remain refractory to antiepileptic 
medications (3), and in light of surgical failures.

Currently, localization of the seizure onset zone 
(SOZ) and epileptogenic zone (EZ) is  commonly 
performed by employing a range of techniques, including 
magnetic resonance imaging (MRI), long term video-
electroencephalography monitoring (video-EEG), 
magnetic-encephalography (MEG), positron emission 
tomography (PET), ictal single photon emission computed 
tomography (ictal-SPECT) and/or intracranial EEG 
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(icEEG). Intracranial EEG is considered a clinical gold 
standard despite its limitations: limited spatial sampling 
and constraints regarding safety. The lack of a true gold  
standard (4) has further enhanced the realisation that 
understanding of whole brain networks is required for 
improved markers in patients with refractory epilepsy, 
specifically to aid novel and targeted interventions (1,2,5).

The development of simultaneous EEG and functional 
MRI (EEG-fMRI) has the potential to combine information 
from two spheres: electrical and haemodynamic. Albeit 
operating at vastly different temporal resolutions, EEG 
and simultaneous fMRI employs the synchrony of 
electrographic events and haemodynamic correlates to 
localise and track the evolution of activity. This approach 
combines our knowledge of the EEG markers of epilepsy 
with the whole brain sensitivity and good spatial resolution 
of fMRI to derive its measurements, therewith resolving the 
inherent limitations of EEG (and MEG) and fMRI taken 
individually (6). 

In its most common form, simultaneous EEG-fMRI 
aims to measure haemodynamic changes associated with 
epileptiform electrical brain activity, essentially through a 
multifactorial correlation analysis. Scalp EEG-fMRI based 
localization of epileptic brain networks has been evaluated 
relative to that of more established methods such as scalp 
EEG, MRI, ictal-SPECT and icEEG (7). Therefore, a role 
for EEG-fMRI is indicated by virtue of its demonstrated 
success in localizing the SOZ/EZ for patients with refractory 
epilepsy undergoing presurgical assessment (8-15),  
and identifying syndrome-specific brain networks in 
patients with focal (16-21) or generalized epilepsies (22-26). 
However, the use of scalp EEG to predict haemodynamic 
signal variations related to epileptic activity, is constrained 
by its limited sensitivity, in particular to deep activity. In 
contrast, intracranial EEG has exquisite local sensitivity, and 
more recently simultaneous icEEG-fMRI has been shown 
to reveal interictal activity-related haemodynamic networks 
(11,27,28).

Comprehensive detai ls  of  the EEG-fMRI data 
acquisition and analysis techniques are available in relatively 
recent reviews (7,29,30). Therefore, we have chosen to 
focus on the application of EEG-fMRI as an instrument to 
identify and map resting, cognitive and epileptic networks, 
following a brief synopsis of the technique’s basic principles.

Literature search methodology

We searched English language articles in PubMed from 

2003 to 2014, with the following search formulation: 
(epilepsy AND EEG-fMRI AND networks) OR (epilepsy 
AND networks) OR (fMRI AND connectivity) OR [EEG-
fMRI and (language OR memory OR connectivity OR 
networks OR resting state networks)]. 

Basic principles of EEG-fMRI

The epileptiform electrical brain activity comprises 
synchronous firing of multiple neurons generating local 
field potentials which are measured on EEG as interictal 
epileptiform discharges (IEDs: spikes) or seizures. The 
haemodynamic signal recorded in fMRI is the result 
of coupling between the neural event or response of 
interest and haemodynamic fluctuation (often referred 
to as neurovascular coupling)—i.e., variations in blood 
oxygenation associated with neuronal firing—specifically 
detected by exploiting the magnetic properties of blood 
[deoxy/oxy haemoglobin, the blood-oxygen-level-
dependent (BOLD) contrast] (31,32). Notwithstanding 
the slow temporal characteristics of the BOLD signal (33)  
and questions on the exact nature in relation to underlying 
neural activity (34,35), BOLD fMRI has been used 
extensively to map a range of cognitive and epileptic 
phenomena. 

