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Abstract

The assembly of multiple genomes frommixed sequence reads is a bottleneck in metagenomic ana-

lysis. A single-genome assembly program (assembler) is not capable of resolving metagenome se-

quences, so assemblers designed specifically for metagenomics have been developed. MetaVelvet

is an extension of the single-genome assembler Velvet. It has been proved to generate assemblies

with higher N50 scores and higher quality than single-genome assemblers such as Velvet and SOAP-

denovo when applied to metagenomic sequence reads and is frequently used in this research com-

munity. One important open problem for MetaVelvet is its low accuracy and sensitivity in detecting

chimeric nodes in the assembly (de Bruijn) graph, which prevents the generation of longer contigs

and scaffolds. We have tackled this problem of classifying chimeric nodes using supervisedmachine

learning to significantly improve the performance of MetaVelvet and developed a new tool, called

MetaVelvet-SL. A Support Vector Machine is used for learning the classification model based on

94 features extracted from candidate nodes. In extensive experiments, MetaVelvet-SL outperformed

the original MetaVelvet and other state-of-the-art metagenomic assemblers, IDBA-UD, RayMeta and

Omega, to reconstruct accurate longer assemblies with higher N50 scores for both simulated data

sets and real data sets of human gut microbial sequences.
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1. Introduction

Metagenomic research studies genetic material recovered directly from
environmental samples. Next-generation sequencing (NGS) technolo-
gies have enabled an explosion in sequencing with increased through-
put and decreased cost,1 which provides opportunities to generate
sequence reads from metagenomes effectively covering highly diverse
microbial populations, even for genomes with low coverage. An im-
portant step in metagenomic analysis is the assembly of multiple gen-
omes from mixed sequence reads of the multiple species that exist in
the sample.2 This can present problems, because, in a microbial com-
munity, the number of genomes and the coverage of each genome are
initially unknown and the coverage distribution is inhomogeneous

and potentially skewed.1–8 Another major difficulty is the short length
of sequence reads from next-generation sequencers.2

Currently, there are several de novo assemblers that attempt to
analyse metagenomic data. MAP,4 Genovo5 and Xgenovo8 are used
for rather long sequence reads, while MetaVelvet,2 Meta-IDBA,7

IDBA-UD,9 Ray Meta10 and Omega11 are used for short sequence
reads. MAP was designed for the sequence reads produced by Sanger
(700–1,000 bp) and 454 sequencing technology (200–500 bp). It uses
an improved Overlap-Layout-Consensus (OLC) strategy integrating
mate pair information.4 Genovo was designed for 454 sequencing
data: it is a metagenomic assembler employing a generative probabil-
istic model.5 Xgenovo is an extension of Genovo incorporating
paired-end information.8 MetaVelvet, Meta-IDBA and IDBA-UD
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use the de Bruijn graph approach. These assemblers are specifically de-
signed for the huge numbers of short reads generated by Illumina-type
next-generation sequencers that enable deep sequencing of the in-
homogeneous and divergent species in a microbial community.
IDBA-UD is an extension of Meta-IDBA dealing with the uneven
sequencing depths of different regions of genomes from different spe-
cies.9 Both MetaVelvet2 and IDBA-UD9 have been shown to produce
longer high-quality assemblies than single-genome assemblers, such as
Velvet12,13 and SOAPdenovo2.14 RayMeta is an extension of the Ray
assembler for de novo metagenome assembly, which is scalable be-
cause it is highly distributed computing.10 Omega is a metagenomic
assembler using overlap graph approach. Omega was most recently
proposed for rather longer Illumina sequencing data of microbial com-
munities.11

MetaVelvet2 is an extension of a single-genome assembly program
(assembler), named Velvet.12,13 The fundamental concept used in
MetaVelvet is that a de Bruijn graph constructed frommixed sequence
reads of multiple species is considered to be equivalent to the union of
multiple de Bruijn sub-graphs, each of which is constructed from the
sequence reads of individual species. The strategy of MetaVelvet is,
first, to decompose a de Bruijn graph constructed from mixed short
reads into individual sub-graphs and, second, to assemble scaffolds
from each decomposed de Bruijn sub-graph to build an isolated
genome.

For the graph disconnection task, MetaVelvet identifies nodes
shared between two sub-graphs (named chimeric nodes) and discon-
nects two sub-graphs by splitting the shared nodes, as illustrated in
Fig. 1. Chimeric nodes are shared between the genomes of two closely
related species and could represent orthologous sequences, conserved
sequences (e.g. rRNA sequences) or horizontal transfer sequences.

To identify chimeric nodes, MetaVelvet uses simple heuristics
based on coverage difference and paired-end information, which re-
sults in low accuracy and low sensitivity. Our primary goal in this
study is to improve chimeric node detection and generate longer accur-
ate scaffolds. Such scaffolds can help to extract more information from
the reads, leading to the discovery of more genes and better functional
annotation.15 To do this, we have developed an assembler called
MetaVelvet-SL, which classifies every node in a de Bruijn graph con-
structed from mixed short reads of multiple species into the following
four types by employing supervised machine learning.

