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Background: Phylogeography improves our understanding of spatial epidemiology. However, application to prac-
tical problems requires choices among computational tools to balance statistical rigor, computational complex-
ity, sensitivity to sampling strategy and interpretability.

Methods: We introduce a fast, heuristic algorithm to reconstruct partially-observed transmission networks
(POTN) that combines features of phylogenetic and transmission tree approaches. We compare the transmission
network generated by POTN with existing algorithms (BEAST and SeqTrack), and discuss the benefits and chal-
lenges of phylogeographic analysis on examples of epidemic and endemic diseases: Ebola virus, H1N1 pandemic
influenza and polio.

Results: For the 2014 Sierra Leone Ebola virus outbreak and the 2009 H1N1 outbreak, all three methods provide
similarly plausible transmission histories but differ in detail. For polio in northern Nigeria, we discuss performance
trade-offs between the POTN and discrete phylogeography in BEASTand conclude that spatial history reconstruc-
tion is limited by under-sampling.

Conclusions: POTN is complementary to available tools on densely-sampled data, fails gracefully on under-
sampled data and is scalable to accommodate larger datasets. We provide further evidence for the utility of
phylogeography for understanding transmission networks of rapidly evolving epidemics. We propose simple
heuristic criteria to identify how sampling rates and disease dynamics interact to determine fundamental
limitations of phylogeographic inference.
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Introduction
Inadequate understanding of the spatial epidemiology of infec-
tious diseases limits our ability to assess risk, allocate resources,
respond to and suppress epidemics and reduce global disease
burden.1 Spatial epidemiology is difficult because sampling rates
are often low and sampling strategies in the field are rarely
clearly defined. Furthermore, the spatial autocorrelation induced
by the disease transmission dynamics (that we are interested in)
can be difficult to control for in statisticalmodels that only consider
case dates and locations.2 One route to improved spatial epidemi-
ology is molecular epidemiology and phylogeographic inference.3

For rapidly evolving pathogens, genetic correlations among patho-
gens record imprints of the chains of transmission, and phylogeo-
graphyoffers tools to systematically use the information contained

in genetic sequences to infer underlying spatial patterns of disease
transmission.4,5

With steady declines in cost and the future promise of field-
deployed sequencing technology, an open question is how best
to apply current and future phylogeography tools to datasets that
vary in size, sampling strategy and underlying molecular dynam-
ics when one needs to balance statistical rigor, computational
cost and interpretability. A brief survey of existing tools reveals
three families of phylogeographic analysis. Cladistic approaches
correlate genetic distances with spatial distribution to identify evi-
dence of spatial structure, but they do not offer an explicit model
of transmission history and so are difficult to interpret in an epi-
demiological context.6 Bayesian phylogenetic models,6 including
discrete phylogeography in BEAST,7,8 and structured coalescent
models,9 provide transmission history reconstructions, inferred
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transmission models and statistical rigor. However, with typical
desktop computing power, they are computationally prohibitive
for datasets withmore than a few hundred sequences.10 Transmis-
sion tree algorithms infer ancestry solely amongobserved cases11–14

and so require minimal inference of unobserved spatial data to
reconstruct transmission history. However, transmission trees
are most appropriate for densely-sampled data in which many
ancestor-descendent pairs are present in the sample.11

To better understand when various phylogeographic analyses
a likely to be useful and as a first attempt to identify an alternate
path to compromise among complexity, rigor and interpretability,
we introduce a heuristic algorithm to reconstruct partially-
observed transmission networks (POTN) that retain features of
both transmission tree and phylogenetic models. Using likelihood
ratio tests based on sample dates, genetic distances and a pre-
specifiedmolecular clock, themethod identifies pairs of sequences
that are consistent with relationship by direct descent and
excludes pairs that are consistent with relationship by an unob-
served common ancestor. The set of all pairs consistent with
direct descent forms a transmission history network containing
only the connected components best supported by the data. To
our knowledge, an algorithm of this type has not been described
previously.

