
Full Paper

Genome-wide study of correlations between

genomic features and their relationship with

the regulation of gene expression

Yuri V. Kravatsky*, Vladimir R. Chechetkin, Nikolai A. Tchurikov, and

Galina I. Kravatskaya

Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow 119991, Russia

*To whom correspondence should be addressed. Tel. +7 499-135-2311. Fax. +7 499-135-1405. E-mail: jiri@eimb.ru

Edited by Prof. Hiroyuki Toh

Received 12 June 2014; Accepted 26 November 2014

Abstract

The broad class of tasks in genetics and epigenetics can be reduced to the study of various features

that are distributed over the genome (genome tracks). The rapid and efficient processing of the huge

amount of data stored in the genome-scale databases cannot be achieved without the software

packages based on the analytical criteria. However, strong inhomogeneity of genome tracks ham-

pers the development of relevant statistics. We developed the criteria for the assessment of genome

track inhomogeneity and correlations between two genome tracks. We also developed a software

package, Genome Track Analyzer, based on this theory. The theory and software were tested on si-

mulated data and were applied to the study of correlations between CpG islands and transcription

start sites in the Homo sapiens genome, between profiles of protein-binding sites in chromosomes

of Drosophila melanogaster, and between DNA double-strand breaks and histone marks in the

H. sapiens genome. Significant correlations between transcription start sites on the forward and

the reverse strands were observed in genomes of D. melanogaster, Caenorhabditis elegans, Mus
musculus, H. sapiens, and Danio rerio. The observed correlations may be related to the regulation

of gene expression in eukaryotes. Genome Track Analyzer is freely available at http://ancorr.eimb.ru/.
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1. Introduction

Data mining of extensive genome-scale databases, such as the
Human Epigenome Atlas,1 ENCODE,2 Eukaryotic Promoter Data-
base,3 DBTSS,4 database on CpG islands,5 FANTOM5,6 and many
others, cannot be performed without efficient bioinformatic tools.
Typically, the researcher is interested in finding correlations be-
tween various characteristics distributed over the genome (com-
monly termed genome tracks). The trends in the close or remote
positioning between genomic features may indicate their coordi-
nated action in chromatin packing, recombination, replication, or
transcription.7 The features on the genome can be presented as
points [e.g. transcription start sites (TSS), DNA double-strand
breaks (DSBs), contacts between chromosomes], stretches

(transposons, exons and introns, CpG islands), or profiles defined
throughout the sites (expression profiles, protein-binding profiles).
The stretches can be described in terms of their lengths and posi-
tions of some characteristic points (starts/centres/ends). The effects
related to these two parameters (overlapping and positioning of
stretches) should be studied separately. A part of correlational ana-
lysis related to the mutual positioning of starts/centres/ends of
stretches can also be reduced to the study of point distributions.
The processing of profiles is rather complicated. The processing of
data from several experiments and data on the background noise re-
sults in identifying the maxima in profiles or the significant regions
distributed over the genome. Such maxima and regions can further
be treated as points and stretches. Therefore, the general assessment
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of correlations between features of two types always includes an es-
timation of the closeness between two point sets.

Despite the seemingly simple formulation, such analysis remains a
challenge.8–10 The distribution of distances between consecutive gen-
ome track elements proved to be significantly different from that in the
reference random model, with the variations in lengths between con-
secutive genomic elements being much stronger than the approximate-
ly homogeneous distribution of randomly positioned elements (see
Results). In this sense, the distribution of genome track elements
may be called inhomogeneous. The strong inhomogeneity in the distri-
bution of genomic features over the genome, which is inherent to most
genetic data, hampers statistical analysis. The application of simple
and standardized methods, such as correlation functions, needs the
coarse graining of data over 10–100 kb bins11 and smears the reso-
lution of correlations. The proper approach should be based on the
relevant statistical criteria. The developed analytical criteria and re-
spective packages ought to be robust against the spatial inhomogen-
eity of feature distribution.

Among the available packages, the Genomic HyperBrowser12,13 is
based onMonte Carlo (MC) simulations for the assessment of the stat-
istical significance of correlations between genome tracks of two types,
whereas GenometriCorr14 uses the combination of statistically
grounded analytical criteria with a permutation test. The application
of simulations generally needs at least two rounds of simulations with
an enhanced number of realizations to prove the statistical conver-
gence of a method and is rather time consuming. The simulations
are difficult to implement for the study of large genome-scale data
sets. In contrast to packages based on the simulations, packages
based on the analytical criteria (i.e. on the mathematical expressions
derived in advance) do not need a large number of trial realizations
for assessment of statistical significance and, therefore, save a lot of
computational time.

Primarily, we were interested in the applications of available
packages to the particular correlations between DSBs and epigenetic
features. We began by testing available packages. In a random inde-
pendent set of points, the position of each point does not depend on
the positions of other random points or on the positions of points of
any other (random or not) set. Thus, if at least one of two sets is ran-
dom and independent, correlations between the two sets should be ab-
sent. Testing of both packages, Genomic HyperBrowser and
GenometriCorr, for the absence of correlations between a random in-
dependent set and a strongly inhomogeneous, non-random genomic
set revealed that the packages may indicate artificial correlations in
this case. Moreover, as both packages do not suggest a measure for
assessment of intrinsic inhomogeneity, the attribution between a ran-
dom set and a non-random inhomogeneous set is not known a priori.
If the true attribution was permuted, the correct assessment of correla-
tions actually failed in both packages. The failure is perhaps related to
problems in statistical assessment. Note that our remarks are con-
cerned only with the particular options in the Genomic HyperBrowser
and GenometriCorr corresponding to the study of correlations
between two point sets. Therefore, we were prompted to develop
an original statistical algorithm and package, the Genome Track
Analyzer, based on this algorithm. Our package is freely available at
http://ancorr.eimb.ru/. The usage of the analytical criteria permits the
rapid processing of large-scale data. We tried to formulate our result-
ing analytical criteria in terms of Gaussian z-statistics that is familiar
to most researchers.