In EEG-fMRI studies of spontaneous epileptic activity, 
the EEG is used to indicate the occurrence of events 
of interest in relation to the fMRI time series, and the 
experimenter’s challenge is to accurately represent the 
epileptiform activity to build a model of the associated 
BOLD signal changes, and choose an appropriate 
haemodynamic convolution model. Epileptiform events 
such as runs of IED and seizures can be represented as a 
“box” function or as a “stick” function of zero-duration for 
single IEDs. The most commonly employed shape is the 
so-called ‘canonical’ HRF derived from, and widely used 
in cognitive fMRI studies (36): it comprises two gamma 
functions, one accounting for the peak and the other for 
undershoot. However, significant variation in the shape and 
onset of the hemodynamic responses has been demonstrated 
across subjects (37,38) and brain regions (39) and may 
be influenced by top down and bottom up processing. In 
epilepsy (particularly generalised discharges) there is a 
suggestion that the shape of the HRF can deviate from 
the canonical shape, resulting in significantly decreased 
sensitivity (40). Characterisation of HRF shape variability 
can be performed using more general basis function sets 
such as the finite impulse response (FIR) and Fourier basis 
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sets, which appear to make the least assumptions about 
the shape of the response and potentially increases the 
likelihood of detecting hemodynamic changes that are 
different from the canonical HRF. The FIR model (41) 
allows estimation of idiosyncratic hemodynamic response 
by deconvolution which may result in a different number 
of regressors at each point in the time series. Whilst it 
provides greater flexibility, FIR readily models noise. A 
new modelling technique, based on the superposition of 
three inverse logit functions (IL), compared favourably 
with several other popular methods, including smooth FIR 
models, the canonical HRF with derivatives, nonlinear fits 
using a canonical HRF, and a standard canonical model (42).  
The Fourier series basis set employs a combination of sine 
and cosine to model hemodynamic response. It is sensitive 
to identify any pattern of consistent signal changes, 
providing flexibility to model interictal, ictal and preictal 
BOLD changes (9,43,44) and low-frequency fluctuations 
at resting-state (45). Multiple HRFs (40,43,46-50) with 
variable onset and peak times have also been used to 
evaluate BOLD activity associated with interictal discharges. 
An important caveat is that neurovascular coupling may 
be altered in epilepsy patients due to the presence of a 
structural lesion (43,51) with implications for detection, 
localization, shape and sign of the HRF. More details 
about the neurobiology of HRF shape and its underlying 
physiology has recently been discussed (52).

It is important to note that investigations of the 
relationship between the shape of the HRF and sensitivity 
are severely limited by the fact that ground truth (extent of 
the generators of epileptic activity) is usually very difficult 
to obtain, even in cases that subsequently undergo resective 
surgery successfully since it is conceivable that seizure 
cessation can be achieved by disruption, rather than total 
ablation of the epileptogenic region or network; in addition, 
a recent study of the extent of BOLD changes using very 
flexible HRF models and mass averaging has revealed 
whole-brain involvement in relation to simple tasks. This 
highlights the importance of careful consideration of the 
objectives of fMRI mapping studies, through appropriate 
model specification. A compromise between allowing HRF 
of almost arbitrary shape and the canonical form to account 
for variations in response onset is obtained by adding 
temporal and dispersion derivatives (53). 

Sensitivity of EEG-fMRI 

Scalp EEG-fMRI depends on epileptiform events to be 

captured during recording sessions to detect associated 
BOLD changes. However, routine clinical scalp EEG 
recording lasting 20-30 minutes has low sensitivity  
(~30-50%) to capture epileptiform activity (54). It is 
possibly related to the fact that at least 6-10 cm2 area of the 
brain is required to be activated to produce an IED to be 
captured on scalp EEG (55,56) and epileptiform events that 
are of smaller magnitude may remain undetected. 

It has been shown that 40% of cases showed no clear 
IED during studies, another 30% of cases where IED has 
been identified and modelled there has been no significant 
BOLD change which reflects limitations in the modelling of 
the fMRI signal (15). In order to improve the sensitivity of 
technique, Grouiller et al. have suggested the construction 
of topographic maps from IEDs recorded during long-term 
video-EEG monitoring (57). In turn these topographic 
maps are correlated with the EEG recorded during fMRI 
and used to evaluate BOLD changes associated with 
epileptic activity. This approach has increased sensitivity 
of EEG-fMRI to around 80% (57,58). In addition, fMRI is 
affected by motion which has resulted in several approaches 
to characterise motion in the design matrix to improve 
sensitivity (59-61). Other forms of physiological noise have 
also been addressed to explain unknown variance in fMRI 
data and improve the sensitivity of the technique including: 
cardiac pulse (40,62,63), respiration (64), and a variety 
of patient movements: swallowing and eye blinks (65).  
In contrast to scalp EEG-fMRI, a limited number of  
icEEG-fMRI studies have shown 100% sensitivity to 
identify IED-related BOLD changes (11,27,28). 

