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Background: The development and application of quantitative methods to understand disease dynamics and
plan interventions is becoming increasingly important in the push toward eradication of human infectious dis-
eases, exemplified by the ongoing effort to stop the spread of poliomyelitis.

Methods: Dynamic mode decomposition (DMD) is a recently developedmethod focused on discovering coherent
spatial-temporal modes in high-dimensional data collected from complex systems with time dynamics. The
algorithm has a number of advantages including a rigorous connection to the analysis of nonlinear systems,
an equation-free architecture, and the ability to efficiently handle high-dimensional data.

Results:We demonstrate themethod on three different infectious disease sets including Google Flu Trends data,
pre-vaccination measles in the UK, and paralytic poliomyelitis wild type-1 cases in Nigeria. For each case, we
describe the utility of the method for surveillance and resource allocation.

Conclusions:Wedemonstrate howDMD can aid in the analysis of spatial-temporal disease data. DMD is poised to
be an effective and efficient computational analysis tool for the study of infectious disease.
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Introduction
The rapid increase in surveillance systems for infectious disease,
capacity for digital storage, and computational resources better
positions the scientific community to understand and, more
importantly, combat the spread of infectious disease in human
populations. A stronger understanding of the underlying process
of infectious disease spread has the potential to shape interven-
tion efforts such as multi-billion dollar campaigns on vaccination
and vector-control programs. The strengthening focus on meas-
uring the spread of disease and collecting data has created
a set of new computational challenges for analyzing large
amounts of infectious disease data. This big-data regime requires
data-driven analysis methods that can both mitigate the difficul-
ties of high-dimensional measurements and maintain the funda-
mentally dynamic nature of disease spread. In this manuscript,
we demonstrate how one such method, dynamic mode decom-
position (DMD), can help in the analysis of infectious disease data.

Modeling the spread of infectious disease can be challenging
given the complexity and heterogeneity of the unknown, underlying

system. DMD is fundamentally equation-free operating solely on
snapshots in time of measurements, thus alleviating the need
for a set of governing equations; further, the required input data
can be generated from simulations, experiments, or historical
data.1–3 In addition, themethod contains the advantageous prop-
erties of two traditional and transformative data analysis
methods: principal component analysis (PCA) for the reduction
of high-dimensional (possibly redundant)measurements and spec-
tral time-series analysis for identifying the frequency content of a
time-varying signal. DMD is a powerful method, developed in the
fluid dynamics community, with the ability to find coherent
spatial-temporal patterns in data arising from large-scale, non-
linear systems.1–4

The equation-free and adaptable architecture of DMD has also
led to a number of exciting modifications that are relevant to the
study of infectious disease data. The method can be modified to
evaluate a limited, sparse number of measurements in either
space or time while still recovering the underlying dynamics,
based on compressive sensing.5–7 For surveillance of infectious
disease data, the full state of the system will rarely be available,
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thus methods able to handle a sparse set of measurements
will be integral for future applications. Other challenges facing
disease surveillance for high-burden areas include not having
reliable diagnostic tools, prevalence of asymptomatic infections,
and disorganized health information systems. The adaptable
architecture of DMD is well posed to mitigate these data-
challenges; for example, DMD has been recently modified to
evaluate data from complex systems that have had external
forcing such as interventions.8

The outline of this manuscript includes a background on the
theory for DMD. The subsequent section demonstrates the appli-
cation of DMD on three data examples, including Google Flu,
pre-vaccination measles in the UK, and polio cases in Nigeria.
We follow up with a discussion and future extensions of DMD for
mathematical modeling.

Materials and methods
This section describes the DMD method.1–4 To precede the math-
ematical description of DMD, a brief subsection is included about
processing raw disease data into a standard spatial-temporal
data framework.