The testing of available packages and the study of particular exam-
ples proved that the assessment of genome track inhomogeneity and
the robustness of the algorithm against inhomogeneity are crucial

for the correct analysis of correlations between genome tracks. In
this article, we present the quantitative measure for inhomogeneity
of genome tracks, robust statistical criteria, and an algorithm for the
analysis of correlations between two genome tracks, and we compare
the different packages. Furthermore, we demonstrate the application
of our package to the study of particular correlations between different
genetic and epigenetic features related to the regulation of gene expres-
sion in eukaryotes. Among our particular applications, the correla-
tions between CpG islands and TSS are well studied and serve in
our work mainly as an additional test, whereas the correlations be-
tween TSS on the forward and reverse strands in eukaryotic genomes,
as well as the correlations between DSBs and H3K4me3 marks in the
Homo sapiens genome, can be considered as original. The correlations
between protein-binding profiles for Drosophila melanogaster were
likely not studied using the similar statistical methods. They reflect
the mutual dependence between features that was established experi-
mentally. The correlations between particular genomic tracks ob-
tained with the Genomic HyperBrowser and GenometriCorr were
compared with that obtained using our package.

2. Materials and methods

In this section, we describe the basic theory and the main algorithm.
The genome tracks proved to be often inhomogeneous and strongly
different from quasi-homogeneous random distributions. We present
the quantitative criteria for assessment of genome track inhomogen-
eity. The algorithm developed in this article is robust against inhomo-
geneity effects. It is implied that, after preprocessing (Preprocessing of
input genetic data), the genetic datawill correspond to the set of points
that divides the genome (or a genome region) under study into a set of
fragments.

2.1. Reference model

The reference model used in this work for the assessment of correl-
ation significance is based on the random division of an interval. Let
the interval of length M be divided by N – 1 points into N fragments:

M ¼
XN
i¼1

Li ð1Þ

Here, Li is the length of fragment. The respective mean length is given
by:

〈L〉 ¼ M
N

ð2Þ

We will use henceforth the normalized lengths:

li ¼ Li

〈L〉
ð3Þ

The probability that the normalized lengths of fragments (l0i)
exceed some a priori chosen values (li) is defined by De Finetti
distribution:15

Prðl01 � l1; : : : ; l0N � lNÞ ¼ 1� l1
N

� � � � � lN
N

� �N�1

þ
ð4Þ

where xþ ¼ x if x> 0 and xþ ¼ 0 if x � 0. The analytical derivation
of De Finetti distribution and some relevant results can be found in
previous publications.16,17 We present below the auxiliary statistical
criteria needed for the main algorithm.
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The corresponding one-fragment probability is defined as:

Prðl01 � l; l02 � 0; : : : ; l0N � 0Þ ¼ 1� l
N

� �N�1

þ
ð5Þ

and, at the limit of large N, can be approximated by the exponential
distribution Pr ≈ e�l. The mean minimum length from k fragments
and its dispersion are:

〈lmin j k〉 ¼
1
k
; σ2ðlmin j kÞ ¼

N � 1
k2ðN þ 1Þ ð6Þ

The characteristic maximum and minimum values in the complete set
of normalized lengths corresponding to random division of an interval
can be estimated as:17

lmax ≈ lnN; lmin ≈
1
N

ð7Þ

If the input data are filtered out with respect to outliers, the potential
outliers should be compared with extreme values in the reference
model.

2.2. Assessment of genome track inhomogeneity

When studying correlations between genome tracks, it is useful to
begin with the preliminary assessment of input data. In our package,
the (in)homogeneity of length distribution related to the genome
tracks is assessed by two methods. In the first method, the distribution
of normalized fragment lengths is compared with one-fragment distri-
bution (5) by the Kolmogorov–Smirnov criterion. In the second meth-
od, the homogeneity of length distribution can be assessed with an
entropy-like function:17

Sstructural ¼
XN
i¼1

li ln li ð8Þ

As can be proved, the function (8) at the restriction (1) attains its min-
imum equal to zero for l1¼ l2¼ . . .¼ lN¼ 1. This distribution corre-
sponds to the most homogeneous one. The higher the value of the
entropy (8), the stronger the variations in fragment lengths or the high-
er the inhomogeneity of input data. The mean value and dispersion of
structural entropy for the random division of an interval are:

〈Srandom〉 ¼ ð1� CÞN ¼ 0:422785 : : :N;

σ2ðSrandomÞ ¼ 0:289868 : : :N
ð9Þ

whereC¼ 0.577215. . . is the Euler constant. The (in)homogeneity of
the input data can be estimated in terms of the z-ratio:

zS ¼ 〈Srandom〉� Sdata
σðSrandomÞ

ð10Þ

The z-ratio (10) obeys approximately Gaussian statistics for the ran-
dom deviations.