1. Chimeric node: A node which is shared between the genomes of
two closely related species. This node should be split. Chimeric
nodes are illustrated in Fig. 1.

2. Repeat node: A repeat node represents a sequence that occurs sev-
eral times in the genome. Note that, in multiple genome assembly,
nodes at a crossing point between two incoming and two out-
going edges are not necessarily repeats. Such nodes are sometimes
chimeric nodes.

3. Unique node: A unique node is onewhich is neither chimeric nor a
repeat. The challenge is to determine the unique nodes of each
species correctly.

4. Low-coverage node: In metagenomic assembly, all nodes, even
those with low coverage, must be examined to account for species
with small populations, but low-coverage nodes must be distin-
guished from nodes generated by sequencing errors.

The first new procedure in MetaVelvet-SL is to develop the model to
classify a node at a crossing point between two paths as chimeric or
not. In the process of learning the model, 94 features are extracted
for each chimeric node candidate, which is a node at a crossing

point that has two incoming edges and two outgoing edges. A Support
Vector Machine (SVM) is used for learning the classification model. If
chimeric nodes can be identified correctly, it means that the de Bruijn
graph can be disconnected appropriately by splitting the chimeric
nodes. The second new procedure in MetaVelvet-SL is that the
expected coverage to extract the unique nodes is calculated for each
sub-graph. Based on the assumption that each sub-graph represents
a single species, the expected coverage per sub-graph can precisely
determine the unique nodes of each species, even thosewith low cover-
age. This expected coverage calculation per sub-graph replaces the ori-
ginal MetaVelvet strategy of detecting multiple peaks on the
histograms of k-mer frequencies and defining each peak as expected
coverage.

MetaVelvet-SL consists of two main modules: first, the supervised
learning module to develop a model for the classification of chimeric
nodes and, second, the assembly module. (The technical details are de-
scribed in the Materials and methods section.) MetaVelvet-SL also
provides a couple of tools to allow users to generate their classification
model using prior knowledge about the taxonomic profile of the target
microbial community. The taxonomic profile can be inferred from se-
quence reads by using taxonomic profiling methods, such as MetaPh-
lAn.16 We have developed a pipeline connecting MetaPhlAn and
MetaVelvet-SL. The pipeline automatically generates a classification
model only from metagenomic sequence read data. This customized
classification model could be well suited to the assembly of the target
metagenomes. MetaVelvet-SL also provides a library of pre-trained
classification models for several typical environments, such as soil,
deep sea, mud, human blood, intestine and mouth.

The source code of MetaVelvet-SL, the pipeline connecting Me-
taPhlAn and MetaVelvet-SL, and the library of classification models
for several typical environments are freely available under the GNU
General Public License at http://metavelvet.dna.bio.keio.ac.jp.

We conducted computational experiments to evaluate the perform-
ance of Metavelvet-SL. The assembly performance of Metavelvet-SL
was compared with those of MetaVelvet, the state-of-the-art metage-
nomic assemblers IDBA-UD, Ray Meta and Omega, and a standard
single-genome assembler for massive short sequencing reads, SOAPde-
novo2. For simulated data sets, first, we conducted experiments using
the pipeline connectingMetaPhlAn andMetaVelvet-SL. The taxonomic
profile for the training data set was inferred by MetaPhlAn. Second, to
measure the performance of MetaVelvet-SL for different degrees of

Figure 1. Chimeric nodes need to be split to obtain independent sub-graphs in

a metagenomic assembly.
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similarity between the training data set and the assembly data set, we
conducted experiments using three levels of training data sets from
the highest to the lowest similarity (genus, family and order) to the as-
sembly data sets. For all assembly data sets, MetaVelvet-SL with any
training data set generated the highest accurate N50 scores and longest
maximum length of accurate scaffolds among the assemblers. (TheN50
score is a standard statistical measure that evaluates assembly quality.
Scaffolds with higher N50 scores are especially beneficial for the iden-
tification of protein-coding genes.2) On real data sets of human gut mi-
crobial short read data, sequenced as part of theMetaHIT project17 and
the Human Microbiome Project Consortium,18 MetaVelvet-SL using
models constructed by supervised learning from the taxonomy profile
inferred by MetaPhlAn generated longer scaffolds.

2. Materials and methods

A de Bruijn graph is a data structure that compactly represents over-
laps between short reads. Several de novomethods based on de Bruijn
graphs have been proposed to assemble short reads generated from
next-generation sequencers for single genomes and metagen-
omes.2,7,9,12,13 In a de Bruijn graph, a k-mer (word of length k) is as-
signed to a node, so the size of a de Bruijn graph is independent of the
size of the input of reads. The assembly (reconstruction) of the target
genome from the de Bruijn graph can be reduced to finding an Euler-
ian path that is computable in polynomial time.

First, we briefly review the Velvet andMetaVelvet assemblers upon
which our method is based. Then we describe MetaVelvet-SL, our ex-
tension of Velvet to metagenomic assembly, that utilizes supervised
learning.

