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Abstract

Image-guided radiotherapy (IGRT) requires fast and accurate localization of the prostate in 3-D 

treatment-guided radiotherapy, which is challenging due to low tissue contrast and large 

anatomical variation across patients. On the other hand, the IGRT workflow involves collecting a 

series of computed tomography (CT) images from the same patient under treatment. These images 

contain valuable patient-specific information yet are often neglected by previous works. In this 

paper, we propose a novel learning framework, namely incremental learning with selective 

memory (ILSM), to effectively learn the patient-specific appearance characteristics from these 

patient-specific images. Specifically, starting with a population-based discriminative appearance 

model, ILSM aims to “personalize” the model to fit patient-specific appearance characteristics. 

The model is personalized with two steps: backward pruning that discards obsolete population-

based knowledge and forward learning that incorporates patient-specific characteristics. By 

effectively combining the patient-specific characteristics with the general population statistics, the 

incrementally learned appearance model can localize the prostate of a specific patient much more 

accurately. This work has three contributions: 1) the proposed incremental learning framework can 

capture patient-specific characteristics more effectively, compared to traditional learning schemes, 

such as pure patient-specific learning, population-based learning, and mixture learning with 

patient-specific and population data; 2) this learning framework does not have any parametric 

model assumption, hence, allowing the adoption of any discriminative classifier; and 3) using 

ILSM, we can localize the prostate in treatment CTs accurately (DSC ∼0.89) and fast (∼4 s), 

which satisfies the real-world clinical requirements of IGRT.
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I. Introduction

IMAGE-guided radiotherapy (IGRT) is a newly developed technology for prostate cancer 

radiation treatment. It is usually recommended when patients are diagnosed with prostate 

cancer by biospy [1], [2] in the early stage. IGRT consists of a planning stage followed by a 

treatment stage (Fig. 1). In the planning stage, a planning computed tomography (CT) scan 

is acquired from the patient and radiation oncologists then manually delineate the prostate 

for treatment planning. These steps are the same as in conventional radiotherapy. The 

novelty of IGRT lies in the treatment stage. To account for daily prostate motions, a CT scan 

called the treatment image is acquired at each treatment day right before the radiation 

therapy. Since the treatment image captures a present snapshot of the patient's anatomy, 

radiation oncologists are able to adapt the treatment plan to precisely target the radiation 

dose to the current positions of tumors and avoid neighboring healthy tissues. Consequently, 

IGRT increases the probability of tumor control and typically shortens radiation therapy 

schedules [3], [4]. In order to effectively adapt the treatment plan, it is critical to localize the 

prostate in the daily treatment images fast and accurately. Thus, an automatic prostate 

localization algorithm would be a valuable asset in IGRT.

However, prostate localization in treatment CT images is quite challenging for three reasons. 

First, unlike the planning CT image, the treatment CT images are typically acquired with 

low dose protocols, in order to reduce unnecessary radiation exposure to patients during 

treatment. As a result, the image contrast of treatment CT is relatively lower compared to 

other modalities (e.g., MR and regular CT). Fig. 1 shows several typical treatment CTs and 

their prostate contours (red). Second, due to the existence of bowel gas and filling (pointed 

to by red arrows in Fig. 1), the image appearance of treatment CTs can change dramatically. 

Third, unpredicted daily prostate motion [5] further complicates the prostate localization 

procedure.

Many methods have been proposed to address the aforementioned challenges (for example, 

deformable models [6], [7], and deformable registration [8]). While such methods exhibit 

some effectiveness in CT prostate localization, their localization accuracy is often limited 

because they overlook a remarkable opportunity that is inherent in the IGRT workflow. In 

fact, at each treatment day, several CT scans of the patient have already been acquired and 

segmented in the planning day and previous treatment days. If the prostate appearance 

characteristics of this specific patient can be learned from these patient-specific images, an 

algorithm could exploit this information to localize the prostate much more effectively. 

Recently Li [9], Liao [10], and Gao [11] proposed different methods that use patient-specific 

information for CT prostate localization and have achieved promising results. However, 

their methods require at least three manually segmented patient-specific images available for 

patient-specific training, which imposes two major limitations: 1) there may not be sufficient 

patient-specific data available, especially in the beginning treatment days when only 
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planning CT is available; and 2) manual segmentation of patient-specific images is time 

consuming (11 min) even for experienced physicians. Additionally, these methods typically 

need minutes or even longer to localize the prostate due to the computationally expensive 

methodologies adopted (i.e., sparse coding, iterative voxel-wise classification, deformable 

registration). If the prostate unexpectedly moves during the long localization procedure, the 

localization result might become meaningless for IGRT.

To this end, we propose a novel learning scheme, namely incremental learning with 

selective memory (ILSM), for fast and accurate localization of the prostate in treatment CTs. 

Compared with previous prostate localization methods, the contributions of our work are 

two-fold: 1) by leveraging the large amount of population data (that is, CT scans of other 

patients) and the very limited amount of patient-specific data, ILSM is able to learn patient-

specific characteristics from only one image of the patient and apply the learned model to 

the localization of beginning treatment CTs; 2) our method can obtain comparable (if not 

better) localization accuracy to the state-of-the-art methods while substantially reducing the 

computational time to 4 s. To the best of our knowledge, this is the first prostate localization 

method that can satisfy both accuracy and efficiency requirements in the IGRT workflow. 

Also, compared to previous methods [9]–[11] that require manual annotation of the entire 

prostate on the patient-specific training images, our method only needs the annotations of 

seven prostate anatomical landmarks, thus significantly reducing the labor required for 

manual annotations.

To leverage both population and patient-specific data, our learning framework (ILSM) starts 

with learning a population-based discriminative appearance model. This model is then 

“personalized” according to the appearance information from CTs of the specific patient 

under treatment. Instead of either preserving or discarding all knowledge learned from the 

population, our method selectively inherits the part of population-based knowledge that is in 

accordance with the current patient, and at the same time incrementally learns the patient-

specific characteristics. This is where the name “incremental learning with selective 

memory” comes from. Once the population-based discriminative appearance model is 

personalized, it can be used to detect distinctive anatomical landmarks in new treatment 

images of the same patient for fast prostate localization. Compared with traditional learning 

schemes, such as pure patient-specific learning, population-based learning, and mixture 

learning with patient-specific and population data, ILSM exhibits better capability to capture 

the patient-specific characteristics embedded in the data. We note that the preliminary 

version of our method was previously reported in a conference paper [12]. The present paper 

extends the method by using multi-atlas RANSAC for prostate localization, and further 

evaluates the performance with much more comprehensive experiments and on a larger 

dataset.

The rest of the paper is organized as follows. Section II gives an overview of related 

methods on both CT prostate localization and incremental learning. Section III presents our 

ILSM framework and the prostate localization procedure. The experimental results are 

provided in Section IV. Finally, Section V presents the conclusion.
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II. Related Works

As mentioned, we employ incremental learning to localize the prostate in CT images. The 

following literature review will cover CT prostate localization and incremental learning, 

respectively.

A. CT Prostate Localization

Many methods have been proposed to address the challenging prostate localization problem 

in CT images. Most of them can be categorized into three groups: deformable models, 

deformable registration, and pixel-wise classification/labeling.