2.3. Ordering of genomic features

Many genetic features are ordered with respect to each other, e.g.
5′-ends of CpG islands often precede the TSS. Such ordering may be
related to the coordinated regulation mechanisms. The level of order-
ing for the pairs of points can be assessed by the criterion:

zP ¼ Pþ=P� 0:5
0:5P�1=2

ð11Þ

where P is the total number of pairs and P+ is the number of pairs in
which the points of one type precede the points of the other type.

At the limit of large P, the deviations (11) also obey Gaussian
statistics.

2.4. Preprocessing of input genetic data

2.4.1. Points
If the input genetic data correspond to the particular sites, e.g. sites of
DSBs, TSS, etc., they are commonly used without additional prepro-
cessing. If needed, preliminary clustering of points can be performed.

2.4.2. Stretches
The stretches, such as CpG islands, transposons, etc., are replaced by
points in the starts/centres/ends of the stretches. The overlapping of
stretches is permissible. The mean distance between consecutive refer-
ence points should be much longer than the characteristic length of
stretches.

2.4.3. Profiles
The profiles characterizing DNA–protein binding are assumed to be
defined throughout the sites. The formats of profiles may depend on
the database or vary even within a particular database. Commonly,
the peaks in profiles should be determined from several experimental
sets and from the set with background data. In this case, using the data
from several experiments as well as the data on the background noise,
the maxima in profiles or the significant regions can be identified over
the genome by one of numerous available packages.18–20 Then, such
maxima and regions can be processed as points and stretches. We in-
tegrated into our server the popular peak-caller MACS2,21 which is
convenient for processing ChIP-Seq data. If needed, the researcher
can use any other available caller for profile preprocessing. Some pro-
files are presented in databases in aggregated form comprising several
data sets. After identifying peaks with an available caller or when
using aggregated profiles, further clustering preprocessing of profiles
can be performed. In our package, such clustering preprocessing
first filters out the insignificant values lower than a given threshold
(in terms of the mean + n SD). Then, the significant values exceeding
a given threshold are clustered by the following rule: the consecutive
points nearer than a given distance belong to the same cluster. The va-
lues of the threshold and the clustering distance are defined by the user.
The site corresponding to a cluster is determined by the centre-of-mass
rule:

mc ¼
P

i ∈ cluster miHiP
i ∈ cluster Hi

ð12Þ

where Hi is the height of profile at the site mi. As the correlations may
depend on the clustering distance (Correlations between protein-
binding profiles), we recommend using a variable clustering distance
that covers a range of characteristic lengths for the problem concerned.
The format of input data for points is txt and for stretches is BED/
BED6, whereas the profiles can be loaded in SGR, WIG, bigWIG, or
bedGraph.

2.5. Algorithm

The analysis shows that most genetic data are strongly inhomogen-
eous, i.e. the variations in lengths corresponding to genome tracks
are stronger than that corresponding to the random division of the
genome in the same number of fragments (Assessment of genome
track inhomogeneity). Therefore, the criteria and algorithm for assess-
ment of mutual correlations between two genome tracks should be
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robust against inhomogeneity of corresponding length distributions.
The algorithm presented below satisfies this requirement.

It is assumed that the genome strand under study is restricted by
terminal points corresponding to one or two genome tracks. Such a
definition excludes the possible edge effects. Within such a strand,
let the number of points related to the first set beNA (the related points
will be denoted for brevity by A), whereas the corresponding number
of points for the second set isNB (the related points will be denoted by
B). Then, the fractions of points are determined as

fA ¼ NA

NA þNB
; fB ¼ NB

NA þNB
ð13Þ

The division of points on the same strand into two sets generates a
string of points that may formally be presented as a sequence com-
posed of A and B. The neighbouring points of two types can be en-
countered only within the following sequences: ABA, BAB, AABB,
BBAA, and their combinations. Our algorithm relies on the following
rules:

• The subsequences (A)k or (B)k (k≥ 3) are discarded, because they
cannot be associated with the neighbouring points of the other
type. The subsequences AABB or BBAA are also discarded.

• This leaves us only two fundamental types of subsequences: ABA
and BAB. All other possible sequences under consideration are
their combinations. Our algorithm processes the entire sequence
of points, splitting it into fundamental subsequences ABA and
BAB from left to right. In the process of splitting, consequent fun-
damental subsequences can have only one common border letter,
and they cannot overlap by two or more letters. For example,
ABABA is split into ABA and ABA.

• In the subsequence BAB, the pair of the nearest neighbours is de-
termined relative to the A point and corresponds to the minimum
of two lengths in the combinationsBA andAB, whereas in the sub-
sequence ABA the pair of the nearest neighbours is determined
relative to the B point and corresponds to the minimum of two
lengths in the combinations AB and BA.