The sensitivity of ictal EEG-fMRI studies to capture a 
seizure varies from 10-100% and the sensitivity to reveal 
seizure-related BOLD changes if a seizure is captured 
during the recording session ranges between 66-100% 
(9,18,24,44,66-75). The range of sensitivity observed in 
these studies may be due to the patient selection criteria, 
differences in the concordance criteria used to assess 
localization of BOLD changes, as well as differences in 
modelling approaches.

Clinical utility: localisation of the epileptic focus 
or network

Initial fMRI studies, without simultaneous EEG, investigating 
seizure-related BOLD changes helped localizing the seizure 
focus (76,77). Spike-triggered EEG-FMRI studies (78) added 
diagnostic information in the pre-surgical context. Later, 
simultaneous and continuous EEG-fMRI showed spike-
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related BOLD changes in the epileptic focus (79).
IED-related BOLD localization (8,80,81) has been 

found to be more specific than scalp EEG for localizing 
invasively defined epileptic focus (14). It has also shown that 
widespread and discordant IED-related BOLD changes are 
associated with poor postsurgical outcome (10,12,82) thus 
showing promise as a technique to predict surgical outcome 
non-invasively. Coan et al. have shown that localization of 
IED related BOLD changes within 2 cm of the EZ/area 
of surgical resection has a positive predictive value of 78% 
and negative predictive value of 81% (83). The localization 
of IED-related BOLD changes has also resulted in 
reconsideration of surgical intervention following negation 
of the surgical option in the context of other investigations 
(13,84). Simultaneous intra-cranial EEG-fMRI studies 
have shown significant BOLD changes for very focal spikes 
identified on icEEG (27,28), both in close proximity to 
and remote from the EZ, and also in regions that could not 
be sampled by icEEG (27). Moreover, the ability of scalp 
EEG-fMRI to predict postsurgical outcome has also been 
mirrored by icEEG-fMRI studies (85).

Mapping seizure-related BOLD changes using  
EEG-fMRI (76,77) has offered an alternative to ictal-
SPECT in principal. Due to the rarity and unpredictability 
of seizures most studies have only been case reports  
(19,86-88) or fortuitous recording of seizure (44,73-
75,89) during interictal EEG-fMRI studies. However, 
following specific selection criteria based on seizure 
frequency and seizure types, our group has published the 
largest ictal case series showing that seizure onset-related 
BOLD maps have the highest degree of concordance with 
independently defined invasive and/or noninvasive SOZ, 
providing localization at sub-lobar level (9). These findings 
are in accordance with ours and others previous findings 
(44,70,73-75,89). Moreover, EEG-fMRI can separate ictal-
onset, propagation and preictal related BOLD changes 
(9,19,90). 

Interictal and seizure-related BOLD maps are frequently 
poorly understood due to the multiplicity of BOLD clusters 
within a single map. Therefore, a number of concordance 
schemes have been developed (7) based on the location 
of statistically most significant or clinically most relevant 
cluster. These multiple clusters are seen in the EZ/SOZ, 
seizure propagation related areas, symptomatogenic zone 
as well as resting state areas, which is more consistent with 
network involvement as opposed to mere spatial zone 
delineation (1,91). These studies indicate that non-invasive 
spike and seizure related BOLD localisation provided by 

scalp EEG-fMRI can be useful for guiding implantation 
of intracranial electrodes in patients who requires invasive 
evaluation prior to surgery. 

EEG-fMRI investigation of cognitive networks in 
epilepsy

Loss of consciousness or cognitive impairment during 
seizures is a universally known fact. Also, cognition is 
impaired during the course of epilepsy (92) depending 
upon the type and location of epilepsy and structural 
abnormalities, and type of cognitive process i.e., language 
and memory (93-96). However, there are limited number 
of studies investigating the acute and immediate effects 
of IEDs on cognition and cognitive networks in patients 
with epilepsy. A common clinical manifestation of IEDs 
(97,98), known as transient cognitive impairment (TCI) 
is particularly associated with generalised spike and wave 
discharges (GSWD) lasting more than 3 sec (99,100). 