In theMethods section, we describe the POTN algorithmand its
properties. Next, we assess the accuracy of the POTN algorithm on
simulated data where true ancestry is known. Then we demon-
strate the POTN algorithm on a relevant problem for which phylo-
geography has enormous potential to add to our understanding
of the disease, the Ebola virus outbreak in Sierra Leone,15–17 and
compare with discrete phylogeography in BEAST8 and transmis-
sion tree reconstruction in SeqTrack.11 We then discuss phylogeo-
graphic data exploration using the POTN for the 2009 H1N1
outbreak.11,18–20 We conclude with an analysis of the vaccine-
derived polio outbreak in Nigeria21–23 that demonstrates funda-
mental limitations of phylogeographic inference. To summarize
our experiences, we propose a simple heuristic for when phylo-
geographic analysis is likely to be informative about the spatial
epidemiology of infectious diseases.

Materials and methods
Partially-observed transmission network (POTN)
For a pair of cases with sample dates t1 and t2 (t2 ≥ t1), we denote
the time to the most recent common ancestor (tMRCA) prior to t1

as Δt. In pairs for which the case at time t1 is a direct ancestor of
the case at t2, the tMRCA is Δt=0. Pairs that are related by
unobserved common ancestry have Δt ≥ 0. The genetic distance
between the pair is d12 (measured in nucleotides using any appro-
priate distance metric). We assume a Poisson model for mutation
with constant mutation rate μ (measured in nucleotides per unit
time). The Poisson likelihood for the tMRCA of a pair is

L(Δt|t1, t2, d12,m) = (m(t2 − t1 + 2Δt))d12
Γ(d12 + 1) exp(−m(t2 − t1 + 2Δt)),

(1)

where Γ(d12 + 1) is the gamma function continuation of the
factorial to allow for non-integer d12.

To identify pairs for which the genetic distance and time
between cases is consistent with relationship by direct descent
and to reject pairs that are better explained by relationship
through an unobserved common ancestor, we perform a likelihood
ratio test to compare the hypotheses of Δt=0 (null) and Δt ≥ 0:

H12 = L(Δt = 0|t1, t2,d12,m)
L(Δt = Δ̂t|t1, t2,d12,m)

, (2)

where Δ̂t is the maximum likelihood estimate of the tMRCA. The
p-value for each likelihood ratio is calculated from the χ2 distribu-
tion with one degree of freedom. We use the false discovery rate
(FDR) paradigm with FDR=0.05 to set the significance threshold
for rejecting the null hypothesis and thus exclude pairs from the
network.24 See Figure 1 for a graphical depiction of the POTN.

The result of this procedure is the basic POTN. The network is
‘partially-observed’ because cases with no direct ancestors in
the sample have unobserved ancestry and are excluded from
the network, and because we make no claim that the ancestors
are immediate and there may be many unobserved generations
along the ancestral lineages. The pairwise algorithm assumes
that genetic distances are independent. It is thus common to
identify redundant ancestry (grandparent-parent, parent-child,
grandparent-child) because the pairwise algorithm is unable to
detect when deeper relationships are better explained by an inter-
mediate ancestor. To remove this redundancy, we prune the
network to remove all significant links for which there is an inter-
mediate observed ancestor (remove grandparent-child; keep
grandparent-parent and parent-child). The pruning algorithm is
described in the Supplementary information. Multiple, conflicting
ancestries are preserved by this pruning step if they are present.

Figure 1. Description of the partially-observed transmission networks (POTN) algorithm. (A) Example sampled pair with candidate parent case at time t1
and candidate child at time t2. The time to the most recent common ancestor (tMRCA) is t1 −Δt, and so the cumulative time elapsed for genetic
evolution between the cases is t2 − t1 + 2Δt, as in Equation (1). (B) Example phylogenetic tree describing the genetic relationships among six cases
sampled at different times. For each pair of the blue cases, Δt � 0, while for each pair of the red cases and each pair consisting of one red and one
blue case, Δt is greater than zero. (C) The POTN corresponding to the phylogenetic tree in panel B. The POTN algorithm identifies ancestral links
between the blue cases where Δt � 0, while it leaves the red cases disconnected because there are no observed direct ancestors of the red cases.
For the blue cases, the dashed link indicates a redundant grandparent-child link that is removed by the triangle pruning algorithm.
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The researcher is also free to apply additional pruning steps to
support specific analyses. For example, to emphasize geographic
relationships in a densely sampled network, one can remove
links for which both end nodes are in the same location, leaving
only location-changing links. Further pruning into a transmission
tree is possible by keeping only the ancestral link to each case
that has the shortest time duration. This will force a single ances-
trywhen the data suggestmultiple conflicting ancestries between
observed cases, but it may be appropriate when the generation
time is shorter than the typical time between sampled cases.