Infectious disease data and dynamical systems
DMD is a method that analyzes the relationship between pairs of
measurements. In the case of spatial-temporal infectious disease
data, these pairs consist of a future measurement xk+1 and a pre-
vious measurement xk, where x [ Rn.3 For all pairs of data, a
linear operator A [ Rn × n can be assumed to provide the follow-
ing relationship:

xk+1 = Axk, (1)
where the operator A is constructed by seeking the best-fit
solution for all pairs. The relationship in (1) does not need to
hold exactly. Previous work has demonstrated the theoretical
justification between using this approximating operator on data
generated by nonlinear systems (see Supplementary Materials:
Section 3 for more detail). Further, most applications of DMD are
on data collected from complex, nonlinear systems.1,3,6,9

Data collected from numerical simulations, laboratory experi-
ments, and historical records aremost oftenmeasured at discrete
instances in time, which we will denote as xk∀ k [ [1,m] and
call each of the m observations snapshots.10 In other scientific
applications, such as fluid dynamics, the measured state xk is
clearly defined i.e., the velocity field at each spatial grid point
measured at equal temporal intervals Dt. Well-curated infectious
disease data often arrives in a similar form with, for example,
the number of infections (or cases) in each of a set of particular
geo-spatial location over a period of time. More care is required
if the data is in the form of individual patient records. In order
to utilize DMD, an aggregation step is required to sum across
spatial and temporal scales. See Schmid PJ1 for an informative
example about choosing the correct Dt for a fluid dynamics
problem.

Once the data have been aggregated, each pair of state snap-
shots xk and xk+1 can be collected. Then, two datamatrices can be
constructed given by the following:

X =
|
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|

|
x2
|

· · ·
|

xm−1

|
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⎢⎣
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⎥⎦,

X′ =
|
x2
|

|
x3
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· · ·
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|
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⎢⎣

⎤
⎥⎦,

(2)

where X and X′ are[ Rn×m−1. Note, the general case of DMD does
not require sequential time-series data only that the pairs of data
(column j of X and column j of X′) are related. Combining (1) and
(2), the following relationship between pairs of states xk and
xk+1 can be more generally described in matrix form:

X′ ≈ AX. (3)
The next section describes the process of solving (3).

Dynamic mode decomposition
In this section, we define the DMD and describe the method. The
DMD of the measurement pair X and X′ is the eigendecomposition
of the matrix A from (3). The approximating operator is defined by
the following:

A= X′X†, (4)
where † is the Moore-Penrose pseudoinverse.3 The pseudoinverse
can be efficiently and accurately solved by the singular value de-
composition (SVD). The well-known SVD of a matrix X, truncated
at r singular values, is given by the following:

X ≈ ŨS̃Ṽ
∗
, (5)

where Ũ [ Rn×r, S̃ [ Rr×r, Ṽ
∗
[ Rr×m−1, and * denotes the

complex conjugate transpose. The SVD provides a principled
method for reducing the dimension of the data matrix. For more
details on the SVD and the truncation value see the Supplemen-
tary Materials: Section 1. Also, Figure 1 shows an illustration of
truncating an SVD based on the singular value magnitudes.

An approximation of the operator A can be found using (4) and
(5) and choosing a truncation value r given by the following:

A ≈ �A = X′Ṽ S̃
−1

Ũ
∗
. (6)

Note the size of matrix �A is n×n. A more computationally efficient
method for computing both an approximation of A and the dynamic
characteristics of �A is reducing the dimension of the operator. This
is efficiently performed by projecting on to the lower-dimensional
subspace defined by the first r left singular vectors represented
by Ũ. The following is the reduced order operator:

Ã = Ũ
∗
X′ṼS̃

−1
. (7)

Computing the eigendecomposition of Ã can be substantially more
efficient and crucial when considering the memory footprint of �A
when n ≫ 1. A similar observation was made earlier by Sirovich
and the method of snapshots.10 The dynamic characteristics can
be found by the well-known eigendecomposition: ÃW = WL
where W contains the eigenvectors and Λ the eigenvalues.
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The relationship between the dynamic characteristic of the
reduced-order model of Ã and �A can be exactly recovered
through the method described by Tu JH et al.3 The following are
called dynamic modes of the full system.

f= X′Ṽ S̃
−1

w. (8)

If l = 0, then this is the DMD mode for l. If the eigenvalue is 0,
then the dynamic mode is computed using f= Ũw.