Consider, for example, the combination ABA. Let the distance for AB
be L1 and the distance for BA be L2. The mean local distance for this
combination is:

〈L〉local ¼
L1 þ L2

2
ð14Þ

whereas the respective normalized length between the nearest neigh-
bours (NN) is determined as:

lNN;local ¼
minðL1;L2Þ

〈L〉local
ð15Þ

A similar normalization was used also by Favorov et al.14

The correlations between two sets of points are assumed to be ab-
sent if at least one of the setsA andB is random and independent. Con-
sider the situation when one of the sets is random (R), whereas the
other is a non-random inhomogeneous (I) set. This implies the corres-
pondence A, B ↔ R, I or ABA, BAB↔ RIR, IRI. It is very important
that the statistics turns out to be different for the combinations IRI and
RIR. Themoments for the normalized lengths in the combinations IRI
are defined by Equation (6) for k¼N¼ 2:

〈lNN;IRI〉random ¼ 1
2
; σ2

NN;IRI;random ¼ 1
12

ð16Þ

The significance of divergence between 〈lNN;IRI〉random and the mean

normalized length �lNN;IRI obtained in a particular realization may be
assessed by the z-ratio:

zIRI ¼
〈lNN;IRI〉random ��lNN;IRI

ðσ2
NN;IRI;random=KIRIÞ1=2

ð17Þ

which obeys the standard Gaussian statistics N(0, 1) at the limit of
large number of combinations KIRI. Let the neighbouring points for
a combination RIR be P1 and P2, i.e. RIR can be considered as a
part of combination Р1RIRР2. The random points (R) in the combin-
ationRIR are homogeneously distributed within intervals Р1I and IР2.
The corresponding moments for the normalized lengths (15) in the
combinations RIR are calculated as

〈lkNN;RIR〉random¼
ZLP 1I

0

dLRI

LP1I

ZLIP 2

0

dLIR

LIP 2

〈 2LRI

LRIþLIR

� �k

〉θ 1� 2LRI

ðLRIþLIRÞ
� �

þ
ZLP 1 I

0

dLRI

LP1I

ZLIP 2

0

dLIR

LIP 2

〈 2LIR

LRIþLIR

� �k

〉θ 1� 2LIR

ðLRIþLIRÞ
� �

ð18Þ

where θ(x) is the Heaviside step function, θ(x)¼ 1 if x > 0 and θ(x)¼ 0
if x < 0. The angular brackets denote the averaging over an ensemble of
realizations. The bulky but straightforward computations provide the
explicit expressions:

〈lNN;RIR〉random¼ 〈rNN;localð1�2ln2Þ�rNN;local lnrNN;localþ1

�ð1� r2NN;localÞlnð1þ rNN;localÞ=rNN;local〉;

〈l2NN;RIR〉random¼ 〈2rNN;localð1�2ln2Þþ4lnð1þrNN;localÞ=rNN;local〉;

σ2
NN;RIR;random¼ 〈l2NN;RIR〉random�〈lNN;RIR〉

2
random

ð19Þ
where

rNN;local¼min
LP1I

LIP2

;
LIP2

LP1I

� �
ð20Þ

If the averaging over the ensemble of realizations is replaced by the
mean in a particular realization, 〈: : :〉!P

RIR
ð: : :Þ=KRIR (here the

dots correspond to the expressions in the right-hand side of Equation
(19), and KRIR is the total number of combinations RIR), the variable

ςRIR¼
~lNN;RIR;random��lNN;RIR

ð~σ2
NN;RIR;random=KRIRÞ1=2

ð21Þ

obeys Gaussian statistics N(0, cς) with dispersion c2ς ≠1. Here, the

wave over the reference random values corresponds to the replacement

〈: : :〉!P
RIR

ð: : :Þ=KRIR in Equation (19) and �lNN;RIR is the mean

normalized length for the combinations RIR. The variable corre-
sponding to the standard Gaussian statistics N(0, 1) can be obtained
by the normalization:

zRIR¼ ςRIR
cς

ð22Þ

The normalization parameter cς depends weakly on the ratio between
the numbers of points belonging to random and inhomogeneous sets,
NR/NI. The simulations yield the dependence,NR/NI¼ 0.25; 0.5; 1; 2;
4 and cς¼ 0.833; 0.837; 0.855; 0.862; 0.881. We used the linear
interpolation for cς within this range of ratios NR/NI, while beyond
this range the values of cς were taken to be equal to the boundary
quantities.
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The united Gaussian criterion of proximity between two sets of
points is formulated in terms of:

zcorr ¼ SK;random � SK

ðKIRIσ2
NN;IRI;random þKRIRc2ς ~σ

2
NN;RIR;randomÞ

1=2
ð23Þ

where

SK ¼
XK
k¼1

lNN;local;k ð24Þ

SK;random ¼ KIRI〈lNN;IRI〉random þ KRIR
~lNN;RIR;random ð25Þ

and the other nomenclature is as defined in Equations (16)–(22). The
correspondence A, B ↔ R, I or ABA, BAB ↔ RIR, IRI is defined by
the criterion (10). The set with the higher |zS| is associated with an in-
homogeneous set, whereas the set with the lower |zS| is associated with
a random set. The criterion (23) remains valid when the inhomogen-
eous non-random set tends towards a random set. The positive values
of zcorr reflect a trend towards shorter distances between point sets
relative to the reference model (or correlations), whereas the negative
values of zcorr reflect a trend towards longer distances between point
sets (or anticorrelations). The ordering between the pairs of the nearest
neighbours contributing to sum (24) can be additionally assessed by
zP-criterion (11).