2.1. Brief outline of Velvet and MetaVelvet

Velvet is slightly different from other de Bruijn-graph-based assem-
blers in that each node is attached to a twin node that represents a ser-
ies of k-mers and their reverse complements for reads from both
strands. For each input read, Velvet defines an ordered set of overlap-
ping k-mers. The ordered set is cut whenever an overlap with another
read begins or ends. For each uninterrupted ordered subset of the

original k-mers, a node is created. Velvet has three functions to ma-
nipulate the de Bruijn graph: node merging for simplification, remov-
ing tips and removing bubbles for error reduction. Velvet has two
functions, Pebble and Rock Band, for constructing the scaffold and
for repeat resolution using paired-end and long-read information. In
these functions, Velvet distinguishes the unique nodes from the repeat
nodes based on the node coverage. A repeat node represents a se-
quence that occurs several times in the genome and can be described
as a node at a crossing point between two paths with multiple incom-
ing and outgoing edges. In multiple genome assembly, such nodes are
not necessarily repeats since they can sometimes be shared between the
genomes of two closely related species and represent orthologous se-
quences, conserved sequences (such as rRNA sequences) or horizontal
transfer sequences.

MetaVelvet is an extension of Velvet for the assembly of metagen-
omes. The fundamental concept used inMetaVelvet is that a de Bruijn
graph constructed from mixed sequence reads of multiple species is
considered to be equivalent to the union of multiple de Bruijn sub-
graphs, each of which is constructed from sequence reads of individual
species. MetaVelvet has two functions. First, MetaVelvet decomposes
a de Bruijn graph constructed from mixed short reads into individual
sub-graphs. To do this, MetaVelvet calculates the histogram of k-mer
frequencies and detects multiple peaks on the histogram, each peak of
which would correspond to one species in a microbial community.
Then, MetaVelvet classifies every node into one of the peaks to form
sub-graphs composed of nodes belonging to the same peak. MetaVel-
vet identifies shared (chimeric) nodes between two sub-graphs and dis-
connects the sub-graphs by splitting the shared nodes, as illustrated in
Fig. 1. To distinguish chimeric nodes from repeat nodes, MetaVelvet
uses coverage difference and paired-end information. The second
function of MetaVelvet builds scaffolds using Velvet’s Pebble and
Rock Band functions by treating each decomposed de Bruijn sub-
graph as an isolated species genome.

2.2. Extension to MetaVelvet-SL

MetaVelvet-SL consists of three major procedures, as illustrated in
Fig. 2.

Figure 2.MetaVelvet-SL system consists of three major procedures: (i) construction of a de Bruijn graph; (ii) classification of chimeric nodes and (iii) final assembly

tasks.

Afiahayati et al. 71



1. Construction of a de Bruijn graph.
MetaVelvet-SL constructs a de Bruijn graph frommixed sequence
reads of multiple species genomes using Velvet functions.

2. Learning and classification of chimeric nodes.
This procedure, first, extracts the chimeric node candidates from

the main de Bruijn graph. A chimeric node candidate is defined as a
node that has two incoming edges and two outgoing edges.
MetaVelvet-SL utilizes LIBSVM19 to develop a model for classifica-
tion of chimeric nodes.We used the RBF kernel that is recommended
by LIBSVM.Grid searchwas used to find optimal parameters for the
RBF kernel. For the classification, 94 features are extracted for each
chimeric node candidate. These features are (Fig. 3):
(a) The dinucleotide frequencies in the chimeric node candidate,

the two incoming nodes and the two outgoing nodes. Each
node has 16 dinucleotide frequencies (AA, AT, AC, AG,
TA, . . . , GG). (16 features × 5 = 80 features).

(b) The number of paired-end reads supporting the connection
between the incoming node with higher coverage and the out-
going node with higher coverage (1 feature).

(c) The number of paired-end reads supporting the connection
between the incoming node with higher coverage and the out-
going node with lower coverage (1 feature).

(d) The number of paired-end reads supporting the connection
between the incoming node with lower coverage and the out-
going node with higher coverage (1 feature).

(e) The number of paired-end reads supporting the connection
between the incoming node with lower coverage and the out-
going node with lower coverage (1 feature).

(f ) The ratio between the coverage of each incoming node and
the coverage of the chimeric node candidate (2 features).

(g) The ratio between the coverage of each outgoing node and the
coverage of the chimeric node candidate (2 features).

(h) The coverage of the chimeric node candidate (1 feature).
(i) The lengths of contigs attached to the chimeric node candidate,

the two incoming nodes and the twooutgoing nodes (5 features).
There are three defined classes. Classes 1 and 2 are the posi-

tive classes, which contain chimeric nodes, while Class 3 is the

negative class, containing non-chimeric nodes. Class 1 contains
chimeric nodes in which the incoming node of higher coverage
and the outgoing node of higher coverage come from a same spe-
cies, and the incoming node of lower coverage and the outgoing
node of lower coverage come from another species. Class 2 con-
tains chimeric nodes inwhich the incoming node of higher cover-
age and the outgoing node of lower coverage come from a same
species, and the incoming node of lower coverage and the out-
going node of higher coverage come from another species.
Classes 1 and 2 are illustrated in Fig. 3.