The collection of dynamic modes and their respective eigenva-
lues are the low-dimensional coherent spatial-temporal patterns
within the dataset. The eigenvalues describe the growth/decay
and oscillatory characteristics of each dynamic mode. Figure 1
illustrates an example eigenvalue spectrum with two pairs of
complex conjugate eigenvalues. The red pair indicates a purely os-
cillatory mode since they lie on the unit circle, whereas the blue
pair lie within the unit circle and thus have a decaying dynamic
characteristic. The oscillatory frequency of each eigenvalue of

Figure 1. An illustration of the data collection and the dynamicmode decomposition (DMD)method. In the top panel, an illustration of how to construct
the datamatrices fromnumerical, laboratory, or historical data sources. The historical data illustration is of flu data for the US according to the Google Flu
Trends tool. A longer description of the data is described in the Results section. The bottom panel illustrates the key components of solving for A: the
singular value decomposition (SVD), the eigenvalue spectrum, and the dynamic modes. For infectious disease data, each of the elements of a
dynamic mode will typically represent a specific geo-spatial location. The magnitude and phase of the element describes how the geo-spatial
locations are related to each within that mode. If the mode has an associated eigenvalue with a nonzero imaginary component, indicating
oscillatory behavior, then the angle of each element represents the relative phase of the location’s oscillation relative to the other locations for that
dynamic mode. This representation allows for a direct interpretation of the DMD output for disease spread: each dynamic mode identifies the
locations involved in that dynamic pattern of disease spread as well as the relative phase of that location’s peak infection time.
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the map Ã can be converted in to the continuous time frequency
with the following relationship:

frequencyj =
imag(log(lj)/Dt)

2p
(9)

This relationship allows for each discrete eigenvalue to be exam-
ined based on the more intuitive and interpretable continuous
time frequencies, i.e., per year frequency.

The dynamic modes describe how spatial locations (each
element of the measurement vector xk) are related. Within a
single dynamic mode, each element in the vector fj has two im-
portant pieces of information: the magnitude of the element
(absolute value) provides a measure of the spatial location’s par-
ticipation in the mode; the angle between the real and imaginary
component of the element provides a measure of a location’s
phase of oscillation relative to others for that mode’s frequency.
Figure 1 shows how a dynamic mode from DMD can be repre-
sented on a geo-spatial map in terms of both the magnitude
and phase. This data is from the Google Flu Trends data described
in the first part of the Results section and the mode being exam-
ined is the one-year frequency. A discussion about picking relevant
dynamic modes is included in the Supplementary Materials:
‘Picking relevant dynamic modes’.

Results
Example 1: Google Flu Trends
The first example of infectious disease data comes from Google’s
Flu Trends tool. Google has investigated how certain search terms
are indicators of flu activity within a country. By using aggregated
Google search data and historical flu data, they have constructed
a method for determining the current state of flu activity.11

Despite recent scientific discussions about the validity of the
Google Trends predictions, this dataset is a relevant spatial-
temporal data set of infectious disease.12 Here, we use flu activity
data from the US generated by their tool.

In the top panel of Figure 2, four traces of the raw (unprocessed
data) from Alaska (black), California (red), Texas (green) and
New York (blue) are shown for comparison. The Google Flu Trends
tool provides data for every seven days; this is the Δt value for
DMD. Also for visualization, the complete set of spatial locations
is included (states, cities, and the health-human-services regional
breakdown) in time. In order to visually compare each location
with potentially different order of magnitude of infection value,
each location’s time series (each row of the datamatrix X) is normal-
ized. The mean is subtracted and the variance of the time series
is set to one. The normalization helps to account for larger popula-
tion centers. Note the clear seasonality of the flu activity, in addition
to the larger peaks in 2010 and 2013. For a number of the states and
cities, non-zero entries of the data do not begin until 2007; for the
analysis with DMD, we take the dates from June 2007 to July
2014. Also, we focus solely on the state information in order to visu-
alize every element of the dynamic mode on the map of the US.