Deformable models are popular in medical image segmentation [13], [14], and widely 

adopted in CT prostate localization. For example, Pizer [15] proposed a medial shape model 

named M-reps for joint segmentation of bladder, rectum, and prostate. Freedman [16] 

proposed to segment the CT prostate by matching the probability distributions of 

photometric variables. Costa et al. [6] proposed coupled 3-D deformable models by 

considering the nonoverlapping constraint from bladder. Feng et al. [17] proposed to 

selectively combine the gradient profile features and region-based features to guide the 

deformable segmentation. Although deformable models have shown their robustness in 

many medical image segmentation problems, their performance highly depends on good 

initialization of the model, which is difficult to obtain in CT prostate localization since the 

daily prostate motion is unpredictable and sometimes can be very large due to the bowel gas 

and filling.

Deformable Registration [18]–[21] has been investigated in the community for many years 

as a way to align the corresponding structures between two images. It can also be used to 

localize the CT prostate by warping the previous treatment CTs (with the prostate 

segmented) of the same patient to the current treatment CT. For example, Foskey et al. [8] 

proposed a deflation method to explicitly eliminate bowel gas before 3-D deformable 

registration. Liao et al. [22] proposed a feature-guided deformable registration method by 

exploiting patient-specific information. Compared to deformable models, deformable 

registration takes into account global appearance information and is thus more robust to 

prostate motion. However, the nonrigid registration procedure is often time-consuming and 

typically takes minutes or even longer to localize the prostate, which is problematic if the 

prostate moves during the long localization procedure.

Pixel-wise classification/labeling is a recently proposed method for precise prostate 

segmentation. The basic idea is to enhance the indistinct prostate in CT scans through pixel-

wise labeling. Li et al. [9] proposed to utilize image context information to assist the pixel-

wise classification, and level-set was used to segment the prostate based on the classification 

response map. Gao et al. [23] proposed a sparse representation based classifier with a 

discriminative learned dictionary and further employed multi-atlas labeling for prostate 

segmentation. Liao et al. [10] proposed a sparse patch-based label propagation framework 

that effectively transfers the labels from previous treatment CTs of the patient for pixel-wise 

labeling. Shi et al. [24] proposed a semi-automated prostate segmentation method by 

designing spatial-constrained transductive lasso for multi-atlas based label fusion. Despite 

Gao et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the high accuracy of these methods (mean DSC ≈ 0.9), in general, they suffer from two 

limitations: 1) as in deformable registration, pixel-wise labeling is usually time consuming; 

2) in order to learn statistically reliable patient-specific appearance information, these 

methods require a sufficient number of manually segmented patient-specific images (i.e., at 

least three images). In practice, one may not be able to collect enough patient-specific 

images, especially in the beginning of radiotherapy when only the planning CT image is 

available.

Besides the aforementioned methods, Haas et al. [25] used 2-D flood fill with the shape 

guidance to localize the prostate in CT images. Ghosh et al. [26] proposed a genetic 

algorithm with prior knowledge in the form of texture and shape. Although these approaches 

adopted novel methodologies, their localization accuracies were very limited.

There are also many methods published for prostate segmentation in other modalities (e.g., 

MR [27], [28], ultrasound [29]–[31]). However, due to various reasons, most of these 

methods cannot be readily adapted for fast prostate localization in CT images. For example, 

conventional multi-atlas methods (e.g., [27]) often require nonrigid registration to align each 

atlas with the image to be segmented. This procedure is quite time consuming (e.g., 15 min 

per registration) and thus not suitable for fast prostate localization. Methods such as [29], 

[30] utilized the existence of diagnostic probe in ultrasound images for feature design and 

prostate localization. Due to lack of such structure in CT images, these kinds of methods are 

no longer applicable. Other methods (e.g., [28], [30]) are not considered because they are 

either semi-automatic or only applicable to 2-D segmentation.

B. Incremental Learning

Incremental learning has been extensively investigated in the area of machine learning area. 

The key objective of incremental learning is to adapt previously learned models (e.g., 

classifiers) to new data without retraining from scratch. Polikar et al. [32] proposed Learn+

+, an algorithm for incremental training of neural network (NN) classifiers. By assembling 

previously learned classifiers with incrementally trained classifiers, Learn++ is able to adapt 

the trained classifiers to incoming data. Diehl et al. [33] proposed an incremental learning 

algorithm for adapting the support vector machine (SVM) classifier. Ross et al. [34] 

proposed an incremental learning algorithm for online updating of the Gaussian appearance 

model for visual tracking. While these methods share some similarities with our framework 

in terms of incremental learning, there are three main differences between previous 

incremental learning approaches and our method: 1) instead of preserving all previously 

learned knowledge [32], ILSM selectively discards some learned population characteristics 

if they are no longer applicable to the patient-specific data; 2) in contrast to [34], which 

assumes image appearance follows Gaussian distribution, ILSM doesn't impose any 

assumption on appearance distribution, as prostate appearance often follows a complex non-

Gaussian distribution (demonstrated in Fig. 3); 3) different from [33], which only focuses on 

the incremental learning of a specific classifier (i.e., SVM), ILSM provides a general 

learning framework for effective combination of large population data and the limited 

patient-specific data, hence allowing for the adoption of any classifier. To the best of our 

knowledge, this is the first work that employs the concept of incremental learning to 
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effectively combine the appearance statistics from large population data and the limited 

patient-specific data.

III. Methodology

Our method aims to localize the prostate in daily treatment images via learning a set of local 

discriminative appearance models. Specifically, these models are used as anatomy detectors 

to detect distinctive prostate anatomical landmarks as shown in Fig. 2. Based on the detected 

landmarks, multiple patient-specific shape atlases (i.e., prostate shapes in planning and 

previous treatment stages) can be aligned onto the treatment image space by RANSAC [35]. 

Finally, majority voting is adopted to fuse the labels from different shape atlases.

As shown in Fig. 4, our method consists of three components, 1) cascade detector learning, 

2) incremental learning with selective memory, and 3) robust prostate localization by multi-

atlas RANSAC, which will be detailed in the following subsections.

A. Cascade Learning for Anatomy Detection

Our prostate localization method relies on several anatomical landmarks of the prostate. 

Inspired by Viola's face detection work [36], we adopt a learning-based detection method, 

which formulates landmark detection as a classification problem. Specifically, for each 

image, the voxel of the specific landmark is positive and all others are negatives. In the 

training stage, we employ a cascade learning framework that aims to learn a sequence of 

classifiers to gradually separate negatives from positives (Fig. 5). Compared to learning only 

a single classifier, cascade learning has shown better classification accuracy and runtime 

efficiency [36], [37]. Mathematically, cascade learning can be formulated as follows.

Input: Positive voxel set X , negative voxel set X , and label set ℒ = {+1,−1}.

Classifier: C(x) : (x) →ℒ, (x) denotes the appearance features of a voxel x.

Initial Set: X0 = X  ∪ X .

Objective: Optimize Ck, k = 1, 2,…, K, such that

where Xk = {x|x ∈ Xk−1 and Ck(x) = +1}, and τ controls the tolerance ratio of false positives.

The cascade classifiers Ck, k = 1, 2,…, K, are optimized sequentially. As shown in (1), Ck is 

optimized to minimize the false positives left over by the previous k − 1 classifiers

(1)

where ‖·‖ denotes the cardinality of a set. It is worth noting that the constraint in (1) can be 

simply satisfied by adjusting the threshold of classifier Ck [36] to make sure that all positive 

training samples are correctly classified. This cascade learning framework is general to any 
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image feature and classifier. Extended Haar wavelets [38], [39] and the Adaboost [36] 

classifier are employed in our study.