One additional task in MetaVelvet-SL is the preparation of
the training sample that is required for learning the classifica-
tion model. MetaVelvet-SL uses prior knowledge about the
taxonomic profile (composition) of the target microbial com-
munity to generate the training sample. This taxonomic profile
can be inferred from sequence reads by using taxonomic pro-
filing methods, such as MetaPhlAn.16 MetaVelvet-SL has the
following functions to generate the training sample. First, by
using the taxonomic profile, a set of reference genomes that
belong to species that are the same as or are closely related to
those in the taxonomy profile are collected from the public gen-
ome database. Second, the collected reference genome se-
quences are used to generate simulated sequence reads, and a
de Bruijn graph is constructed from the simulated read data.
Third, by aligning each node in the de Bruijn graph to the ref-
erence genome sequences, it can be determined to which spe-
cies genome each node belongs. Fourth, each node at a
crossing point between two paths in the de Bruijn graph is la-
belled as Class 1, 2 or 3, generating the training samples.

3. Final assembly tasks:
Metavelvet-SL has five major steps for this procedure.

(a) Load the main de Bruijn graph which has been constructed.
(b) Extract the chimeric node candidates and classify them based

on the model that has been learned. After obtaining the clas-
sifications of chimeric node candidates, split the chimeric
nodes that are classified as being Class 1 or 2.

(c) Decompose the de Bruijn graph into connected sub-graphs.
(d) Identify unique nodes. The expected coverage of each sub-

graph is calculated to determine the unique nodes based on
the formula used to identify a unique node in Velvet.12 This
formula is given in the Supplementary data.

(e) Perform the scaffolding procedure (Pebble and Rock Band
procedures). The scaffolding procedure is iterated for each
set of unique nodes from the lowest expected coverage to
the highest expected coverage.

In the implementation, MetaVelvet-SL consists of two main modules:
(i) the supervised learning module to develop a model for the classifi-
cation of chimeric nodes and (ii) the assembly module. We provide
both modules forMetaVelvet-SL’s users. Users can infer the taxonom-
ic profile from sequence reads using several well-known accurate taxo-
nomic profiling methods, such as MetaPhlAn.16 Alternatively, users
can generate a classification model by using prior knowledge about
the taxonomy profile of the target microbial community. In either
case, the resulting customized model could be well suited to the assem-
bly of the target metagenomes. MetaVelvet-SL also provides a library
of pre-trained classification models for several typical environments,
such as soil, deep sea, mud, human blood, intestine and mouth.

Like other assemblers, the input for the assembly module is a set
of reads from metagenomes. A pipeline connecting MetaPhlAn
and MetaVelvet-SL has been developed which allows users to

Figure 3. Chimeric nodes fall into two classes. Nodes of the same colour

represent the same species. The number in each node represents the

coverage value of the node. A contig sequence is also attached to each node.
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automatically generate a classification model and then assemble their
metagenomic short read data. The source code of MetaVelvet-SL, the
pipeline connectingMetaPhlAn andMetaVelvet-SL, and the library of
learning models for several typical environments are freely available at
http://metavelvet.dna.bio.keio.ac.jp.

3. Results and discussion

The results of MetaVelvet-SL were compared with those from the ori-
ginal MetaVelvet (version 1.2.02),2 the last version of other
state-of-the-art metagenomic assemblers such as IDBA-UD,9 Ray
Meta (version 2.3.1)10 and Omega (version 1.0.2),11 and the single-
genome assembler for massive short sequencing reads SOAPdeno-
vo2.14 We conducted extensive experiments to evaluate the perform-
ance on simulated data sets and on real metagenomic data sets of
human gut microbial short read data.

3.1. Simulated data set

We generated simulated metagenomic sequence reads using the most
frequently used simulator—the DWGSIM component in the DNAA
package (available at http://sourceforge.net/projects/dnaa). We gener-
ated short reads with a length of 80 bp and used the default Illumina
sequencing noise, whose error rate is 1%. The average and standard
deviation of the insert size for paired-end reads were set at 500 and
50 bp, respectively.

To measure the performance for various taxonomic levels of
diversity, we generated four types of assembly data sets from distant
to closer taxonomic levels (order, family, genus and species). We
selected 20 genomes for each data set and generated short read
data sets from the 20 genomes. Since the log-normal distribution
has been generally used to model microbial abundance distribu-
tions,20 we used the log-normal distribution for species abundance.
MetaVelvet-SL requires a training data set for learning the classifica-
tion model. First, we conducted experiments using the pipeline
connecting MetaPhlAn and MetaVelvet-SL. The taxonomic profile
for the training data set was inferred byMetaPhlAn. Second, to meas-
ure the performance of MetaVelvet-SL for different degrees of simi-
larity between the training data set and the assembly data set, we
conducted experiments using three levels of training data sets that
contain different reference genomes from the assembly data sets.
The three levels of training data sets consist of similarities to the as-
sembly data set, from the highest to the lowest (genus, family and
order). The genus-level training data set contains different species
but in the same genus from the assembly data set. The family-level
training data set contains different genus but in the same family
from the assembly data set. The order-level training data set contains
different families but in the same order from the assembly data set.
The list of selected genomes, the coverage of each genome, the num-
ber of reads generated and the length of each reference genome for
each training data set and each assembly data set are provided in Sup-
plementary Tables S1–S20.