The output of DMD is included to the right of the data visualiza-
tions. The eigenvalue spectrum indicates a number of modes that
are well-within the unit circle indicating fast decaying eigenvalues
and modes that do not contribute to the broader structure of
the dynamics. The Mode Selection plot illustrates this point by

examining the dynamic modes that have greater power lpj fj

∥∥∥
∥∥∥

vs their frequency, defined in Supplementary Materials: Section
2, where p=20 and the energy truncation of the SVD is 99%.
Note the clear yearly frequency mode. The phase of the
dynamic mode associated with the one year frequency is
plotted on the US map. The phase is defined between 0 and 1
for both this example and the next. Note, since the phase value
exists on the circle, the color values near 0 and 1 are actually
close in phase. The phase difference found by DMD between
Ohio and North Dakota (states with larger color difference) is ap-
proximately 0.25 (or 3 months). Also, a general grouping of states
emerges from mapping the phase difference; the northwest
states generally group together as well as the northeast. A
smooth transition also occurs traveling north from California to
Washington on the western coast.

Example 2: pre-vaccination measles in the UK
In this example, we look at the well-known infectious disease
data-set of pre-vaccination measles cases in the UK. The data
has been previously examined with classical methods like Fourier
decomposition.13 In the middle panel of Figure 2, four traces of
the raw (unprocessed data) from four cities in the UK: London
(black), Liverpool (red), Colchester (green) and Cardiff (blue), are
shown for comparison. Sixty cities are included in the dataset.
The measles cases are reported every 2 weeks for 22 years.

Each location’s time series is normalized both in mean and
variance in order to allow visual comparison. Note the clear sea-
sonality with dramatic fluctuations. Here, we take the first
10 years of data for all cities to be used in the DMD analysis.

Similar to above, the output of DMD is shown to the right of the
plots. The Mode Selection plot illustrates the dynamic modes that

have a greater lpj fj

∥∥∥
∥∥∥with p=50 and the energy truncation of the

SVD is 95%. The visually appealing seasonality is captured by the
close to one-year frequency ≈ 0.98. Also, strong peaks exist near
the twice a year and close to every two years frequency. These
peaks are weaker than the one-year frequency, but indicate
other modes of oscillation that may account for the fluctuation
observed in the visualized data. The phase of the one-year period-
ic dynamicmode is plotted on themap of the UK. Instead of color-
ing in the states according to the phase, individual markers are
placed down at each city’s latitude and longitude with the color
indicating the phase. The phase differences for measles in the
UK span a larger range than the previous example, as seen with
locations spanning the color bar. For example, the difference
between London and Warrington is approximately 0.39, almost
five months. This is in contrast to Bournemouth, which is tied
closely to London with a phase difference of 0.02, about two
weeks. Groupings of locations also share similar phase differences
near London. As mentioned in the previous section, the phase
values near 0 and 1 (dark red and dark blue) are actually close
in phase. Thus, a set of locations in the north and south are
similar in phase for the yearly dynamic mode.

Example 3: Type 1 polio in Nigeria
The final example involves the analysis of data about wild type 1
polio paralytic cases from Nigeria. The eradication of polio has
been an ongoing and difficult campaign for a number of
decades. Substantial success has been demonstrated in eradicat-
ing polio from most of the world’s countries except for three:
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Figure 2. The panels describe the data and output of the dynamicmode decomposition (DMD) on three examples: Google Flu, pre- vaccinationmeasles
in the UK, and type 1 paralytic polio cases. In each panel, two plots are included to visualize the data: the top left plot shows four time-histories from
different locations; the bottom left is a visualization of all the locations in time. The time histories in the bottom left are normalized, described in the text.
The three plots illustrate the output of DMD: how to select the mode based on a power calculation, the eigenvalue spectrum of Ã, a dynamic mode
φ plotted as a map.