Once the cascade classifiers {Ck(x)} are learned, they have captured the appearance 

characteristics of the specific anatomical landmark. Given a testing image, the learned 

cascade is applied to each voxel. The voxel with the highest classification score after going 

through the entire cascade is selected as the detected landmark. To increase the efficiency 

and robustness of the detection procedure, a multi-scale scheme is further adopted. 

Specifically, the detected landmark in the coarse resolution serves as the initialization for 

landmark detection in a following finer resolution, in which the landmark is only searched in 

a local neighborhood centered by the initialization. In this way, the search space is largely 

reduced and the detection procedure is more robust to local minima.

B. Incremental Learning With Selective Memory (ILSM)

1) Motivation—Using cascade learning, one can learn anatomy detectors from training 

images of different patients (population-based learning). However, since intra-patient 

anatomy variations are much less pronounced than inter-patient variations (Fig. 6), patient-

specific appearance information available in the IGRT workflow should be exploited in 

order to improve the detection accuracy for an individual patient. Unfortunately, the number 

of patient-specific images is often very limited, especially in the beginning of IGRT. To 

overcome this problem, one may apply random spatial/intensity transformations to produce 

more “synthetic” training samples with larger variability. However, these artificially created 

transformations may not capture the real intra-patient variations, e.g., the uncertainty of 

bowel gas and filling (Fig. 6). As a result, cascade learning using only patient-specific data 

(pure patient-specific learning) often suffers from overfitting. One can also mix population 

and patient-specific images for training (mixture learning). However, since patient-specific 

images are the “minority” in the training samples, detectors trained by mixed samples might 

not capture patient-specific characteristics very well. To address this problem, we propose a 

new learning scheme, ILSM, to combine the general information in the population images 

with the personal information in the patient-specific images. Specifically, population-based 

anatomy detectors serve as an initial appearance model and are subsequently “personalized” 

by the limited patient-specific data. ILSM consists of backward pruning to discard obsolete 

population appearance information and forward learning to incorporate the online-learned 

patient-specific appearance characteristics.

2) Notations—Denote  as the population-based anatomy 

detector (learned as outlined in Section III-A), which contains a cascade of classifiers. 

and  are positives and negatives from the patient-specific training images, respectively. 

D(x) denotes the class label (landmark versus nonlandmark) of voxel x predicted by detector 

D.

3) Backward Pruning—The general appearance model learned from the population is not 

necessarily applicable to the specific patient. More specifically, the anatomical landmarks in 

the patient-specific images (positives) may be classified as negatives by the population-
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based anatomy detectors, i.e., . In order to 

discard these parts of the population appearance model that do not fit the patient-specific 

characteristics, we propose backward pruning to tailor the population-based detector. As 

shown in Algorithm 1, in backward pruning, the cascade is pruned from the last level until 

all patient-specific positives successfully pass through the cascade. This is equivalent to 

searching for the maximum number of cascade levels that could be preserved from the 

population-based anatomy detector

Algorithm 1 Backward pruning algorithm.

 Input: 

    - the population-based detector

     - patient-specific positive samples

 Output: Dbk - the tailored population-based detector

 Init: k = Kpop, Dbk = Dpop.

 while  do

   

  k = k − 1

 end while

 Kbk = k

 return 

Algorithm 2 Forward learning algorithm.

 Input: 

     - the tailored population-based detector

      - patient-specific positive samples

      - patient-specific negative samples

 Output: Dpat - the patient-specific detector

 Init: k = 1, Dpat = Dbk

    

 while  do

  Train the classifier by minimizing Eq. 3 below

Ck
pat = arg min

C
{x | x ∈ Xk−1 ∩ XN

pat, C(x) = + 1} s.t .∀ x ∈ XP
pat, C(x) = + 1 (3)
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  k = k + 1

 end while

 Kpat = k − 1

 return 

 ‖·‖ denotes the cardinality of a set. τ is the parameter controlling the tolerance ratio of false positives.

(2)

4) Forward Learning—Once the population cascade has been tailored, the remaining 

cascade of classifiers encodes the population appearance information that is consistent with 

the patient-specific characteristics. Yet, until now no real patient-specific information has 

been incorporated into the cascade. More specifically, false positives might exist in the 

patient-specific samples, i.e., . In the forward learning 

stage, we use the remaining cascade from the backward pruning algorithm as an 

initialization and reapply the cascade learning to eliminate the patient-specific false positives 

left over by the previously inherited population classifiers. As shown in Algorithm 2, a 

greedy strategy is adopted to sequentially optimize a set of additional patient-specific 

classifiers .

After backward pruning and forward learning, the personalized anatomy detector includes 

two groups of classifiers (Fig. 7). While  encode patient-specific 

characteristics,  contain population information that is applicable to 

this specific patient. This information effectively remedies the limited variability from the 

small number of patient-specific training images.

5) Insight of ILSM—In fact, pure patient-specific learning (PPAT) and traditional 

incremental learning (IL) can also be employed to incorporate the patient-specific 

information. It is interesting to compare ILSM with PPAT and IL. PPAT only uses patient-

specific data for training. In other words, it completely discards all knowledge learned from 

population, which is known as “catastrophic forgetting” [32]. The method is prone to over-

fitting if the patient-specific data is very limited. On the other hand, IL aims to gradually 

adapt the classifiers with new data. It assumes the previously learned knowledge is always 

applicable for the new incoming data and tries to “remember” all of them. Consequently, the 

incrementally learned patient-specific knowledge can be impaired by incompatible 

population-based knowledge. In fact, in the context of cascade learning, IL can be regarded 

as the proposed method without backward pruning. In contrast to PPAT and IL, ILSM aims 

to “selectively” remember the subset of pre-learned knowledge consistent with the 
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characteristics in the new data. ILSM's “selective memory” helps to overcome the 

limitations of the other two methods.

Fig. 8 schematically explains the differences among PPAT, IL, and ILSM from the 

perspective of decision boundary refinement. Fig. 8(a) shows the sample distribution in a 2-

D feature space. Star and circle represent positive and negative samples, respectively. Blue 

stars/circles are population training samples, and green ones denote patient-specific samples. 

The orange star is a testing sample.

As shown in Fig. 8(b), since PPAT only uses patient-specific samples (stars/circles in 

green), the generated decision boundaries (green lines) closely encompass the positive 

patient-specific training samples (green stars). These decision boundaries might overfit the 

very limited number of patient-specific samples. As a result, a testing sample [the orange 

star in Fig. 8(b)], having slight differences from these training samples, is misclassified.

IL derives the decision boundaries in two steps. First, as shown in Fig. 8(c), it learns the 

decision boundaries using population samples (blue stars/circles). Second, these boundaries 

are adapted to accommodate patient-specific samples. For example, in Fig. 8(d), an 

additional purple line is generated to separate patient-specific positives (green stars) and 

negatives (green circles). Since IL aims to preserve all pre-learned population-based 

boundaries (blue and red lines), some patient-specific data [circled in red in Fig. 8(d)] are 

still misclassified due to the “unforgettable” decision boundary [the red line in Fig. 8(d)].

Similar to IL, ILSM also starts from a population-based learning [Fig. 8(c)]. However, in 

adapting the decision boundaries to patient-specific samples, it is able to “forget” some pre-

learned knowledge that is not applicable to the patient-specific data. Specifically, the 

obsolete decision boundary [red line in Fig. 8(d)] can be discarded in the “backward 

prunning” step of ILSM. Hence, ILSM can correctly classify all patient-specific data [Fig. 