The transmission history reconstruction by the POTN is subject
to sequence alignment and mutation rate uncertainty. To identify
robust links, one can use the bootstrapping procedure developed
for phylogenetic trees25,26 with a prior distribution for the muta-
tion rate. The procedure is as follows: run the POTN algorithm
repeatedly on bootstrap-resampled alignments with mutation
rates drawn from the prior. The percent of realizations in which
a link appears defines the robustness of the link with respect to
sequence and rate uncertainty.

As described previously, POTN identifies the ancestry links with
Δt � 0. The ancestry identified by the POTN is perhaps best
thought of in terms of the coalescent model.27 In the haploid
coalescent with effective population size Ne, the likelihood of the
pairwise effective population size is

L(Ne|Δt,m) = 1
Ne

exp −mΔt
Ne

( )
(3)

forΔt≥0.28 The pairwise effective population size is a measure of
the size of the breeding population responsible for the pair of
cases. When Ne � 0, the vanishing size of the breeding popula-
tion indicates that the earlier case is a direct ancestor of the
later case. The maximum likelihood estimate for Ne is N̂e=mΔt,
and so direct ancestry, Δt � 0, corresponds to the limit of
Ne � 0. In other words, the links that the POTN identifies with
Δt � 0 are lines of direct descent for which there is minimal
genetic diversity along their lineage, and observed cases that
are disconnected from the POTN indicate the existence of
genetic diversity that is not observed in the sampled cases. Note
that our definition of the effective population size is related
to the definition in BEAST v1.8.17 by the following relation:
Ne=θ/2m, where θ corresponds to the BEAST variable.27 In the
Supplementary information, we discuss how the ability to identify
direct ancestry changes with sampling rates through the variance
of the effective population size. Additionalmethodological details,
asymptotic properties of the POTN, code and data needed to
reproduce our results are also available in the Supplementary
information.

Results
Simulation study to assess reconstruction accuracy
To demonstrate the performance of the algorithm on data where
the true ancestral relationships are known, we tested the POTN
algorithm with grandparent-child triangle pruning against simu-
lated outbreak data generated by haploGen from the R package
adegenet v1.4–2.11 Briefly, haploGen is an individual-based simu-
lation of an outbreak. Each simulation starts froman infectionwith
a random haplotype. New infections are created from each

previous one in proportion to the previous individual’s reproduction
number. Mutations accumulate between transmissions at a Poisson
rate. For our simulations, genomes were 10 000 bases long, each
individual had a reproduction number randomly chosen between
2 and 4, the generation time was random with distribution 1 +
Pois(0.5) and the mutation rate was set at either 1e-4, 3e-4, or
10e-4 per unit time. On each haploGen sequence alignment, we
ran the POTN algorithm and pruned redundant grandparent-child
links as described in the supplement. The R script to run this ana-
lysis is available in the Supplemental data.

We examined POTN links that are exactly correct parent-child
links and links that are valid reconstructions of deeper ancestor-
child relationships but that miss intermediate parent nodes. For
the highest mutation rate, µ=10e-4 per unit time, the expected
number of mutations between generations is 15 and so we
expect high accuracy. On average, we found that 66% of the
exact true parent-child links are recovered by the POTN and
>99% of links in the POTN are valid ancestor-child links. Thus,
for high mutation rates, almost all links in the POTN indicate
true ancestry, although one-third of the most immediate ances-
tors are missed. For µ=3e-4 per unit time, when the expected
number of mutations between generations is 4.5, we again
find 66% of exact true parent-child links and 93% of all links
are valid ancestor-child links. For µ=1e-4 per unit time (1.5
expected mutations per generation), we find 53% of exact true
parent-child links and 70% of all links are valid ancestor-child
links. As expected, performance falls off when lower mutation
rates produce low genetic diversity such that multiple possible
ancestors have the same haplotype.

From the observation that only two-thirds of exact parent-child
links can be recovered even with high mutation rate data, we
observe that the POTN is a biased, conservative estimator of trans-
mission network. For data with sufficient genetic diversity, we can
expect that most POTN links are true, but that some true links will
be missed. The bias occurs because the false-discovery rate pro-
cedure for selecting links can reject true links if themaximum like-
lihood estimate of the tMRCA is sufficiently earlier than the date of
the parent case; this can occur when the observed genetic dis-
tance between true pairs is longer than the expected genetic dis-
tance given the time between samples in the pair.