The mean fraction of the nearest neighbours between two random
sets of points is

FNN ¼ð fAf 4B þ fBf 4AÞ
X∞
k¼0

ðkþ 1Þð fA fBÞk þ 2f 2Af
2
B

X∞
k¼1

kð fA fBÞk

¼ð fAf 4B þ fBf 4AÞ
ð1� fA fBÞ2

þ 2f 3Af
3
B

ð1� fA fBÞ2
ð26Þ

In particular, if fA¼ fB¼ 0.5, the mean fraction is FNN¼ 1/6. This
fraction is assessed relative to the complete set of pointsN¼NA +NB,
i.e. the mean number of pairs of the nearest neighbors is determined as
N·FNN. The significant bias against frequency (26) is interesting for
assessment of trends in natural selection and large-scale genome
organization.

3. Results

3.1. Tests and comparison of different packages

The distribution of genome tracks over the genome is often strongly
inhomogeneous. As a typical example, we chose the exons on the
forward and reverse strands of 23 human chromosomes (the
Y-chromosome was discarded due to insufficient data). Both the
Kolmogorov–Smirnov and entropy criteria revealed strong inhomo-
geneity of this set (Supplementary data S1). The positions of points
in any random set are independent of that of exons and should be
uncorrelated with them. This test was used to verify the predictions
in different packages. For a particular MC realization, the P-value
characterizing the significance of correlations between exons and a
random set was calculated for each chromosome separately. The
correlations were assumed to be significant if P < 0.05. Then, we cal-
culated the observed fraction of events with predicted P < 0.05 per
100 MC realizations (false discovery rate, FDR). As neither Genom-
ic HyperBrowser12,13 nor GeometriCorr14 suggests the criteria for
the comparison of the inhomogeneity of two sets, we performed
the blind computations in which the attribution of two sets was
unknown.

Statistical analysis of correlations between genome tracks with
Genomic HyperBrowser was performed to test the hypothesis:
point–point located nearby? The correlations in this package were as-
sessed via MC simulations, in which one of the sets was preserved,
whereas the other was replaced byMC samples. The maximal number
of MC samples was 1,000. To create single-line commands suitable
for batch processing, we used Perl scripts written by ourselves. Geno-
metriCorr used the combination of the Kolmogorov–Smirnov test for
the normalized lengths together with a permutation test for distances
between the points of two sets. In GenometriCorr, the user should
manually set the extreme 5′- and 3′-ends of the data range to define
the limits of the chromosome region under study for correct correla-
tions. This option is called ‘mapping’ and is turned off by default.
For setting mapping, we used an R script written by ourselves. The
number of permutations for the assessment of absolute distance
P-value was 1,000. For our package, we used the united Gaussian cri-
terion (23) with attribution of sets by the entropy z criterion (10). The
results are compared in Table 1.

Table 1. FDR for the tests on the absence of correlations between exons in human chromosomes and random sets

Number of points in random sets relative to that of exons Fraction of events with P < 0.05 per 100 MC realizations

Exons on forward strand Exons on reverse strand

2-Fold
less

Equal,
±10%

2-Fold
more

2-Fold
less

Equal,
±10%

2-Fold
more

Genomic HyperBrowser12,13

P-value, exon positions preserved, random set MC randomized 0.253 0.253 0.247 0.249 0.250 0.248
Adjusted P-value, exon positions preserved, random set MC randomized 0.227 0.228 0.227 0.227 0.231 0.228
P-value, random set preserved, exon positions MC randomized 0.538 0.597 0.670 0.588 0.635 0.773
Adjusted P-value, random set preserved, exon positions MC randomized 0.523 0.582 0.656 0.573 0.628 0.768
GenometriCorr14

Relative distance KS P-value, exons—reference; random—query 0.047 0.049 0.051 0.051 0.048 0.050
Absolute distance P-value, exons—reference; random—query 0.109 0.106 0.100 0.110 0.107 0.109
Relative distance KS P-value, random—reference; exons—query 0.537 0.437 0.428 0.579 0.450 0.215
Absolute distance P-value, random—reference; exons—query 0.705 0.697 0.662 0.725 0.693 0.599
Genome Track Analyzer
United z-criterion, Equation (23) 0.056 0.052 0.051 0.044 0.046 0.048

All tests were performed with predicted P-values <0.05. The expected mean value and standard deviation for FDR per 100MC realizations should be 0.05 ± 0.005.
FDR, false discovery rate; MC, Monte Carlo; KS, Kolmogorov–Smirnov test.
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The results in Table 1 reveal strong dependence of the FDR on the
attribution of sets. If exon positions are preserved, while the random
set is MC randomized, the Genomic HyperBrowser provides the FDR
about five times higher than the expected rate. GenometriCorr pro-
vides the correct rate for the relative distance KS P-value and the cor-
respondence exons—reference, random—query, whereas the usage of
the absolute distance P-value provides the FDR ∼2-fold higher than
the expected rate at the same correspondence. The permutation in
set attribution (i.e. the random set is preserved, while exon positions
are MC randomized for the Genomic HyperBrowser and random—
reference, exons—query for GenometriCorr) leads to the complete
failure of the correlation prediction in both packages. This proves
that the preliminary assessment of randomness/inhomogeneity is cru-
cial for the correct statistical predictions.

The computation time needed for one random realization in Gen-
omic HyperBrowser was 1 h 35 min, in GenometriCorr 52 min, and
in Genome Track Analyzer 9 s. This time included the duration of
loading and processing of input data, direct computations, and pro-
cessing of output data. In particular, for our package, the time needed
for the loading and processing of input data was 8 s, and the process-
ing of output data needed 1 s, whereas the direct computations took
only 0.01 s.