8(e)]. In addition, by reusing some applicable population-based decision boundaries (blue 

lines), the overfitting risks are also highly reduced. In this way, ILSM can address the 

limitations of both PPAT and IL.

In fact, ILSM can be considered as a more general learning framework, of which IL and 

PPAT are just two special cases. In Algorithm 1, if all positive samples from patient-specific 

images can be correctly classified by Dpop, the backward pruning will stop at the first place, 

i.e., Kbk = Kpop (Algorithm 1). The learned patient-specific detector will then preserve all 

population characteristics, which is the same as IL. At the other extreme, if the population-

based detector is completely incompatible with patient-specific samples, the backward 

pruning will not stop until Dbk = ∅ (Algorithm 2), which means all population-based 

classifiers will be discarded. In such cases, the forward learning will start from scratch with 

patient-specific samples and ILSM becomes equivalent to PPAT. In practice, this situation 

rarely happens. We manually checked all these cases in our trained detectors and found that 

they all happened when sufficient patient-specific images (≥ 5) had already been collected. 

In such situation, PPAT is capable to obtain similar performance with ILSM.
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C. Robust Prostate Localization by Multi-Atlas RANSAC

Once the population-based anatomy detectors are “personalized” by ILSM, they are used to 

detect the corresponding prostate anatomical landmarks (Fig. 2) in new treatment images. 

Based on the detected landmarks, any patient-specific prostate shape model (e.g., the 

prostate shape delineated in the planning stage) can be aligned onto the treatment image 

space for fast localization. For robust performance against wrongly detected landmarks, the 

RANSAC algorithm [35] is used to estimate the optimal transformation that fits the shape 

model onto the detected landmarks (Algorithm 3). Considering the limited number of 

anatomical landmarks (seven), as well as in the interest of computational efficiency, rigid 

transformation is used in our work.

One can simply align the planning prostate shape onto the treatment image for localization, 

which is referred as single-atlas RANSAC. However, due to the daily shape variations under 

radiotherapy, the performance of using a single shape model is usually limited. To overcome 

this limitation, we propose a multi-atlas RANSAC for robust prostate localization. Instead of 

using a single shape model, we utilize all patient-specific shape models available in both 

planning and previous treatment stages for multi-atlas labeling of a new treatment image. In 

other words, each patient-specific shape model is treated as a shape atlas. Once anatomical 

landmarks are detected in the new treatment image, all available shape atlases can be 

independently aligned onto the new treatment image space by RANSAC (Algorithm 3). 

Then, majority voting is adopted to fuse the labels from different shape atlases. Thus, by 

integrating all patient-specific shape information into a multi-atlas scheme, the localization 

procedure is more robust to daily shape variations than single-atlas RANSAC. Fig. 9 

illustrates the multi-atlas model fitting process.

Algorithm 3 Robust Surface Transformation by RANSAC

 Definition: ℕ = 7 - number of anatomical landmarks

 Input: pk, k = 1, 2, ⋯, ℕ - landmarks in one patient-specific training image Ipat

    mk, k = 1, 2, ⋯, ℕ - detected landmarks in the treatment image Itreat

    ℳ - minimum number of landmarks required for transformation estimation

    η - threshold to determine whether a landmark agrees on the transformation

 Output: Topt - optimal transformation between prostate shapes in Ipat and Itreat

 Init: Topt = nil, εopt = infinity

 for each landmark subset S of {1, 2, ⋯, ℕ} with ‖S‖ ≥ ℳ do

   

  for any k not in S do

   if  then

     add k into S

   end if

  end for
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  if  then

    

  end if

 end for

 return Topt

IV. Experimental Results

A. Data Description

Our experimental data consists of two datasets acquired at the University of North Carolina 

Cancer Hospital. In total, our data consists of 32 patients with 478 images. Every patient has 

one planning scan and multiple treatment scans. The prostates in all CT images have been 

manually delineated by an experienced expert to serve as ground-truth. The planning images 

in dataset A were scanned by a Siemens Somatom CT scanner, while the planning images in 

dataset B were scanned by a Philips Big bore scanner. The treatment images in both dataset 

A and dataset B were collected on a Siemens Somatom CT-on-rails scanner. The typical 

dose was 200–300 cGy for planning imaging and less than 2 cGy for treatment imaging. The 

field-of-view (FOV) is 50 cm for planning images in dataset A, 60 cm for planning images 

in dataset B, and 40 cm for treatment images in both datasets. For other information (e.g., 

spacing, image size), please refer to Table I. Fig. 10 shows the histogram of number of 

treatment scans per patient.

B. Accuracy Measurements

To quantitatively evaluate the proposed method, we adopt the following four measurements.

• Dice Similarity Coefficient (DSC) measures the overlap ratio between automatic 

and manual segmentation. It is defined as (2 ×‖Vs ∩ Vm‖)/(‖Vs‖ + ‖Vm‖), where Vs 

and Vm are the prostate-labelled voxel sets automatically segmented by our method 

and manually segmented by a clinical expert, respectively, and ‖·‖ denotes the 

cardinality of a set.

• Average Surface Distance (ASD) measures the surface distance between 

automatically and manually segmented prostate volumes. To compute this measure, 

we first sample a number of directions (i.e., 360 × 180 = 64800 directions) from the 

uniform spherical distribution. Then, for each sampled direction, we cast a ray 

originating from the ground truth centroid and compute the surface distance along 

this ray. Finally, the surface distances over all sampled directions are averaged to 

obtain the average surface distance.

• Sensitivity (Sen.) is defined as ‖Vs ∩ Vm‖/‖Vm‖, which measures the percentage of 

manually segmentation that overlaps with automatic segmentation.

• Positive Predictive Value (PPV.) is defined as ‖Vs ∩ Vm‖/‖Vs‖, which measures 

the percentage of automatic segmentation that overlaps with manual segmentation.
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C. Accuracy and Efficiency Requirement for Image Guided Radiation Therapy

As indicated by an experienced clinician, a localization algorithm with average surface 

distance less than 3 mm, DSC greater than 0.80 and runtime less than 2 min would be 

acceptable for standard conventional radiation therapy. For Stereotactic Body Radiation 

Therapy (SBRT), which delivers much higher dose per fraction (800 cGy) than conventional 

radiation therapy, it is desirable to track the intra-fraction prostate motion during the 

radiation treatment to reduce the chances of missing the target. Thus, a localization 

algorithm with higher efficiency is often required. According to the clinician, in order to 

track the intra-fraction prostate motion in SBRT, the time for the entire prostate localization 

procedure should be controlled within 1 min, including the time for review and manual 

adjustment. Since the time for manual adjustment heavily depends on the segmentation 

quality, it is difficult to give a quantitative acceptable threshold for the algorithm speed. In 

principle, a faster algorithm would save more time for better quality control, and in the 

meanwhile minimizes the discomfort of the patients when they are fixed in the treatment 

bed.

D. Parameter and Experimental Setting

We use three scales (coarse, middle, and fine) in population-based learning. Table II lists the 

training parameters of landmark detection at different scales, which will be elaborated in the 

following paragraphs.

In the training of each cascade, positive training samples X  are the voxels annotated as 

landmarks. The negative training sample set X  consists of all voxels whose distances are 

within dn from the annotated landmarks. At every cascade level k, if ‖X ‖/‖Xk–1∩X ‖ < τ, 

we randomly sample a portion of negatives from Xk–1∩X  such that the positive/negative 

ratio is equal to τ (in this paper, τ = 1/5). Otherwise, if ‖X ‖/‖Xk–1 ∩ X ‖ ≥ τ, we use all 

samples in Xk–1∩X  as negative samples. τ is also used as a relative threshold for stopping 

cascade learning and forward learning when the false positive/positive ratio is less than τ. In 

this way, we can restrict the positive/negative ratio between τ and 1/τ at every cascade level, 

thus avoiding the problems introduced by the imbalanced training dataset.