The Ebola virus outbreak in Sierra Leone
We examined the phylogeography in the early stages of the Ebola
virus outbreak in Sierra Leone. Sequences are available for 78 of an
estimated 136 cases prior to 19 June 2014.15,29 The sequenced
cases occurred in 12 chiefdoms. Figure 2 shows summaries of
the genetic and location data, and the transmission history
reconstructions from the POTN, SeqTrack11 and the discrete
phylogeographic continuous-time Markov chain model in BEAST.8

All three networks tell the same primary story: the outbreak first
took hold in Sierra Leone in Kissi Teng, spread to Jawie and was
repeatedly exported from Jawie. All approaches also reveal
repeated multiple overlapping importation pathways. For example,
there are at least two independent exportations from Jawie to
Luawa and the two cases in Nongowa, detected only 1 day
apart, are due to two separate importations. The ability to disen-
tangle independent chains of transmission on a local scale shows
the promise of phylogeography applied to a densely-sampled out-
break with complex spatial dynamics.
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However, the reconstructed transmission histories disagree in
key respects. For example, SeqTrack and POTN suggest that the
case in Kpeje Bongre is on the transmission chain to Malema
while BEAST infers that it is a separate branch from transmission
in Jawie. The uncertainty arises because there are no cases on the
backbone of the clade to anchor the inference (Figure 2A). For the
case in Kissi Tongi near the start of the outbreak, BEAST and

SeqTrack root the case to Kissi Teng. However, the POTN leaves
the Kissi Teng case disconnected from the network because the
relatively deeper root in the phylogeny indicates that the
genetic diversity that sourced the case in Kissi Tongi was not
observed in the sample.

Much of the disagreement between the three methods we
observe arises because we are not accounting for uncertainty.

Figure 2. Three methods for phylogeographic reconstruction of the initial phase of the 2014 Ebola virus outbreak in Sierra Leone. (A) Maximum clade
credibility phylogenetic tree; cases (tips) labeled by color according to location, as shown on the map in panel B; inset: histogram of pairwise genetic
distances. The earliest cases are in Kissi Teng, Kailahun (red), and the majority of cases prior to 19 June 2014 were in Jawie, Kailahun (blue). (B)
Chiefdom colormap of Sierra Leone, location of cases analysed in panel A are depicted in corresponding colors on the map. (C) Partially-observed
transmission network: cases labeled by color according to location, gray lines indicate POTN links between case pairs, thick gray lines indicate the
parsimonious transmission tree representing a single consistent ancestry that results from pruning to keep only the ancestral link to each case with
the shortest duration. (D) SeqTrack minimum spanning tree: cases labeled by color according to location, gray lines indicate POTN links between case
pairs. (E) BEAST discrete phylogeography, maximum clade credibility tree, projected as a transmission network: cases labeled by color according to
location with internal nodes colored by highest posterior probability location, gray lines indicate POTN links between case pairs.
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For example, the transmission history cannot be fully resolved
with low genetic diversity data in which samples taken at different
times have the same haplotype. In the POTN, this uncertainty is
represented as multiple conflicting ancestries (Figure 2C) where
a child node has multiple plausible parents. Any algorithm that
reduces the network to a single consistent transmission tree
hides this uncertainty. BEAST also naturally characterizes uncer-
tainty through its ability to sample the posterior of phylogenetic
tree topology space, but the difficulty of marginalizing over tree
topology uncertainty makes visualization and interpretation chal-
lenging30 and so it is common to only visualize a single tree. Easy
visualization of uncertainty is a feature of the POTN since multiple
conflicting ancestries can be laid out simultaneously.