Attention (68,69) and working memory (101) related 
BOLD networks are altered as an effect of GSWD. 
Reduction in resting functional connectivity in the medial 
frontal cortex together with poor attention task performance 
is associated with decreased activation of medial frontal 
cortex in children with absence epilepsy (102). A causal 
link is implied between such patterns and the cognitive 
(“downstream”) or facilitation (“upstream”) effects of 
GSWD (103)—a question underlined by a case report (104) 
in a patient without cognitive impairment during GSWDs 
which revealed GSWD-related BOLD changes in a similar 
cortico-subcortical network. This finding is established with 
additional cogency by the observations of impoverished 
architecture and connections in resting state networks 
(RSNs) associated with task impairment such as poor 
verbal memory retention (105-107). These result indicate 
that EEG-fMRI can potentially be deployed to observe 
functional changes in brain networks which otherwise might 
not be detectable clinically (101).

Epileptic networks observed using EEG-fMRI

When multiple regions are shown to be activated or 
deactivated in relation to a specific type of epileptic event, 
it is common to refer to such a pattern as a network, 
with each activated cluster representing a node (at least 
conceptually). In this section we re-interpret some of the 
commonly observed epileptic activity-related BOLD maps 
as putative networks, which we believe can be particularly 
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justified when these are considered in relation to, and found 
to incorporate some aspects of brain networks, identified 
in different contexts and using different methods, such as 
resting-state fMRI functional connectivity and PET studies.

In generalized epilepsy, a number of EEG-fMRI studies 
have demonstrated a common pattern which comprises 
BOLD increases in the thalamus and BOLD decreases 
in medial as well as lateral frontal, superior parietal, 
posterior cingulate, precuneus (22,23,25,26) and caudate 
(22,23,72,108,109), and the reticular formation (24). This 
cortico-subcortical network also involves the default mode 
network (DMN) which reflects physiological processes that 
undergirds attention and working memory (110). Alteration 
in the activation/deactivation of BOLD changes in the 
DMN (111) suggest that the normal brain activation/rest 
balance is apparently disturbed due to GSWDs (112-114) 
which in turn may be the reflection of changes in awareness. 
These findings indicate the importance of cortico-subcortical 
connectivity in producing and maintaining GSWDs which 
is consistent with the cortical focus theory (115), and BOLD 
changes in the precuneus (part of the DMN) may act to 
facilitate the occurrence of GSWDs (103,116). Different 
GSWD-related BOLD patterns have been demonstrated 
in Valproate responsive and resistant generalized epilepsy 
(117,118). Moreover, the duration of GSWD is linearly 
related to the amplitude of BOLD changes with no universal 
threshold effect of its duration (119). 

Seizure-related BOLD decreases in the DMN have also 
been observed in focal epilepsy suggestive of the mechanism 
responsible for changes in awareness (9,75,120). Other 
networks are also recruited in refractory focal seizures e.g., 
RSNs (9), a visual attention network in children with photo 
paroxysmal response (21,121), musicogenic seizure-related 
networks (16,17), a reading epilepsy-related network (18,19) 
and epilepsia partialis continua-related networks (20). In 
some conditions such as Dravet Syndrome, a syndrome-
specific epileptic network has not been identified, albeit 
specific thalamic and DMN-related regions demonstrated 
BOLD changes (122). 

EEG-fMRI has provided interesting observations of 
the temporal window of BOLD changes associated with 
seizures. Several studies have reported BOLD changes prior 
to the onset of electrical changes on EEG during seizures. 
These preictal changes are relatively more widespread 
(9,70,71) than BOLD changes prior to the onset of IED (21).

In related observations, typically functional connectivity 
based on EEG/electrophysiology reveals increased FC in 
epileptic regions. In contrast fMRI BOLD measures reveal 

decreases in functional connectivity in epileptic regions 
(123,124). A recent study confirmed these connectivity 
patterns using simultaneous icEEG-fMRI data specifically 
for depth electrodes. However, higher within-zone BOLD 
functional connectivity, i.e., pathological zones, was found for 
grid electrodes in contrast to the results for depth electrodes.