Each training voxel is represented by a set of extended Haar wavelet features [38], which are 

computed by convoluting the Haar-like kernels with the original image. The Haar-like 

kernels are generated by scaling predefined Haar-like templates. Each Haar-like template 

consists of one or more 3-D rectangle functions with different polarities

(4)

(5)

where Z is the number of 3-D rectangle functions (in our case, Z ∈ {1, 2}) and pi ∈ {−1, 1} 

and ai are the polarity and translation of the ith 3-D rectangle function, respectively. Fig. 11 
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shows the 14 Haar-like templates used in this paper. The coefficients for scaling the Haar-

like templates are 3 and 5. For each training voxel, we compute the extended Haar wavelet 

features in its W × W × W local neighborhood. Then, all these computed features are 

concatenated to form a patch-based feature representation for the voxel. The training 

parameters are listed in Table II. In the cascade learning step, we employ the Adaboost 

classifier as cascade classifier. The Adaboost classifier training stops when 20 weak 

classifiers are obtained.

In the multi-atlas RANSAC, ℳ (the minimum number of landmarks required for 

transformation estimation) is set to 3 since only 3-D rigid transformation needs to be 

estimated, and η (the threshold to determine whether a landmark agrees on the 

transformation) is set to 5 mm. In the remainder of this section, all results from ILSM are 

generated with the same parameter settings.

We used five-fold cross validation on dataset A to evaluate our method. In this approach, the 

population-based landmark detectors of one fold are trained using CT scans of patients from 

the other four folds. For each fold, about 250 CT images were used in the training of 

population-based detectors. For the experiments on dataset B, the population-based detectors 

are trained using all CT scans of dataset A. In this way, we can validate the generalization of 

our method to dataset acquired by different scanners and protocols.

To emulate the real clinical setting, for prostate localization in treatment day N + 1, we use 

the previous N treatment images and the planning image as patient-specific training data 

(Fig. 1). From our observations, we found that, when N reaches 4, there is negligible 

accuracy gained from performing additional ILSMs. Therefore, after treatment day 4, we do 

not perform ILSM to further refine the patient-specific landmark detectors; instead, we 

directly adopt the existing detectors for prostate localization. If not explicitly mentioned, all 

the reported performances of ILSM are computed using up to five patient-specific training 

images (four treatment images +1 planning image).

E. Number of Cascade Classifiers

To gain an insight on the number of cascade classifiers remaining after backward pruning or 

appended by forward learning, we summarize the statistics of Kpop, Kbk, and Kpat in Table 

III. As we can see, the majority of population cascade classifiers in coarse and middle scale 

are retained after backward pruning (i.e., Kbk is close to Kpop). However, when it comes to 

the fine scale, many population cascade classifiers are discarded. The reason for this might 

be related to the fact that individual differences are embodied in the fine scale but not 

evident in the coarse and middle scale. Finally, for the number of patient-specific cascade 

classifiers appended in the forward learning stage, experimental results show that usually 2–

3 classifiers are sufficient.

F. Comparison Studies

1) Comparison With Traditional Learning-Based Approaches—To illustrate the 

effectiveness of our learning framework, we compared ILSM with four other learning-based 

approaches on dataset A. All of these methods localize the prostate through learning-based 
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anatomy detection with the same features, classifiers and cascade framework (as described 

in Section III-A). Their differences lie at the training images and learning strategies, which 

are shown in Table IV. Note that for all patient-specific training images, artificial 

transformations are applied to increase the variability.

Table V compared the four learning-based approaches with ILSM on landmark detection 

errors. To exclude the influence from other components of our method, the reported 

landmark detection error is directly measured without using RANSAC for outlier detection 

and correction. We can see that ILSM outperforms other four learning-based approaches on 

all seven anatomical landmarks. In order to better interpret the landmark detection 

accuracies of our method, we further conducted an experiment to assess the inter-operator 

annotation variability on CT prostate landmarks. Specifically, we asked four different 

operators to independently annotate the seven antomical landmarks on 19 CT scans of one 

patient. Then, the landmark annotation differences between any pair of operators were 

calculated. Finally, all pair-wise landmark annotation differences were averaged to obtain 

the inter-operator annotation variability (listed in Table VI). From Table VI, we can see that 

on average ILSM achieves comparable (if not better) accuracy to the inter-operator 

annotation variability, exhibiting better mean error but slightly worse standard deviation. A 

two sample t-test shows that the difference between ILSM and inter-operator variability is 

statistically significant (p < 0.05).

Table VII compares the four learning-based approaches with ILSM on overlap ratios (DSC). 

To exclude the influence of multi-atlas RANSAC, only a single shape atlas (i.e., the 

planning prostate shape) is used for localization. Here, “Acceptance Rate” denotes the 

percentage of images where an algorithm performs with higher accuracy than inter-operator 

variability (DSC = 0.81) [8]. According to our experienced clinician, these results can be 

accepted without manual editing. We can see that ILSM achieves the best localization 

accuracy among all methods. Not surprisingly, by utilizing patient-specific information, all 

three methods (i.e., PPAT, MIX, and IL) outperform POP. However, their performances are 

still inferior to ILSM, which shows the effectiveness of ILSM in combining both population 

and patient-specific characteristics.

Fig. 12 shows the differences in localization accuracy between ILSM and PPAT with 

respect to the number of patient-specific training images. We can see that when the number 

of patient-specific training images is limited (< 3), the performance of PPAT is very poor, 

even with aritifical transformations to increase the variability in training samples. This is 

especially the case when only one patient-specific training image is used. Due to the limited 

patient-specific patterns observed, PPAT suffers from severe overfitting and results in high 

failure rates for some patients. In such cases, ILSM significantly outperforms PPAT by 

40%–70% DSC, as shown in Fig. 12(a). The main reason why simple artificial 

transformations (e.g., rotation, translation) fail to improve the performance of PPAT is that 

generally they cannot well capture intra-patient anatomical appearance variations such as 

bowel gas and filling (Fig. 1). This also explains why previous pure patient-specific learning 

algorithms [9], [10], [23] often start with three patient-specific training images. By 

leveraging both population and patient-specific data, ILSM can achieve DSC 0.85 ± 0.06 on 

the first two treatment images using only a single planning CT as patient-specific training 
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data, while in the same setting PPAT only obtained DSC 0.79 ± 0.15. As the number of 

patient-specific training images increases, the performance difference between ILSM and 

PPAT gradually decreases. Ideally, when sufficient patient-specific data is collected, the 

performance of ILSM and PPAT should converge. However, by using up to 13 patient-

specific training images, we still observe that ILSM is slightly better than PPAT (1.5% DSC 

difference), which implies the effectiveness of the general appearance characteristics learned 

from the population.

2) Comparison With Single-Atlas RANSAC—Fig. 13 shows the average DSCs of all 

25 patients in Dataset A with single-atlas RANSAC and multi-atlas RANSAC. For single-

atlas RANSAC, we use the planning prostate shape as the shape atlas. For multi-atlas 

RANSAC, we use not only the planning prostate shape but also previously segmented 

prostate shapes of the patient as shape atlases. We can see that in almost all patients, multi-

atlas RANSAC achieves better localization accuracy than single-atlas RANSAC. Table VII 

also compares single-atlas and multi-atlas RANSAC on average DSC and acceptance rate. It 

shows that the localization accuracy of ILSM can be further boosted by using multi-atlas 

RANSAC (1% improvement on both average DSC and acceptance rate).