The 2009 H1N1 influenza pandemic
In Figure 3, we show the POTN for the first few months of the 2009
H1N1 outbreak using case information from Jombart et al.11 Con-
sistent with prior work,11,18–20 the outbreak started in Mexico,
went global first from the United States and then from all over the
Americas, Europe and Asia. An important feature of the network
is that many transmission pathways are traversed multiple times.
In this situation, models that try to find a minimally-connected
network to explain the data are likely to be misleading. For
example, POTN has many short links that directly connect China
with North America, contrary to earlier results using BEAST with
Bayesian stochastic search variable selection that explain the
linkage between North America and China through indirect trans-
mission via Europe.31 In Figure 4, we show the three largest con-
nected components of the POTN within the United States. The
three components likely result from three separate importations
fromMexico. The components display incomplete geographic segre-
gation (American Southwest, east of the Mississippi) and unsurpris-
ingly reveal a highly-connected USA. Within each component, the
multiple conflicting lines of ancestry indicate low genetic diversity
(Figure 4D) and an inability of the data to resolve the transmission
history in finer detail. In Figure 4C, there are clear signatures of
exportation events. For example, the Texas case on 22 May is
closely related to New York City cases at the end of May and is not
a descendent of the earlier Texas case in April.

The connected components also show examples of issues that
arise from non-representative sampling. The number of samples
available grows rapidly in late April upon growing awareness of
the burgeoning pandemic.32 While the attribution of New York
City (and the eastern region of the USA and Canada) as the
driving force of the global epidemic is plausible because of its
central role in the global transportation network, within the
United States we cannot rule out that the algorithm is attributing
transmission to New York and not the surrounding states simply
because there is more data for New York. For example, see the
Maryland cases in Figure 4C. The rate of available sequences
nationwide drops at the end of April, and the lack of related cases
over a 7 week interval provides essentially no information about
transmission history. A benefit of the POTN for data exploration is
that this consequence of incomplete data is easy to see.

Vaccine-derived polio in northern Nigeria
We are interested in making use of viral sequence data to better
understand the subnational transmission pattern of polio in

Figure 3. Progression through time of the partially-observed transmission
network for the 2009 H1N1 influenza outbreak. Each panel shows the links
between cases during the time interval indicated above; color gradient
from blue to green goes from early to late. As described
previously,11,18,19 the outbreak started in Mexico and went global first
from the USA and then from Europe. Many exportation paths between
locations are traversed multiple times over the 4 month period spanned
by this dataset. The median link duration is 2 days.
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Nigeria. Due to operational challenges, vaccine cost, supply con-
straints and complex sociopolitical dynamics, improved risk
assessment and the efficient targeting of limited resources are
critical if poliovirus is to be eradicated in the remaining reser-
voirs.22,23 Here, we focus on the outbreak of type 2 vaccine-
derived polio in Nigeria, known as Nigeria 2005–8.21 The outbreak
2005–8 was first detected in 2006, established itself as endemic
by 2007, produced 358 poliomyelitis cases through to the end
of 2011 and persists today.21

Figure 5 shows the results of our analysis. The POTN is unable to
provide a useful reconstruction of the transmission history. Any
direct ancestor was inferred for only 26% (93 of 358) cases, the
majority of links are years in length and the geographic specificity

is poor (many cases have ancestral links in multiple states at
similar times). Entire states are disconnected, indicating that no
plausible ancestry was observed at any time. We consider this a
graceful failure in that the analysis takes minutes to run and it is
obvious that it is not likely to be informative.

We also analyzed the outbreak using the discrete phylogeo-
graphic model with Bayesian stochastic search variable selection
implemented in BEAST.8 BEAST provides a fully-connected
network by construction, but we can see that it suffers many of
the same limitations as the POTN. The transition rate inferences
are supported on the multi-year intervals between clades
(Figure 5I). Within periods of high incidence, when spatial epi-
demiology could have policy impact, the model predicts roughly
equal probabilities for all allowed transitions. Within periods of
low incidence, where it would be useful to better understand
the reservoirs that allow the disease to persist, there is insufficient
data to anchor estimates of the reservoir locations. The low sam-
pling rate of roughly 1 per 2000 infections33 is too sparse to
resolve the interlaced patterns of transmission at the inter-state
level. The only strong conclusion one can draw is that the central
northern states (Kano, Katsina and Jigawa) are critical for sustain-
ing and exporting polio, but that is unambiguous from the case
count data alone.