3.2. Correlations between CpG islands and TSS

The software package was applied to the analysis of particular genetic
problems. The first one concerned the correlations between CpG islands
and transcription start sites.5,22–24 The positions and overlapping of CpG

islands with TSS affect gene expression in eukaryotes. The data on CpG
islands on human chromosomes were taken from URL http://rafalab.
jhsph.edu/CGI/,5 whereas the data on TSS were taken from the Eukary-
otic Promoter Database (http://epd.vital-it.ch/ H. Sapiens hg19 version
EPDnew 003).3 Our method supported the strong correlations between
CpG islands and TSS with clear preceding ordering between 5′-ends of
CpG islands and TSS. The study also showed overlap between CpG
island and the nearest TSS (Supplementary data S2).

3.3. Correlations between TSS on the forward and

reverse strands

Additionally, we found significant correlations between TSS on the
forward and reverse strands of D. melanogaster, Caenorhabditis ele-
gans,Mus musculus,H. sapiens, andDanio rerio (zebrafish) genomes.
The positions of TSS on the reverse strand were projected to the for-
ward strand. The detailed results are presented for D. melanogaster
and H. sapiens. In Table 2, we included only the chromosomes in
which the number of nearest neighbours exceeded 50 to ensure the ap-
plicability of Gaussian statistics. These data show clear positional and
ordering correlations for the significant fraction of the TSS on two
strands. Implying that expression regulation factors are upstream of
TSS, the bias in projected TSS on the reverse strand preceding neigh-
bouring TSS on the forward strand indicates that some regulatory ele-
ments such as CpG islands, enhancers, silencers, etc., may be
common. Such a mode of regulation expression has, in fact, been ex-
perimentally established.25–27 The statistical significance of these

Table 2. Correlations between transcription start sites on the forward and reverse strands

Chromosome z P zP P TSS forward TSS reverse NN

A. Homo sapiens genome
chr1 2.59 0.010 5.93 <0.001 1,226 1,156 230
chr2 3.77 <0.001 4.28 <0.001 817 728 177
chr3 3.01 0.003 4.60 <0.001 643 663 133
chr4 0.28 0.779 2.07 0.038 446 471 103
chr5 4.39 <0.001 4.42 <0.001 570 497 113
chr6 4.34 <0.001 5.22 <0.001 609 617 132
chr7 0.65 0.516 2.97 0.003 562 509 109
chr8 2.76 0.006 4.48 <0.001 397 423 72
chr9 2.97 0.003 3.39 <0.001 443 507 95
chr10 1.97 0.049 4.27 <0.001 471 475 106
chr11 3.52 <0.001 5.02 <0.001 696 656 129
chr12 4.21 <0.001 5.36 <0.001 623 656 147
chr14 4.28 <0.001 4.64 <0.001 382 363 90
chr15 1.94 0.052 5.74 <0.001 338 359 82
chr16 3.73 <0.001 6.30 <0.001 571 422 113
chr17 5.08 <0.001 6.37 <0.001 633 725 150
chr19 4.28 <0.001 7.65 <0.001 823 772 178
chr20 2.57 0.010 4.06 <0.001 320 291 70
chr22 1.77 0.077 4.16 <0.001 268 269 63
chrX 2.24 0.025 1.43 0.153 477 453 96
B. Drosophila melanogaster genome
chr2L 11.98 <0.001 15.68 <0.001 1,393 1,379 454
chr2R 13.72 <0.001 14.73 <0.001 1,578 1,529 481
chr3L 12.57 <0.001 15.59 <0.001 1,528 1,570 473
chr3R 14.19 <0.001 16.61 <0.001 1,762 1,852 583
chrX 12.42 <0.001 14.08 <0.001 1,176 1,198 387

The positions of TSS on the reverse strand were projected to the forward strand. z and zP are calculated by Equations (23) and (11) and characterize the positional
and ordering correlations between TSS, respectively. The 1% significance thresholds for |z| and |zP| in the case of random correlations correspond to 2.58, while 5%
significance thresholds correspond to 1.96. The positive values of zP indicate that projected TSS on the reverse strand precede TSS on the forward strand. The
corresponding P-values were calculated using Gaussian statistics. The data were filtered by the number of pairs of the nearest neighbours (NN) exceeding 50 to
ensure the applicability of Gaussian statistics.
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correlations versus the counterpart random model proves the positive
selection of such a mode of expression regulation during evolution.
The fraction of the nearest neighbours for TSS turned out to be less
than the theoretical prediction for the random sets with the same frac-
tions of points [Equation (26)] for the H. sapiens genome and rather
close to the theoretical prediction for the D. melanogaster genome
(Table 2). The histograms for the relative and absolute lengths be-
tween neighbouring TSS, scattering plot, and the list of the top nearest
TSS on the reverse and forward strands are summarized in Supplemen-
tary data S3. The histograms for bothH. sapiens andD. melanogaster
genomes show the length distributions peaked at the small distances
between neighboring TSS in accordance with significant positional
correlations. The histograms for the absolute lengths revealed a
sharp drop at the distances exceeding the characteristic nucleosome
length of ∼200 bp. Though the absolute and relative lengths between
neighbouring TSS were significantly correlated (Spearman correlation
coefficients exceeded 0.7, P < 0.001), only the criteria formulated in
terms of relative lengths proved to be robust against the inhomogen-
eity of genome tracks. The distribution of the nearest neighbouring
TSS on the forward and reverse strands across particular chromo-
somes of the H. sapiens genome is shown in Fig. 1a, which was
drawn with the Integrated Genome Browser.28 The distributions of
the TSS pairs across all chromosomes of the H. sapiens genome listed
in Table 2 can be found in Supplementary data S4.