3) Comparison With Traditional Bone Alignment—Bone alignment is usually 

adopted as a standard preprocessing step in many prostate localization methods [8]–[10], 

[23]. The basic idea is to register the current treatment CT scan with the previous one of the 

same patient by aligning pelvic bones. The prostate mask in the previous CT can thereby be 

transformed to the current treatment CT. In the bone alignment, the pelvic bones in two CT 

scans are first segmented by thresholding. Based on the segmented binary bone images, the 

optimal rigid transformation is estimated and used to co-align two scans. Since prostate is 

very close to pelvic bone, bone alignment usually achieves satisfactory overlap ratios of the 

prostate. For fair comparison, we adopted the same multi-atlas scheme as described in 

Section III-A to evaluate the performance gain of the proposed method over bone alignment. 

We used the FLIRT toolkit [41] for bone alignment as previous methods. Fig. 14 visually 

shows the overlapping degree of prostate after bone alignment for 12 typical patients. The 

DSC obtained by bone alignment on our dataset is 0.78 ± 0.12, which is significantly lower 

than the DSC achieved by the proposed method (0.89 ± 0.06). In addition, bone alignment 

takes more computational time than the proposed method. To align two CT scans of image 

size 512 × 512 × 60, bone alignment typically takes 5 min, while the proposed method only 

takes 4 s on the same image size.

To consider the local intensity information around the prostate in the alignment procedure, 

we further conducted an experiment to compare a local intensity-based rigid registration 

method with the proposed method. In the former method, bone alignment is first performed 

to align a previous CT scan with the current treatment CT based on the pelvic bone. Then, a 

tight bounding box is determined using the prostate mask of the previous CT scan. Based on 

the determined bounding box, the two CT scans are further registered using an intensity-

based rigid registration method as implemented in FLIRT using correlation ratio as the cost 

function. Finally, given the estimated rigid transformation, the prostate mask in the previous 

CT scan is transformed onto the current treatment CT for localization. Following the same 
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multi-atlas scheme (Section III-C), we found that compared to bone alignment, local 

intensity-based rigid registration improves the localization accuracy from mean DSC 0.78 to 

0.80. However, the standard deviation of DSC also increases from 0.12 to 0.14 due to some 

failure cases caused by the bad initialization of bone alignment. In contrast, the proposed 

method achieves much higher accuracy (0.89 ± 0.06) with faster localization speed (4 s).

4) Comparison With Other CT Prostate Localization Methods on the Same 
Dataset—Our method can achieve localization accuracy at DSC 0.89 ± 0.06 and average 

surface distance 1.72 ± 1.00 mm on 446 treatment CT scans of 32 patients. Table VIII 

quantatively compares the performance of our method with five other state-of-the-art 

methods on the same dataset, which employ deformable model [17], registration [22], multi-

atlas based segmentation [10] and classification [9], [23] to localize the prostate on 

treatment CTs. We can see that our method achieves comparable accuracy to the state-of-

the-art methods, while substantially reduces the localization time to just 4 s. This fast 

localization speed helps overcome the limitation of previous localization methods: if the 

prostate unexpectedly moves during the long localization procedure, their method has to be 

performed again. It is also worth noting that [9], [10], [23] require at least three patient-

specific training images for initialization due to the nature of pure patient-specific learning, 

which indicates such methods cannot be adopted to segment the first two treatment CTs. By 

effectively combining both population and patient-specific information, even with only one 

planning CT, our method can still achieve reasonably accurate localization results on the 

first two treatment CTs (DSC 0.85 ± 0.06).

5) Comparison With Other CT Prostate Localization Methods on the Different 
Datasets—Table IX lists the performance of other CT prostate localization methods for 

reference. Due to the fact that neither their data nor the source codes of these methods are 

publicly available, we only cite the numbers reported in their publications. Based on the 

reported numbers, we can see that our method has been evaluated on the largest dataset and 

achieves the best localization accuracy.

G. Algorithm Performance

In this section, we report the performance of the proposed algorithm in terms of localization 

accuracy, robustness to unsupervised annotation, generalization, sensitivity to landmark 

selection, temporal accuracy, and speed.

1) Accuracy—Table X shows the localization accuracy of our method on dataset A and 

dataset B. We can see that our method is able to achieve more consistent and accurate 

localizations (DSC 0.89 ± 0.06) than inter-operator variability (DSC 0.81 ± 0.06) [8]. This 

indicates that our method in fact well satisfies the accuracy requirement of IGRT and can be 

adopted in the clinical setting. To assess the lower and upper bound accuracy of our 

localization method, we further conducted two experiments. In the first experiment, we 

detected only one anatomical landmark (prostate center) and used only one shape atlas 

(planning prostate shape) for localization. The performance under this setting is regarded as 

the lower bound of the accuracy of the landmark-based prostate localization. In the second 

experiment, we performed the landmark-based prostate localization using manually 
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annotated landmarks and multiple shape atlases (prostate shapes in planning and previous 

treatment images). This accuracy represents the upper bound of the landmark-based prostate 

localization. Table XI lists the lower and upper bound accuracies on different quantitative 

measures. It should be noted that the only difference between upper-bound accuracy (shown 

in Table XI) and the reported accuracy of our method (shown in Table X) is on the landmark 

localization. Upper bound accuracy is calculated using the manually annotated landmarks, 

and the performance of our method is obtained using automatically detected landmarks. By 

comparing two, we can see that the performance of our method is quite close to the upper 

bound, which indicates that through ILSM we can achieve accurate automatic landmark 

detection. On the other hand, by using only one anatomical landmark and a single shape 

atlas, the localization accuracy is still comparable to the inter-operator variability (DSC 0.81 

± 0.06), which shows the effectiveness of ILSM in CT prostate localization.

2) Robustness to Unsupervised Annotation—As shown in Fig. 4, in order to 

incorporate patient-specific characteristics, ILSM requires annotations in planning and 

previous treatment images. Annotations in planning images are always provided by 

physicians. Afterward, there are two ways to obtain annotations in treatment images. 1) 

Supervised annotation. In this scenario, detectors trained by planning and previous treatment 

images are applied to localize the landmarks in current treatment images. The detection 

results need to be reviewed and corrected by physicians before being used to train detectors 

for the next treatment days. 2) Unsupervised annotation. The auto-detected results are 

considered as ground truth and used to train detectors for the next treatment days without 

manual review/corrections. Although the first scenario guarantees all training data are 

correctly annotated, the second scenario has the advantage in less manual operations (i.e., no 

manual operation, except the annotation in the planning CT) as long as the uncorrected 

annotation errors do not significantly degrade the localization accuracy.

We validated ILSM in both scenarios on Dataset A. To simulate the supervised annotation, 

we directly used the manually annotated landmarks as the corrected landmarks for training. 

Compared with the average DSC 0.88 ± 0.06% achieved using supervised annotation, our 

method can achieve average DSC 0.85 ± 0.06% using unsupervised annotation. This is still 

more accurate than the inter-operator variability (0.81 ± 0.06%). Therefore, if some specific 

IGRT workflows require very limited manual operations, our method can be employed in 

the unsupervised annotation mode yet still with acceptable accuracy.