International Health

143



Afghanistan, Pakistan, and Nigeria. Polio has proven to be a difficult
disease to eradicate in these countries due to a broad number of
reasons, including poor health infrastructure, war-time interruption
of vaccination campaigns, and even violence against vaccinators.
Another challenge, especially for analysis, is a fundamental charac-
teristic of the disease: the case-to-infection ratio. For type 1 polio, the
ratio is approximately 1:200, meaning that for every detected para-
lytic case there are approximately 200 unobserved infections. As the
push toward eradication is more successful, the detection and
measurement of polio becomes more difficult and less probable.
Despite being in the eradication regime, we apply DMD on this
more difficult, but relevant dataset in the global health community.

The lower panel of Figure 2 shows raw data traces, as well as a
visualization of all of the sub-province (LGA) level spatial divisions.
The four LGAs plotted are Kano (black), Katsina (red), Akko (green),
and Funakaye (blue). The data come from the Nigerian Acute
Flaccid Paralysis (AFP) surveillance database curated by the Niger-
ian WHO. The same dataset was used recently to construct a risk
model for polio in Nigeria.14 For the subsequent DMD analysis, we
take only LGAs with more than five cases. Also, we focus on the
five years of data from 2004–2009. Here, we aggregate paralytic
cases in time by month.

The output of the DMD analysis is shown to the right of the
data visualizations. The eigenvalue spectrum is substantially differ-
ent than the previous two exampleswithmore eigenvalues near the
unit circle and evenly spaced. This is characteristic of a signal de-
composition with a broad frequency content. The mode selection
plot also illustrates this point with a less-clear dominant set of
modes. Here, p=70 and the truncation energy value is set at 99%.
We select the large magnitude norm at approximately f ≈ 1.2 per
year. In contrast with the previous two examples, the magnitude
of the dynamic mode is plotted on top of the Nigerian map. Note,
the darker areas in the center of northern Nigeria, called Kano
state, is historically known to be a hot-spot for polio cases. By illus-
trating themagnitude of the dynamicmode, dark versus light areas
indicate the strengthofmembershipof specific LGAs for this particu-
lar dynamic mode. For example, the dark areas emanating along
spatially connected LGAs from Kano indicate these LGAs have
been dynamically linked to flare-ups in Kano state.

Discussion
The epidemiological interpretation of DMD modes
The dynamic modes of DMD allow for epidemiological interpret-
ation of large-scale dynamic patterns within the data examples.
In both the flu and measles examples, DMD automatically identi-
fies the yearly cycle as clearly important. The dynamic mode asso-
ciated with this yearly cycle provides the phase relationship among
the locations. The phase information can be used to interpret how
that dynamic pattern spreads across a spatial domain; for the flu
example, moving north along the west coast shows a smooth
change of phase for the peak time of flu indicating the spread of
disease. This information can be particularly useful for planning
the annual resource allocation of vaccines, surveillance and moni-
toring teams, and delivery timing of interventions especially if the
interventions are time sensitive.

In addition, DMD and the dynamic modes offer insight in to the
epidemiological connectedness of spatial locations. The spatial
locations described within most infectious disease datasets are

often politically defined boundaries and do not necessarily reflect
the epidemiological connectedness of spatial areas. Both themag-
nitude and phase information of the dynamic mode can provide
a measure of connectedness. In the flu and measles examples,
similar phase information can indicate well-connected areas,
such as the Montana, Washington, Idaho and Wyoming grouping
or the states in New England as seen in Figure 2. Note, DMD is
not given a model about the spatial location of these states, the
groupings are automatically discovered. Also, epidemiologically
connected areas do not necessarily need to be neighbors. Long-
distance migration routes can connect them by air or train; this
could be the case for the matching phase of cities like London
with cities in the north of the UK and links between New York and
California from air travel.