The analysis of some nearest TSS duplets revealed that they corres-
pond to rather short intergenic regions between pairs of closely located
genes that reside on different strands. They may have mutual enhan-
cers or bidirectional promoters, and thus should correspond to
genes with coordinated expression. The particular examples are
shown in Fig. 1b. Currently, we are analysing these gene pairs to de-
termine the role of this type of genome organization for coordinated
regulation of genes in the human genome.

3.4. Correlations between protein-binding profiles

The second problem concerned the relationships between profiles
characterizing DNA binding with proteins E(Z), Pc-S2, and Psc, and
H3me3K27 marks in the chromosomes of D. melanogaster. E(Z),
Pc-S2, and Psc belong to the polycomb group (PcG) of proteins,
which are important for maintaining the transcriptional repression
of homeotic genes.29–32 The corresponding processed and aggregated
profiles were obtained by Schwartz et al.29 and were taken from
EMBL ArrayExpress accession E-MEXP-535.33 The profiles were pre-
liminarily filtered by the cut-off threshold mean + 2 SD and clustered
with a distance in the range 50–500 nt with steps of 50 nt (Preproces-
sing of input genetic data). The data before and after preprocessing
with a clustering distance of 50 nt are shown in Fig. 2a. The corre-
sponding z-ratios [Equation (23)] indicate strong correlations between
binding profiles for the PcG proteins and for H3me3K27 marks
(Fig. 2b). The correlations strongly depend on the clustering distance
(Fig. 2c and Supplementary data S5). As the characteristic binding re-
gion for the PcG proteins is ∼50 nt,34 the clustering distance of 50 nt
may be considered as optimal in this example. The cut-off threshold
affects the number of nearest neighbours, but it retains the mode of
correlations at a given clustering distance. These observations are in
accordance with the data on the coordinate action of the E(Z),
Pc-S2, and Psc proteins, and the H3me3K27 marks in the silencing
mechanisms for D. melanogaster.29,30

3.5. Correlations between DSBs and histone marks

Finally, we studied the relationships between DSBs and histone mark
H3K4me3 in human chromosomes. DSBs induced by physical,

chemical, or genetic agents provide important information about the
large-scale organization of chromatin and may potentially be related
to genomic stability, including translocations, deletions, or amplifica-
tions.35–37 H3K4me3 is a well-known, promoter-specific histone
modification that is associated with transcription and active genes.
Recently, it was demonstrated that this epigenetic mark selectively
directs global TFIID recruitment to active genes, some of which are
p53 targets.38 The data on nucleotide-resolved DSBs were submitted
to GEO with accession number GSE53811. DSBs were preliminarily
preprocessed: DSBs mapped below 5% and above 95% of coverage
were cut-off; the remaining DSBs were clustered within a distance of
1 kb (Preprocessing of input genetic data). Such a clustering distance
provides the distribution of lengths between consecutive DSBs, which
is similar to that observed in gel electrophoresis.35,36 The profiles for his-
tone marks were taken from ENCODE accession wgEncodeEH000953
in the pre-aligned format BAMandwere then processed withMACS2.21

The MACS2 peak-caller was used with the option ‘callpeak’ for identi-
fying significant regions (treated like stretches in our package). Then, the
correlations of corresponding midpoints of stretches with DSBs were
studied with our package. The summary of correlations is shown in
Fig. 3 and reveals clear positional correlations between these features.
Such correlations support the hypothesis regarding the relationships
between DSBs and coordinated gene expression.35,36

The correlations between particular genomic tracks in the follow-
ing sections, Correlations between CpG islands and TSS, Correlations
between TSS on the forward and reverse strands, Correlations between
protein-binding profiles, and Correlations between DSBs and histone
marks, obtained with Genomic HyperBrowser, GenometriCorr, and
Genome Track Analyzer are mutually compared in Supplementary
data S6. The comparison showed that the detected correlations
appeared to be significant in all three packages (with minor divergence
depending on the package and method). The significance of correla-
tions in all packages indicates that they are real, non-artificial correla-
tions. Generally, the coincidence of the correlation significance
obtained with the different packages may depend on the particular
chosen example (see Tests and comparison of different packages).

4. Discussion

Our study proves that the proper treatment of inhomogeneity inher-
ent to genome tracks is essential for the correct assessment of corre-
lations between genome tracks. We tried a series of algorithms,
including our variants and those suggested by others,12–14 and
found that none of the algorithms that used absolute length scales
satisfied the test for the absence of correlations between a random
independent set and a strongly inhomogeneous non-random set
(Tests and comparison of different packages and Table 1). The
choice of the relative lengths with local normalization turned out
to be crucial for the absence of correlations between a strongly in-
homogeneous set and a random one. The significant inhomogeneity
inherent to genome tracks and strong variations in characteristic
lengths may be related to the large-scale chromatin organization
(see Ref. 17 for discussion and further references).