It is worth noting that compared with previous methods [9], [10], [23], which require precise 

manual segmentation of the entire prostate in the training treatment images, our method only 

requires the annotations of at most seven anatomical landmarks, which dramatically reduces 

physicians' efforts on manual annotation. To be precise, we recorded the annotation time of 

an experienced radiation oncologist on the 19 treatment scans of one patient. It takes 11.7 ± 

2.5 min to manually segment the entire prostate, while it only takes 1.2 ± 0.3 min to 

annotate seven anatomical landmarks. If the proposed method is used to automatically detect 

the seven landmarks and radiation oncologists are only asked to verify and edit the detected 

landmarks, the landmark annotation time can be further reduced to 8.3 ± 1.3 s.
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3) Generalization—A learning-based algorithm has to have good generalization in order 

to be applied on data from various institutions and scanners. To evaluate the generalization 

of ILSM, we tested our localization algorithm on Dataset B, which is acquired under a 

different scanner from that of Dataset A. We used all CT scans of Dataset A (349 scans) to 

train the population-based landmark detectors for Dataset B. The localization accuracy is 

shown in Table X, which indicates the good generalization of our method. This is mainly 

due to the “selective memory” nature of ILSM. Even when the population landmark 

detectors are trained using a dataset with slightly different scanning protocols, after 

“personalized” by ILSM, the portion of the population-based appearance knowledge that is 

not in accordance with the current patient-specific characteristics will be discarded. By 

preserving only the applicable knowledge learned from population data, the generalization 

of the learned detectors is improved. Table X summarizes the overall performance of our 

method on total 32 patients.

4) Sensitivity to Landmark Selection—To assess the sensitivity of our method to 

landmark selection, we tested the performance of our algorithm by alternatively excluding 

one of the seven landmarks. Table XII lists the DSCs of our method on Dataset A by 

excluding any of the seven landmarks. Overall, the performance is quite consistent no matter 

which subset of six landmarks is picked. Further, it is surprising to see that by excluding any 

of landmarks in {PC, BS, AP}, the localization accuracy can actually be increased, 

compared to the performance of DSC 0.88±0.06 obtained by using all landmarks. The 

reason for this can be inferred from Table V. That is, compared with other landmarks, the 

landmark detections of PC, BS and AP are less accurate due to the indistinct image 

appearance in those regions. Therefore, removing any of them helps improve the overall 

localization accuracy. For more thorough discussion in landmark selection, please refer to 

Section V.

5) Temporal Analysis of Localization Accuracy—Fig. 15 shows the localization 

accuracy curve with respect to the number of patient-specific training images used. Not 

surprisingly, the localization accuracy of the proposed method increases as more patient-

specific training data (i.e., image and shape) is available. The most significant improvement 

happens when the number of patient-specific training images increases from 1 to 3. As the 

number of patient-specific training images increases to 5, the localization accuracy levels 

off, which indicates that after the fourth treatment day, the patient-specific landmark 

detectors are sufficiently accurate, and thus there is no need to do additional incremental 

learning. That is, the existing landmark detectors can be directly applied to localize the 

prostate in the future treatment images. In practice, considering that the period of radiation 

treatment typically takes 35 days, the ILSM procedure is only needed in the first four 

treatment days (about 4/35 ≈ 11% fraction of the entire treatment course).

6) Speed—The typical runtime for our method to localize the prostate is around 4 s (on an 

Intel Q6600 2.4 GHz desktop with 4 GB memory), which is almost real-time compared to 

previous methods. Thanks to incremental learning, the training time is reduced from 3–4 h 

(traditional population-based training) to 30 min/landmark detector. Each landmark detector 

is independent and thus can be trained in parallel. It is also worth noting that the incremental 
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learning process can be completed overnight before the treatment day. Therefore, the 

learning step does not take any additional time when the patients are receiving treatment.

H. Experiment Summary

In summary, our experiments show the following.

• Compared to traditional learning schemes, ILSM shows better landmark detection 

and prostate localization accuracy.

• Compared to other state-of-the-art methods, 1) our method can achieve comparable 

accuracy with much faster speed; 2) our method can be applied on any treatment 

day of radiotherapy since it is still reasonably accurate (DSC ∼0.85) even with 

only one patient-specific training image (i.e., the planning CT); 3) our method only 

requires annotations of seven anatomical landmarks, thus significantly reducing 

physicians' manual efforts (from 11 min to 1 min).

• Validated on 446 treatment CTs, we achieved average DSC 0.89±0.06 in 4 s, which 

indicates that our method is well-suited for the accuracy and speed requirements of 

IGRT.

V. Conclusion and Discussion

In this paper, we propose a novel learning scheme, namely ILSM, which can take both 

generalization and specificity into account by leveraging the large amount of population data 

and the limited amount of patient specific data. It is applied to extract the patient-specific 

appearance information in IGRT for anatomical landmark detection. Once the anatomical 

landmarks on the new treatment CT are accurately localized, a multi-atlas RANSAC is 

applied to align previous patient-specific shape atlases for prostate localization. Validated on 

a large dataset (446 CT scans), ILSM shows comparable accuracy (0.89 ± 0.06) to the state-

of-the-art methods, while significantly reducing the runtime to 4 s. Moreover, in 

comparisons with traditional learning-based schemes (e.g., population learning, pure patient-

specific learning, and mixture learning with population and patient-specific data), ILSM 

shows better capability to capture patient-specific appearance characteristics from limited 

patient-specific data.

To boost the performance, our method could be combined with other sophisticated 

segmentation methods (e.g., deformable model [14], [42]) for better accuracy. However, 

using more sophisticated methods increases accuracy at the expense of run-time efficiency. 

Since our method obtains much more accurate localization than inter-operator variability, it 

actually satisfies for both the efficiency and accuracy requirements of IGRT. The 

comparison experiment with conventional bone alignment-based prostate localization also 

suggests that our landmark-based alignment is better in terms of both efficiency and 

accuracy. Therefore, we can use our method to replace bone alignment—the standard 

preprocessing step for most CT prostate segmentation methods, thus further improving their 

performance.

Another problem that may be interesting to investigate is landmark selection. In the current 

application, it is relatively easy to select landmarks due to the ellipsoid-like shape of 
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prostate. However, in other applications dealing with organs of complex shapes (e.g., the 

rectum), it may be not intuitive to decide which landmarks are good for organ localization. 

In general, we suggest two basic principles that should be followed in selecting a set of good 

landmarks for organ localization: 1) the image appearance of a selected landmark should be 

distinct within its neighborhood and consistent across the training images; 2) selected 

landmarks should be sparsely distributed on the organ boundary. The distinctness and 

consistency in principle 1) aims to achieve accurate landmark detection, while principle; 2) 

ensures the selected landmarks are able to represent the overall organ shape. In practice, 

given a set of training images with manual labeling of organ of interest, we can first generate 

a surface mesh using the label map for each image. Then, surface registration can be used to 

build the correspondence between any two surface meshes. Once the correspondences are 

known, we can select a set of landmarks that satisfy the two aforementioned principles. The 

quantification of the two stated principles and the formulation of landmark selection as an 

optimization problem will be the focus of future work.

To apply our method in clinical practice, we suggest three workflows to satisfy different 

speed and accuracy requirements of prostate localization as illustrated in Fig. 16. Among 

them, workflow 1 has the advantage of fully automaticity but moderate localization accuracy 

(DSC 0.85 ± 0.06). Workflow 2 involves minimal manual efforts to adjust the automatically 

detected landmarks after treatment (8.3 ± 1.3 s for quick verification), but is capable to 

obtain high localization accuracy (DSC 0.89 ± 0.06). Compared with workflow 1 and 2, 

workflow 3 can achieve the near-optimal localization accuracy (DSC 0.92 ± 0.03), but 

requires clinicians to verify the landmarks during the treatment period. In both workflow 2 

and workflow 3, we provide clinicians the option to edit the automatic localization results. 