Comparison of the POTN performance across diseases
As discussed in the methods section, the precision by which the
POTN can identify ancestry can be quantified in terms of the pair-
wise effective population size. For both Ebola virus and H1N1, the
median pairwise effective population size, N̂e=mΔt, for pairs in the
POTN is N̂e=0. The effective population size describing the entire
outbreak for Ebola virus grows from roughly 30 to 60 over the
course of the data (BEAST exponential coalescent)7,27 and for
H1N1, the epidemic-wide effective population size of order 107

(Ne=θ/2m from).31 For both outbreaks, the POTN connects over
80% of nodes into relationships between pairs with much less
genetic diversity than between randomly chosen pairs. In con-
trast, for polio the median pairwise effective population size is
N̂e=7.4 and the epidemic-wide population size is of order 103

(BEAST Bayesian skyline).34 For polio, only 38% (155 of 358) of
nodes are connected and the ancestry is less well resolved as
measured by the pairwise N̂e relative to the total effective popu-
lation size. Thus, the ancestry in the POTN is less precise and
more incomplete for polio than for Ebola virus and influenza.

Discussion
For Ebola virus in Sierra Leone, our analysis is consistent with the
observations from contact tracing in Guinea:17 the epidemic con-
sists of a highly-localized series of outbreaks characterized by
within-chiefdom transmission, linked closely in time by traveling
individuals, as evinced by the vertical links in the POTN between
cases in different locations with zero genetic distance and zero
difference in time to onset. This one example centered in Jawie
also suggests that the rate of long-distance exportation from a
focal outbreak cluster increases with the size of the cluster. We
expect that the multi-national Ebola virus outbreak is built from
many local chains like this early one for which data is available.
Insofar as it is possible, additional sequencing of Ebola cases
needs to be completed and made publically available with

Figure 4. Phylogeographic data exploration with the partially-observed
transmission network. The three largest connected components within
the USA, rooted in: (A) California (purple), (B) Texas (red, all panels) and
(C) New York City (gray, all panels) and New York state (black), with
non-root locations (blue, all panels). (D) Pairwise genetic distance
histogram for the entire global dataset.
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Figure 5. Phylogeography of polio in Nigeria. (A) Maximum clade credibility tree with poliomyelitis cases (tips) colored by state, as shown on the map in
panel B. (B) State colormap. Cases most commonly occur in Kano (center, bright orange, labeled with ‘x’). (C) Genetic distance histogram. (D)
Partially-observed transmission network (POTN): cases labeled by color according to location, gray lines indicate POTN links between case pairs. (E)
Link duration histogram. The POTN is not informative because links are long compared to the timescale over which the locations are changing in the
data and the majority of nodes are disconnected. (F) BEAST discrete phylogeography, maximum clade credibility tree: gray lines indicate POTN links
between case pairs; cases labeled by color according to location with internal nodes colored by highest posterior probability location (internal
branches have been collapsed to span nodes with posterior location probability >0.8). (G) Link duration histogram. All branches in tree (red);
collapsed links between nodes with posterior location probability >0.8 (blue). Shortest mean occupancy times estimated for the continuous-time
Markov chain model are from central states Kano and Katsina. (H) Highlight of the clade that dominates after 2010, traced back to the only
confident root in Kano in 2007; internal nodes colored by posterior location probability (>0.8 shown). BEAST produces a fully-connected network, but
many of the links that extend after 2009 indicate years with no confident ancestral location reconstruction. (I) Mean transition rate matrix. The
continuous-time Markov chain model timescales are long compared to the branching and tip location changing timescales, which limits the ability
to infer ancestral locations.
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corresponding case timing and location data, so that epidemiolo-
gists and public health officials can learn patterns of Ebola virus
transmission to help anticipate how to terminate this epidemic
and to limit the extent of the next epidemic. For pandemic influ-
enza, we reiterate that phylogeography is informative about
transmission patterns between cities. However, we note that
transmission history reconstruction is sensitive to unrepresenta-
tive sampling. For polio in northern Nigeria, our epidemiological
question about transmission between states on timescales of
months was poorly matched to the data and no algorithm is
likely to provide a meaningful transmission history on those
scales.

Ping-back behavior in which transmission routes are traversed
multiple times in both directions is a common occurrence in
all three diseases studied here. This can be an important mechan-
ism for sustaining endemic disease,35 and its ubiquity indicates
the value of intervening along links that have already been
traversed once early in an outbreak to suppress further disease
transmission.