We compared the performance of MetaVelvet-SL with those of
MetaVelvet,2 other state-of-the-art superior metagenomic assemblers,
IDBA-UD9 with the default parameters for metagenomic assembly,
Ray Meta10 with the k-mer size suggested in the Ray Meta paper
and Omega11 with the overlap length suggested in the Omega’s in-
struction, and a single-genome assembler, SOAPdenovo214 with the
same k-mer size as MetaVelvet and MetaVelvet-SL.

We evaluated the assembly performance with Nm50 and three
other measurements: the total length, the maximum length and the

number of accurate scaffolds (sub-scaffolds not containing any chi-
meric region). We defined Nm50, the corrected N50 length for meta-
genomic assembly results. We cut every scaffold at chimeric
mis-assembled points into sub-scaffolds so that the sub-scaffolds no
longer contain any chimeric region. The usual N50 is defined to indi-
cate the scaffold length such that 50% of the total length of scaffolds
lies in scaffolds of this size or larger. Nm50 is N50 length of the sub-
scaffolds not containing any chimeric region. Chimeric regions in a
scaffold were determined by two steps. First, the best-fit alignments be-
tween a scaffold and the set of input reference genomes are calculated
using BLAST so that the predicted reference genome for the scaffold
can be obtained. Second, if any region in the scaffold is aligned to an-
other reference genome different from the predicted reference genome
for the scaffold, the region is determined as a chimeric region. (The
technical details are described in the Supplementary data.)

The statistics of assembly results are shown in Table 1. The
taxonomic profile for the training data set used in MetaVelvet-SL
was inferred by MetaPhlAn. For all assembly data sets,
MetaVelvet-SL generated higher Nm50 and longer maximum length
of scaffolds than MetaVelvet, IDBA-UD, Ray Meta, Omega and
SOAPdenovo2. The total length of scaffolds is similar among the
assemblers. The results showed that MetaVelvet-SL generated longer
accurate scaffolds.

For all assembly data sets, Ray Meta required the largest compu-
tation times, followed by IDBA-UD. The computation times of
MetaVelvet-SL increased at low taxonomic levels compared with Me-
taVelvet. This is mainly becauseMetaVelvet-SL requires the computa-
tion time for learning the classification model and classifying chimeric
node candidates the number of which is larger in low taxonomic le-
vels. The genomes become more similar and share more k-mers in
low taxonomic levels. Table 2 represents the number of chimeric
node candidates in de Bruijn graph constructed from each assembly
data set. The species data set has the highest number of chimeric
node candidates which is >10 times of the number of chimeric node
candidates in the order data set.

The statistics of assembly ofMetaVelvet-SL using different training
datasets are shown in Table 3. The models used in MetaVelvet-SL
were generated from the taxonomic profiles predicted by MetaPhlAn
and three similarity levels of training data sets (genus, family and
order) for each assembly data set. There was no significant difference
among the assembly results using different training data sets. This re-
sult showed that MetaVelvet-SL was robust for the dissimilarity be-
tween the training data set and the assembly data set.

Since one of our primary goals in this work is to improve the sen-
sitivity and accuracy for detecting chimeric nodes by supervised learn-
ing, we compared the classification capability of chimeric nodes by
MetaVelvet-SL and MetaVelvet. The results of the classification are
shown in Table 4. We evaluated the sensitivity and the accuracy. Sen-
sitivity is the true positive rate, the percentage of true identified chimer-
ic nodes (positive classes consists of Class 1 and Class 2), while
accuracy is the percentage of true results, both true positive (true iden-
tified chimeric nodes) and true negative (true identified non-chimeric
nodes, consisting of Class 3). As shown in Table 2, all of the assembly
data sets have imbalanced classes of chimeric node candidates. There-
fore, to avoid inflated performance estimates on imbalanced data sets,
we calculated the balanced accuracy too. Balanced accuracy is the
average between sensitivity and specificity.21 Specificity is the true
negative rate, the percentage of true identified non-chimeric nodes.
As shown in Table 4, the balanced accuracy of MetaVelvet-SL, even
for the lowest similarity level of training data set (order-level training
data set), was higher than MetaVelvet.
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3.2. Real data set

To evaluate the performance of MetaVelvet-SL on real metagenomic
data, we used human gut microbial data sets. We assembled five
human gut microbial data sets: MH0006 (ERS006497), MH0012
(ERS006494) and MH0047 (ERS006592) from the MetaHIT Con-
sortium17 and SRS017227 and SRS018661 from the Human Micro-
biome Project Consortium.18 Two of the data sets (MH0006 and
MH0012) were the deepest and second deepest data sets while another
data set, MH0047, is a low-coverage data set.

As for the simulated data sets, the real data sets were assembled by
MetaVelvet-SL, MetaVelvet,2 IDBA-UD9 with the default parameters
for metagenomic assembly, Ray Meta10 with the k-mer size suggested
in the Ray Meta paper, Omega11 with the overlap length suggested in
the Omega’s instruction and SOAPdenovo2.14 The statistics of assem-
bly performances are summarized in Table 5. The classification model
for MetaVelvet-SL was obtained by the pipeline using MetaPhlAn to
infer the taxonomic profile and then generating the training data set.