Resting-state networks and epilepsy 

The literature evidences increasing examination of 
spatially coherent, low frequency correlations or RSNs in 
the brain (125,126). These are spatially segregated areas 
representing underlying functional connectivity (127) which 
is important for development, maintenance, and function 
of the brain (106,110,128-131). As functional units they are 
active and synchronised both at rest and while performing 
a task (132,133). Fascination has been expressed in the 
contemplation of neuronal features responsible for these 
slow modulations—“Is it a small fraction of the population 
undergoing large variations or a large portion undergoing 
small deviations?” (134). These networks can be identified 
reliably across imaging sessions (135,136) and between 
subjects (132,136).

Several RSNs have been identified. However, two large 
anti-correlated systems corresponding to task engagement 
and task disengagement have been of more interest. One 
includes the DMN and the other is composed of task-
based networks: somatosensory, visual, or attention RSNs 
(137-140). These networks are identified in several studies 
investigating BOLD changes associated with epileptic 
activity (44,73,141,142). The connectivity within these 
networks is altered possibly as an effect of epilepsy (5). 

An effort has been made to quantify the involvement of 
different RSNs (143). It has also been found that there is 
an increase in the recruitment of RSNs during seizures as 
compared to IEDs, whilst the type and quantity of recruited 
RSNs also varies during seizures and IEDs. These BOLD 
networks in apparently healthy (non-affected) structure, 
away from conventionally defined epileptic areas, are 
thought to reflect projected neuronal activity not visible 
on EEG (56,144). Alternatively they can be interpreted 
as a reflection of the engagement of normal RSNs during 
epileptic activity, perhaps in the context of initiation or 
propagation of seizure activity (9,145).

Evolving the metrics in EEG-fMRI

We conclude by offering perspectives from the literature 
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that are likely to evolve both methodology and utility of 
EEG-fMRI, specifically in relation to its contribution 
to the current body of knowledge on epileptic networks. 
Graph representations of network features derived from 
data obtained with fMRI and EEG/MEG separately 
are obviously and naturally elaborated by the access to 
electrographic and BOLD signals provided simultaneously 
by EEG-fMRI (5). The technique provides a uniquely 
powerful method to elucidate the relationship between 
EEG and BOLD and through its capacity to reveal activity 
over the entire brain, to provide further insight into 
network dynamics.

Graph theory analysis approaches have been used to 
study the network properties of EZ/SOZ. EEG studies 
have shown that networks of patients who became seizure-
free after surgery have specific characteristics (146) e.g., 
resection of network nodes with high centrality is associated 
with a more favourable outcome (147). Also, hub-like 
structures in a network further elaborate spreading of 
seizure activity, specifically in relation to high-frequency 
electrographic activity (148-150) and have shown predictive 
value for diagnosis of epilepsy in children after an initial 
seizure-like event (151). Network characteristics such as 
modularity and clustering co-efficient have been identified, 
in fMRI-BOLD studies, to be associated with cognitive 
impairment in patients with absence epilepsy (152), 
cryptogenic localization-related epilepsy (153) and frontal 
lobe epilepsy (154).

It is our hope and expectation that EEG-fMRI will 
play a crucial role in addressing unresolved issues such as 
the nature of the differences between ictal and interictal 
networks and the role of specific network elements (hubs) 
in the initiation and evolution of seizures in humans. The 
exploration of the relationship between simultaneously 
recorded BOLD and EEG measures of network dynamics 
in terms of graph representations may provide useful 
insights for future treatment options, especially epilepsy 
surgery (155-159).

In this review we posited simultaneous EEG-fMRI 
as a unique network investigative tool that provides a 
multidimensional metric by virtue of simultaneously 
recording that in principle can help us investigate brain 
activity further than the array of uni-modal EEG and fMRI 
studies. Whereas EEG and EEG-fMRI allow for network 
changes to be attributed to ictal or interictal activity based 
on vast established knowledge of the EEG manifestations of 
epilepsy, more work will be required to better understand the 
fMRI manifestations of the same activity and thereby help us 

elucidate the distinct contributions of transient or permanent 
network abnormalities to abnormality in epileptogenic, 
cognitive and sensory processing networks (5). These 
differences pose significant research challenge to EEG-fMRI: 
One that will facilitate a convergence of haemodynamic and 
electrographic information to a mutual lexicon such as graph 
theory and connectivity measures for evolving greater insight 
into epileptic networks (160). The exploitation of EEG-
fMRI ability to identify different features of many networks 
simultaneously (143) during seizures as well as interictally 
may allow the integration of multidimensional data for 
potential identification of clinical biomarkers in epilepsy.
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