Ancestry reconstruction and phylogeography are most likely to
be useful when genetic evolution is faster than the spatial process
and when the typical time between sampled cases is short com-
pared to the correlation time of the spatial process. Figure 6 pro-
vides a graphical description of this intuition. For estimating the
genetic and sampling timescales, we propose two simple heuris-
tics. A researcher faced with a new dataset can expect the genet-
ics to be able to resolve ancestry with little ambiguity on
timescales longer than the mean time for a substitution to
occur, t ≥ m−1. To estimate if the sampling rate is sufficient to
resolve the spatial history, consider the disease dynamics along
an ancestral lineage in the POTN. During an exponential
epidemic, new infections accumulate along a lineage like
R

R− 1
exp

R− 1
τ

t
( )

− 1
( )

, where R is the effective reproductive

number and τ is the generation time. Thus, the typical time inter-
val between cases on a lineage sampled at rate ρ per infection is

approximately t � τ
log(1/r)
R− 1

. For an endemic disease (R � 1), the
typical time is inverse in the sampling rate, t � τ/r. When the
sampling time is shorter than the spatial correlation time, such
that typical ancestor-descendent pairs are in the same or
similar locations, then properties of the spatial dynamics can be
inferred.

For Ebola virus in Sierra Leone, the mutation timescale with
whole-genome sequencing is roughly 10 days. The expected sam-
pling timescale from the formula with sampling rate 78/136 and
growth rate based on the sequenced cases of (10 days)−1 is t � 6
days. The observed mean link duration in the POTN is 4 days. For
the 2009 H1N1 influenza pandemic, the genetic timescale using
the neuraminidase gene only is roughly 50 days and the observed
link duration in the POTN is 1 week. For polio, the equivalent is 40
days, and 2.5 years. These numbers capture our experiences. For
the available Ebola virus and H1N1 sequences, sampling is
dense enough to provide useful spatial information on the time-
scale of weeks and the uncertainty in the history reconstruction
is dominated by the lack of genetic diversity. For polio, the low
sampling rate and more closely linear transmission dynamics
leave little information about spatial mixing on policy-relevant
timescales.

Furthermore, in epicenters of outbreaks experiencingexponential
growth, the time interval between phylogenetically-linked cases is
only logarithmically-sensitive to the sampling rate and so phylogeo-
graphic analysis is likely to be somewhat insensitive to a sampling
strategy that is not stable or well-defined. In contrast, for an
endemic disease, the time interval between phylogenetically-
linked cases is linear in the sampling rate and therefore low sam-
pling rates and unmeasured changes to the sampling strategy
can increase susceptibility to sampling bias.

These examples demonstrate that the partially-observed
transmission network has similar ability to generate plausible
hypotheses for transmission history as the leading statistically
rigorous approach implemented in BEAST and as the easily-
interpreted heuristic transmission tree finding algorithm, SeqTrack.

We see two primary use cases for use of an algorithm like the
POTN. The first is data exploration. The POTN is fast to compute in
comparison to more rigorous models, it facilitates visualizing
uncertainty in transmission history reconstruction and it fails
gracefully when the data are uninformative. The second use is for
disease surveillance in a future where field-deployable sequencing
technology leads to massive expansion of near-real-time sequen-
cing capability. By virtue of being a pairwise algorithm, the POTN
can be easily extended to allow for the assimilation of new data
into an existing network without having the reprocess all data.

Conclusions
With data adequate to address the epidemiological questions of
interest, multiple routes to phylogeography are likely to be inform-
ative and available methods support and complement each other.
As sequencing continues to become more ubiquitous, phylogeo-
graphy will become an increasingly valuable tool, but research
into how to match field sampling strategies, analysis methods
and epidemiological needs to obtain reliable and useful results
requires continued attention.

Figure 6. Phylogeographic inference is most informative when genetic
evolution is faster and when the spatial observations are more densely
sampled in time than the correlation time of the spatial process.
Observed case/inferred ancestor are depicted as solid/open circles; circle
size corresponds to the precision of genetic ancestor inference; location
is indicated by color; unobserved spatial pathway is indicated by the
gray line. (A) Cartoon of a well-resolved situation. The spatial process is
densely sampled in time and the genetics provide precise estimation of
ancestry. (B) Cartoon of an under-sampled situation. Much of the spatial
process is unobserved and genetic distances are long. The genetics
provide less precise estimates for ancestry and there is little information
to infer spatial history.
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Supplementary data
Supplementary data are available at International Health Online
(http://inhealth.oxfordjournals.org/).
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