When the total scaffold lengths of two assemblies are quite differ-
ent in the human gut microbial data sets, the naive use of N50 score is

inadequate, because the longer total length decreases the N50 score.
The generalized score N-len(x) is more appropriate for comparing
scaffold integrity than the raw N50 score.2 N-len(x) is defined by

N-len(xÞ ¼ jSij such that
Xi

j¼1

jSjj � x and
Xi�1

j¼1

jSjj< x; ð1Þ

where S1, S2, . . . , Sn denote the list of scaffolds in descending order of
length as output by an assembler. The N50 score corresponds to the
N-len(x) score for x =L/2 (x is 50% of L), where L denotes the total
scaffold length. The N-len(x) plots for the MH0006 data sets pro-
duced by MetaVelvet-SL, MetaVelvet, IDBA-UD, SOAPdenovo2,
RayMeta andOmega are shown in Fig. 4.MetaVelvet-SL significantly
increased the scaffold integrity. For example, when x = 5,000,000, the
N-len(x) score of MetaVelvet-SL was 306,496, the N-len(x) score of
MetaVelvet was 24,554, the N-len(x) score of IDBA-UD was
178,659, the N-len(x) score of SOAPdenovo2 was 90,861, the N-len
(x) score of Ray Meta was 101,726 and the N-len(x) score of Omega
was 117,010. (The N-len(x) plots for the MH0012, MH0047,
SRS017227, and SRS018661 data sets are shown in Supplementary
Figs S1–S4.) As in the MetaVelvet paper, we calculated the area
under the curve (AUC) of N-len(x) for 0 < x≤L in units of
1,000,000 bp; that is, the cumulative sum of N-len(x) scores (0 < x≤
L), where L denotes the total scaffold length.

MetaVelvet-SL generated much longer accurate scaffolds thanMe-
taVelvet, IDBA-UD, Ray Meta, Omega and SOAPdenovo2, showing
that MetaVelvet-SL improved scaffold integrity. MetaVelvet-SL out-
performed MetaVelvet, IDBA-UD, Ray Meta, Omega and SOAPde-
novo2 for all data sets in terms of all three of the performance
indicators (total length of scaffolds, maximum length of scaffolds

Table 2. The number of chimeric node candidates in de Bruijn graph

constructed from each assembly data set

Positive Negative Total no. of chimeric
node candidates

Class 1 Class 2 Class 3

Order 82 0 1,515 1,597
Family 146 1 2,456 2,603
Genus 2,918 731 8,505 12,154
Species 3,074 246 14,589 17,909

Table 1. Statistics of assembly results for simulated data sets

MetaVelvet-SL
(+MetaPhlAn)

MetaVelvet IDBA-UD SOAPdenovo2 Ray Meta Omega

Order
Nm50 (bp) 695,261 222,972 243,336 10,529 154,899 29,668
Maximum length (bp) 3,546,677 1,312,990 1,700,200 141,628 927,783 405,783
Total scaffold length (bp) 69,383,955 70,711,008 70,743,471 72,886,145 72,067,809 71,331,763
Number of scaffolds 4,755 2,889 1,395 37,391 1,184 17,075
Required CPU time (s) 26,735 12,606 283,378 29,980 401,873 59,275

Family
Nm50 (bp) 375,942 227,243 251,915 6,751 167,523 42,500
Maximum length (bp) 1,875,576 1,570,565 1,247,435 167,532 1,181,121 521,402
Total scaffold length (bp) 83,890,270 76,369,071 81,721,590 86,524,823 84,549,043 84,756,027
Number of scaffolds 8,809 5,456 1,884 58,952 1,655 18,704
Required CPU time (s) 35,685 14,855 379,757 17,155 544,821 27,233

Genus
Nm50 (bp) 226,033 100,132 121,196 4,642 91,637 16,533
Maximum length (bp) 2,259,591 2,099,603 1,246,124 85,991 1,212,747 212,138
Total scaffold length (bp) 83,281,358 84,636,187 79,218,358 81,965,701 83,171,453 73,537,116
Number of scaffolds 10,555 14,802 10,362 97,463 6,822 24,244
Required CPU time (s) 188,170 19,514 306,073 35,648 1,259,371 97,573

Species
Nm50 (bp) 174,495 91,159 74,670 4,469 80,592 13,053
Maximum length (bp) 3,808,921 1,878,401 2,107,202 103,314 702,714 193,065
Total scaffold length (bp) 81,524,460 82,381,332 65,980,631 85,892,445 74,075,828 67,422,938
Number of scaffolds 22,440 29,472 18,864 132,284 17,077 24,096
Required CPU time (s) 195,454 17,610 353,353 20,082 352,521 208,417

All computations were executed using Intel(R) Xeon(R) E5540 processors (2.53 GHz), with 96-GB physical memory, except for a few cases. Top performances are
shown in bold.
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and AUC), except for the SRS017227 data sets, SOAPdenovo2 gener-
ated slightly longer total length of scaffolds. The identification of chi-
meric nodes by MetaVelvet-SL using classification models generated
from the taxonomic profile inferred byMetaPhlAn is shown in Supple-
mentary Table S21.