All z-criteria (10), (11), and (23) used in our package are based on
the central limit theorem. The variations in the vicinity |z|≤ 2.7 proved
to be approximately Gaussian for the random sets. The application
of Gaussian criteria implies that the number of pairs of nearest neigh-
bours,K, should be sufficiently large. The convergence can be assessed
by the parameter 1=

ffiffiffiffi
K

p
. We determined that 50–100 representatives

or more are sufficient for Gaussian approximation in the
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corresponding z-criteria. For the small sets, the statistical scattering be-
comes large and the deviations from Gaussian statistics may be signifi-
cant. As the tails of distributions for z-ratios are non-Gaussian, we
used the coarse-grained scale for the presentation of significance for
output z-values: |z| < 1.8, insignificant; 1.8< |z| <1.96, fuzzy; 1.96< |z|

<2.58, significant; and |z| > 2.58, highly significant. In the visual pres-
entation of the software, all grades are marked by different colours.

Our analytical criteria proved to be robust against the inhomogen-
eous distribution of lengths corresponding to genome tracks, which is
typical of genetic problems. The analytical criteria significantly

Figure 1. (a) The distributions of the nearest neighbouring transcription start sites (NN TSS) on the forward and reverse strands across particular chromosomes of

the Homo sapiens genome. The cytobands across corresponding chromosomes and relevant length scales are shown below the TSS. The length scale is in

megabases. The blue vertical lines correspond to the pairs of NN TSS. The 15 closest pairs on each chromosome are marked by the red lines, and the names of

the corresponding NN TSS are indicated. Names shown above the red lines correspond to the TSS on the forward strand, whereas names shown below the red line

correspond to the TSS on the reverse strand (names are given according to EPD notation). (b) Particular examples of NN TSS pairs in the H. sapiens genome. The

transcriptions factors (TF) participating in the regulation of expression of a particular gene are listed after the name of the gene. The TF that match genes on both

strands are marked in red. The data on binding sites for TF associated with genes were taken from http://www.genecards.org.
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Figure 2. (a) The binding profiles for proteins E(Z), Pc-S2, and Psc, and for H3me3K27 histonemarks over chromosome 3R ofDrosophilamelanogaster. For the study

of correlations, these profiles were preliminary filtered by the cut-off thresholdmean + 2 SD and clusteredwith distance of 50 nt [Preprocessing of input genetic data

and Equation (12)]. The input data after preprocessing are shown below initial profiles. (b) z-ratios [Equation (23)] characterizing pairwise positional correlations

between profiles for proteins E(Z), Pc-S2, and Psc, and for the H3me3K27 mark in the different chromosomes of D. melanogaster. The input data were

preprocessed as described above. The numbers below the chromosome nomenclature correspond to that of the nearest neighbours. The horizontal broken

lines for z-ratios correspond to 5% (|z|¼ 1.96) and 1% (|z|¼ 2.58) significance thresholds for random correlations. (c) Ratios characterizing positional correlations

between profiles for proteins E(Z), Pc-S2, and Psc, and for H3me3K27 histone marks in the chromosome 2R of D. melanogaster at the different clustering lengths.

The profiles were preliminary filtered by the cut-off threshold mean + 2 SD. The positive values of zcorr reflect a trend towards shorter distances between profiles

relative to the reference model (or correlations), whereas the negative values of zcorr reflect a trend towards longer distances between profiles (or anticorrelations).
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shorten the time of computational analysis and permit the study of lar-
ger data sets in comparison with MC simulations (Tests and compari-
son of different packages). Note that the analysis of large output data
arrays needs the application of extreme value statistics for the assess-
ment of their statistical significance. For example, in the case of ran-
dom correlations, ∼5% of output z-values can exceed the threshold
|z| >1.96. Generally, the distribution of the large output array
of z-values can be compared with Gaussian distribution by the
Kolmogorov–Smirnov criterion.

A similar approach can be applied to the study of distributions
of nucleotide content or DNA physico-chemical characteristics over

the genome. In the latter case, these parameters should, initially,
be coarse-grained over a window of length W. The distribution of
parameters over consecutive non-overlapping windows can further
be treated in line with profile preprocessing (Preprocessing of input
genetic data). If needed, the continuous criteria used in our package
can be replaced by their corresponding discrete counterparts.17 In
the next step, wewill include the more detailed analysis of correlations
between stretches that are characterized by both the positions of the
stretch centres and the overlap of stretches. To conclude, the Genome
Track Analyzer provides an efficient tool for the study of correlations
between genome features with useful applications to many genetic

Figure 3. (a) The distributions of DNA double-strand breaks (DSBs) and H3K4me3 histonemarks over human chromosome 7. The distributions of DSBs and histone

marks were coarse-grained over bins of 100 kb, i.e. the heights in these distributions correspond to the number of points in the bins of 100 kb. Both sets were

preprocessed as described in the main text. The distribution of cytobands across chromosome 7 is shown above the length scale. (b) z-ratios [Equation (23)]

characterizing pairwise positional correlations between distributions of DSBs and H3K4me3 in the human chromosomes. The correlations for the

Y-chromosome are not shown due to poor statistics. The numbers below the chromosome nomenclature correspond to that of the nearest neighbours. The

horizontal broken lines for z-ratios correspond to 5% (z¼ 1.96) and 1% (z¼ 2.58) significance thresholds for random correlations.
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problems. The study of correlations between genome tracks may shed
light on the intricate regulation networks in the different organisms.
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