However, since both workflow 2 and 3 can obtain quite high localization accuracy, there is 

rarely any need for clinicians to manually edit the localization results.
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Fig. 1. 
Illustration of IGRT.
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Fig. 2. 
Seven prostate anatomical landmarks used in our study: prostate center (PC), right lateral 

point (RT), left lateral point (LF), poterior point (PT), anterior point (AT), base center (BS), 

and apex center (AP).
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Fig. 3. 
Non-Gaussianity of local appearance distribution of the seven landmarks in Fig. 2. Given all 

prostate CT scans, we ask an expert to annotate the seven landmarks on the images. For each 

landmark, we extract its local patches (size 9 × 9 × 9 mm3) from all annotated CT scans and 

perform a PCA analysis on the extracted patches. Figures are plotted using the first two 

principal components. Each point in the figure denotes a local patch represented by the first 

two principal component scores. To take annotation error into account, we randomly perturb 

the annotated landmarks by at most 1 mm to generate additional samples. Clearly, none of 

these distributions follow the Gaussian distribution.
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Fig. 4. 
Flowchart of our CT prostate localization method.
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Fig. 5. 
Illustration of cascade learning.
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Fig. 6. 
Inter- and intra-patient prostate shape and appearance variations. Red points denote the 

prostate center. Each row represents prostate shapes and images from the same patient.
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Fig. 7. 
Incrementally learned anatomy detector.
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Fig. 8. 
Schematic illustration of differences among PPAT, IL, and ILSM.
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Fig. 9. 
Illustration of multi-atlas RANSAC. First row shows aligned patient-specific shape models 

(denoted by different colors) in a new treatment CT. Second row shows the prostate 

likelihood map by averaging all aligned prostate masks. Third row shows the final 

segmentation (red contours) overlaid by the ground truth (blue contours). Three columns are 

the middle slices in transverse, sagittal, and coronal views, respectively.
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Fig. 10. 
Histogram of number of treatment scans per patient.
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Fig. 11. 
14 Haar templates used in the paper. Blue and red cubes are 3-D rectangle functions with 

positive and negative polarities, respectively. Cubes with dashed borders are the empty areas 

which are only shown for purpose of visualization.
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Fig. 12. 
Function boxplot [40] of DSC difference curves between ILSM and PPAT for convergence 

analysis on dataset A. Each DSC difference curve is a function of DSC difference between 

ILSM and PPAT with respect to the number of patient-specific training images. Image (a) 

shows 25 DSC difference curves, each of which corresponds to one patient. Image (b) shows 

the function boxplot of 25 curves in (a). Black curve in (b) corresponds to the median curve, 

the magenta area covers the central 50% of the curves, and two outmost blue curves are the 

extreme maximum and minimum curve, respectively.
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Fig. 13. 
Comparison between single-atlas and multi-atlas RANSAC on dataset A using overlap ratio 

(DSC).
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Fig. 14. 
Prostate contours of treatment CTs from 12 typical patients after bone alignment. Contours 

in the figure are from the middle transversal slices of the prostates after bone alignment.
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Fig. 15. 
Temporal analysis of localization accuracy on dataset A.
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Fig. 16. 
Three possible clinical workflows. Box with dash line is an optional step in the workflow.
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Table I
Parameters of Two CT Prostate Datasets

Dataset A Dataset B

Planning Resolution (mm) 0.98 × 0.98 × 3 1.24 × 1.24 × 3

Treatment Resolution (mm) 0.98 × 0.98 × 3

Image Size 512 × 512 × 30 ∼ 120

Number of patients 25 7

Number of images 349 129
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Table II
Training Parameters for Multi-Scale Landmark Detection

Scale Spacing (mm) W (mm) dn (mm)

Coarse 4 80 400

Middle 2 40 200

Fine 1 20 100

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 March 31.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gao et al. Page 42

Table III
Statistics of Numbers of Cascade Classifiers

Scale Kpop Kbk Kpat

Coarse 13.1 ± 1.2 12.6 ± 3.4 2.1 ± 1.3

Middle 13.5 ± 0.6 12.7 ± 2.8 2.5 ± 1.6

Fine 15.5 ± 2.1 6.3 ± 2.8 2.9 ± 0.1
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Table VI
Quantitative Comparison Between Landmark Detection Error (mm) of ILSM and Inter-
Rater Annotation Variability on 19 Treatment Scans of One Patient. Landmark Error 
Reported Here Is Calculated Without Using RANSAC for Outlier Detection and 
Correction. The P-Value Reported Here Is Computed by Two-Sample T-Test

PC RT LF

ILSM 4.72 ± 1.42 3.03 ± 1.75 3.17 ± 1.61

Inter-rater 4.50 ± 1.22 5.25 ± 1.27 5.77 ± 1.49

PT AT BS

ILSM 2.45 ± 1.00 3.24 ± 1.28 5.57 ± 1.98

Inter-rater 5.71 ± 2.85 4.44 ± 3.09 4.63 ± 1.32

AP Average p-value

ILSM 7.18 ± 4.17 4.20 ± 2.65 n/a

Inter-rater 4.44 ± 1.05 4.96 ± 2.00 0.01
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Table IX
Comparison With Other CT Prostate Localization Methods on Different Datasets for 
Reference (DSC: Dice Similarity Coefficient, Sen.: Sensitivity, PPV.: Positive Predictive 
Value)

Method
Deformable Models Registration

ILSM
Costa [6] Chen [7] Foskey [8]

image # 16 185 65 446

patient # n/a 13 5 32

Mean DSC n/a n/a 0.84 0.89

Median Sen. 0.79 0.84 n/a 0.89

Median PPV. 0.86 0.87 n/a 0.92

Speed (sec.) n/a 60 750 4
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Table X
Localization Accuracy of ILSM on Two Datasets (DSC: Dice Similarity Coefficient, ASD: 
Average Surface Distance, Sen: Sensitivity, PPV: Positive Predictive Value)

DSC ASD (mm) Sen. PPV.

Dataset A 0.88±0.06 1.89±0.98 0.87±0.06 0.89±0.06

Dataset B 0.91±0.05 1.27±0.90 0.88±0.05 0.93±0.06

All 0.89±0.06 1.72±1.00 0.88±0.06 0.90±0.06

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 March 31.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gao et al. Page 50

Table XI
Lower and Upper Bound Accuracy of ILSM in CT Prostate Localization. Reported 
Values Are Calculated on Both Dataset A and Dataset B

DSC ASD (mm) Sen. PPV.

UpperBound 0.92±0.03 1.00±0.60 0.91±0.05 0.94±0.03

LowerBound 0.81±0.09 3.01±2.01 0.80±0.10 0.83±0.10
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Table XII
Sensitivity to Landmark Selection. The Table Below Shows the Localization Accuracies of 
Six Landmarks by Excluding Any of The Seven Landmarks Used in the Paper. Reported 
Values Are Computed on Dataset A

Excluded PC RT LF PT

DSC 0.89±0.05 0.88±0.06 0.88±0.06 0.88±0.06

Excluded AT BS AP

DSC 0.88±0.05 0.89±0.05 0.89±0.05
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