Comparisons between the taxonomic profile predicted byMetaPh-
lAn and the taxonomic profile based on assembly results of
MetaVelvet-SL using BLAST were accomplished. The NCBI genomic
reference sequences were used, which provide stable references, as the
database for BLAST searching. The database contains 41,913 organ-
isms as of September 2014 (Release 67). The numbers of species pre-
dicted by MetaPhlAn and predicted from the assembly of
MetaVelvet-SL are shown in Table 6. The taxonomic profile based
on assembly results covered >90% of the taxonomic profile predicted
by MetaPhlAn. This result indicated that the assembly capacity of
MetaVelvet-SL was high enough to capture the target diverse micro-
bial community. As shown in Table 6, much larger number of species
was predicted from assembly results by BLAST than predicted by

MetaPhlAn. This is mainly because MetaPhlAn used 2,887 genomes
available from the Integrated Microbial Genomes (IMG) system,
which were much fewer than the number of organisms in the NCBI
database used in BLAST searching. The taxonomic profile predicted
byMetaPhlAn for each real data set is shown in Supplementary Tables
S22–S26, whereas the taxonomy profile predicted from the assembly
of MetaVelvet-SL using BLAST is shown in Supplementary Tables
S27–S31.

3.3. Conclusion

Extensive experiments on simulated and real metagenomic data sets
showed that MetaVelvet-SL outperformed other metagenomic assem-
blersMetaVelvet, IDBA-UD, RayMeta andOmega as well as a single-
genome assembler, SOAPdenovo2.

The main strategy in MetaVelvet-SL is to develop a model to clas-
sify a candidate node at a crossing point between two incoming and
two outgoing edges as a chimeric node or not. We also developed a
procedure to identify unique nodes more precisely based on the

Table 3. Statistics of assembly results of MetaVelvet-SL using different training data sets

MetaVelvet-SL

(+MetaPhlAn) Genus-level training
data set

Family-level training
data set

Order-level training
data set

Order
Nm50 (bp) 695,261 672,952 686,074 695,557
Maximum length (bp) 3,546,677 3,415,875 3,547,025 3,818,061
Total scaffold length (bp) 69,383,955 69,881,185 69,288,924 69,387,743
Number of scaffolds 4,755 4,379 4,747 4,829
Required CPU time (s) 26,735 26,773 26,612 26,660

Family
Nm50 (bp) 375,942 377,604 384,795 384,795
Maximum length (bp) 1,875,576 2,326,125 2,326,197 1,927,551
Total scaffold length (bp) 83,890,270 83,888,560 83,877,454 83,877,321
Number of scaffolds 8,809 8,777 8,687 8,679
Required CPU time (s) 35,685 35,477 35,577 35,469

Genus
Nm50 (bp) 226,033 233,924 266,018 257,292
Maximum length (bp) 2,259,591 2,888,749 2,974,950 2,843,963
Total scaffold length (bp) 83,281,358 82,525,756 83,385,233 83,634,261
Number of scaffolds 10,555 11,450 9,376 8,512
Required CPU time (s) 188,170 187,963 188,285 188,325

Species
Nm50 (bp) 174,495 166,528 158,509 167,722
Maximum length (bp) 3,808,921 3,292,179 3,292,250 3,292,179
Total scaffold length (bp) 81,524,460 81,141,481 81,447,218 81,414,639
Number of scaffolds 22,440 19,114 21,073 22,735
Required CPU time (s) 195,454 195,512 195,534 195,460

Table 4. Classification results for chimeric nodes

MetaVelvet-SL MetaVelvet

(Training: Genus) (Training: Family) (Training: Order) (+MetaPhlAn)

Sen Acc BA Sen Acc BA Sen Acc BA Sen Acc BA Sen Acc BA

Order 84.15 94.49 89.60 54.88 96.12 76.61 57.32 95.49 77.44 42.68 96.62 71.11 42.68 92.42 67.74
Family 80.27 97.54 89.42 63.27 97.08 81.80 55.10 96.85 77.23 65.99 97.35 82.61 44.90 93.32 69.21
Genus 62.76 76.92 72.88 50.07 65.03 60.76 54.29 67.88 64.00 58.98 81.90 75.35 33.13 62.37 46.91
Species 52.80 54.84 54.05 36.83 70.60 57.32 33.10 82.19 63.23 40.24 83.15 66.58 15.21 71.61 48.09

Sen (%) means the percentage of sensitivity; Acc (%) means the percentage of accuracy and BA (%) means the percentage of balanced accuracy.
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expected coverage for each sub-graph and considered very low-
coverage nodes by determining an appropriate threshold to remove
error nodes. Since MetaVelvet-SL needs to learn a model for the clas-
sification of chimeric nodes, we have provided a pipeline connecting
MetaPhlAn and MetaVelvet-SL, which can generate a classification
model and assemble automatically. MetaVelvet-SL also provides a

library of pre-trained classification models for several typical environ-
ments such as soil, deep sea, mud, human blood, intestine and mouth.