The polio example illustrates how the magnitude (versus the
phase discussed for the previous two examples) of the dynamic
mode can illuminate which locations are active for that dynamic
pattern. The LGAs (the darker colored locations in Figure 2) are
significantly more active for this dynamic mode indicating an epi-
demiological link. For campaign planning, such as the country-wide
vaccine campaigns called supplementary immunization activities
(SIAs) in Nigeria, this epidemiological connectedness of spatial
locations can help with the logistical planning of intervention cam-
paigns. The understanding of historical connectedness can help
in planning which LGAs will receive SIAs if cases are detected,
especially given the current low level of infections and the low
case-to-infection ratio in Nigeria. Further, an understanding of his-
torical connectedness can allow for better planning of surveillance
teams and sites, minimizing redundant measurements. The char-
acteristic speed of the dynamic mode given by the eigenvalue
also offers direct relevant information for campaigns. If a set of
cases occur activating the dynamic mode, the eigenvalue (the
decay rate and the oscillatory frequency) will indicate whether
that mode can be affected by a mop-up campaign due to the
fixed time-delay from campaign logistics.

Another important output of DMD is the ability to better inform
mechanisticmodels of infectious disease spread. Parameter estima-
tion can make mechanistic modeling intractable when the spatial
discretization of the model is finely grained. The dynamic modes
of DMD offer a way to reduce the dimension of these models
(through understanding the epidemiologically connected areas)
allowing for better estimation of model structure and features.

Connections to other methods
This subsection explores the connection of DMD to other methods
typically applied to spatial-temporal data. The Fourier decompos-
ition, a spectral time-series method, can find the frequency
content and phase information for each spatial location’s time-
series. Each location’s time-series can be summed to form
a single-channel signal allowing the Fourier decomposition to
discover the frequency content from data representing all loca-
tions,13 but the phase information between locations is lost. The
principal components analysis (PCA) is a standard model reduc-
tion technique that provides an optimal subspace to describe
the data with fewer modes (linear combinations of spatial loca-
tions), without regard for temporal characteristics. PCA is also
known as proper orthogonal decomposition (POD),15–17 the Hotel-
ling transform,18 empirical orthogonal functions (EOF),19,20and/or
the Karhunen–Loéve (KL) decomposition.21 DMD combines the
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advantageous properties of both methods while also allowing for
the dynamic characteristic of growth and decay. In addition, the
dynamic modes discovered from DMD can be substantially differ-
ent from the principal component modes.22

DMD has connections to other methods such as linear inverse
modeling (LIM) from the atmospheric science community and
eigensystem realization algorithm (ERA) and the observer Kalman
identification (OKId) from the control theoretic literature; under
certain theoretical conditions, the methods become equivalent.3,8

Autoregressive-moving-average (ARMA) Models are also utilized
to analyze spatial-temporal data, but fundamentally differ from
DMD in the method for discovering a reduced-order model from
the data. DMDuses the truncation threshold of the SVDwhereas re-
ducing the dimension of an ARMA model typically requires fitting
linear models of various dimensions and evaluating a model-fit
measure like the Akaike information criteria (AICc).

Limitations
Data-driven, equation-freemethods like DMD suffer froma limitation
stemming from thequalityandquantityof data. In the elimination or
eradication regimes of an infectious disease, the number of disease
cases, and thus the signal, decrease substantially. Other data-driven
methods also suffer from this limitation. DMD, though, has been
shown to perform well even with sparse data collection.5–7

Conclusions
The application of DMD on infectious disease data can help inform
epidemiologically relevant actions such as allocating intervention
resources, avoiding redundancy in surveillance team deployment,
and designing effective mop-up immunization campaigns. Quanti-
tative modeling and analysis will play a key role in understanding
disease spread and optimally applying intervention resources to
maximize the probability of success for eradication. With increased
investment in surveillance systems, themagnitude and heterogen-
eity of measurements requires the development and adaptation of
analysis tools for this big-data regime. DMD is one such analysis
tool that can aid in the analysis and understanding of infectious
disease spread in parallel with other existing approaches.

Supplementary data
Supplementary data are available at International Health Online
(http://inthealth.oxfordjournals.org/).
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