MetaVelvet-SL defines a chimeric node as a node that has two in-
coming edges and two outgoing edges. In a de Bruijn graph, in single-
genome assembly, a node with multiple incoming and outgoing edges
represents a repeat node. In multiple genome assembly, such node is

Table 5. Assembly results for the real human gut microbial data sets

MetaVelvet-SL
(+ MetaPhlAn)

MetaVelvet IDBA-UD SOAPdenovo2 Ray Meta Omega

MH0006 (ERS006497)
Maximum length (bp) 1,073,577 82,400 424,786 248,752 245,285 293,858
Total scaffold length (bp) 366,474,614 228,356,028 293,629,444 314,842,356 211,199,449 134,644,249
Number of scaffold 927,151 387,193 197,401 521,577 609,062 150,907
AUC of N-len(x) 9,148,384 909,250 6,002,739 3,042,215 2,260,838 2,527,198

MH0012 (ERS006494)
Maximum length (bp) 1,320,619 119,936 594,225 792,429 512,973 1,144,479
Total scaffold length (bp) 357,949,718 255,566,175 290,340,811 325,057,612 272,663,103 170,102,775
Number of scaffold 718,438 327,103 198,771 482,983 635,814 125,383
AUC of N-len(x) 22,126,171 2,129,027 10,344,620 8,856,698 6,977,480 10,229,304

MH0047 (ERS006592)
Maximum length (bp) 188,905 69,475 185,593 44,319 137,473 52,084
Total scaffold length (bp) 101,916,143 75,290,864 75,032,143 88,092,865 50,174,724 29,134,928
Number of scaffold 374,148 210,477 89,786 263,713 141,466 31,961
AUC of N-len(x) 906,906 237,568 802,594 201,366 544,742 208,223

SRS017227
Maximum length (bp) 478,428 108,476 372,927 227,256 199,208 217,259
Total scaffold length (bp) 370,496,571 250,969,598 349,934,212 395,257,497 273,595,801 206,705,202
Number of scaffold 602,463 485,307 282,097 802,952 536,708 217,259
AUC of N-len(x) 4,709,551 1,064,102 4,010,530 2,227,194 2,501,039 1,617,896

SRS018661
Maximum length (bp) 699,395 111,404 511,735 426,297 274,042 180,946
Total scaffold length (bp) 114,676,867 71,339,406 109,507,232 107,557,997 75,351,327 47,619,933
Number of scaffold 284,036 195,950 109,860 274,896 212,267 34,244
AUC of N-len(x) 1,945,258 253,138 1,296,606 848,798 1,004,371 611,636

Top performances are shown in bold. MetaVelvet-SL, MetaVelvet and SOAPdenovo2 set the k-mer size at 37 for the MH0006 and MH0047 data sets, 43 for the
MH0012 data set and 51 for SRS017227 and SRS018661.

Figure 4. The N-len(x) plots for the MH0006 data set of human gut microbial data.
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not necessarily a repeat since it is sometimes shared between the gen-
omes of two closely related species and represents orthologous se-
quences, conserved sequences (such as rRNA sequences) or
horizontal transfer sequences. In a de Bruijn graph, nodes having mul-
tiple incoming and outgoing edges can be divided into (i) those with
two incoming edges and two outgoing edges and (ii) those with higher
order connectivity (i.e. more than two incoming edges and more than
two outgoing edges). The number of nodes having higher order con-
nectivity is much fewer than the number of nodes having two incom-
ing edges and two outgoing edges. We counted the number of nodes
having multiple incoming and outgoing edges in de Bruijn graphs for
both simulated data sets and real data sets of human gut microbial
short read data. On average, the number of nodes having higher
order connectivity is only 1.79% of the number of nodes having
two incoming edges and two outgoing edges. The number of nodes
for each data set is provided in Supplementary Table S32. Although
MetaVelvet-SL defines a candidate for a chimeric node as a node
that has two incoming edges and two outgoing edges, MetaVelvet-SL
outperformed the other metagenomic assemblers MetaVelvet, IDBA-
UD, Ray Meta and Omega, and also a single genome assembler,
SOAPdenovo2. We continue to consider the impact of higher order
connectivity.
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Table 6. The number of species in the taxonomic profile predicted by MetaPhlAn and the taxonomic profile based on assembly results of

MetaVelvet-SL using BLAST

Number of species
predicted by both

Number of species predicted
only by MetaPhlAn

Number of species predicted
only by assembly

MH0006 (ERS006497) 99 5 2,932
MH0012 (ERS006494) 124 9 2,872
MH0047 (ERS006592) 65 2 2,137
SRS017227 83 3 2,992
SRS018661 81 8 1,529

The first column represents the number of species predicted by MetaPhlAn and predicted from assembly results by BLAST (intersection). The second column
represents the number of species only predicted by MetaPhlAn and not predicted from assembly results by BLAST. The third column represents the number of
species only predicted from assembly results by BLAST and not predicted by MetaPhlAn.

Afiahayati et al. 77

http://dnaresearch.oxfordjournals.org/lookup/suppl/doi:10.1093/dnares/dsu041/-/DC1
http://dnaresearch.oxfordjournals.org/lookup/suppl/doi:10.1093/dnares/dsu041/-/DC1


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




