Advance Access Publication Date: 11 November 2014

Bioinformatics, 31(6), 2015, 975-977
doi: 10.1093/bioinformatics/btu740

Applications Note

Systems biology

MUSCLE: automated multi-objective
evolutionary optimization of targeted

LC-MS/MS analysis

James Bradbury', Grégory Genta-Jouve?, J. William Allwood?,
Warwick B. Dunn?, Royston Goodacre3*, Joshua D. Knowles®,

Shan He'* and Mark R. Viant®*

'School of Computer Science and 2Schoal of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, UK, *Manchester Institute of Biotechnology, *School of Chemistry and 5School of Computer Science, The

University of Manchester, Manchester M13 9JD, UK

*To whom correspondence should be addressed.
Associate Editor: Janet Kelso

Received on June 4, 2014; revised on October 20, 2014; accepted on November 5, 2014

Abstract

Summary: Developing liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses of
(bio)chemicals is both time consuming and challenging, largely because of the large number of LC
and MS instrument parameters that need to be optimized. This bottleneck significantly impedes
our ability to establish new (bio)analytical methods in fields such as pharmacology, metabolomics
and pesticide research. We report the development of a multi-platform, user-friendly software tool
MUSCLE (multi-platform unbiased optimization of spectrometry via closed-loop experimentation)
for the robust and fully automated multi-objective optimization of targeted LC-MS/MS analysis.
MUSCLE shortened the analysis times and increased the analytical sensitivities of targeted metab-
olite analysis, which was demonstrated on two different manufacturer’'s LC-MS/MS instruments.
Availability and implementation: Available at http://www.muscleproject.org.

Contact: info@muscleproject.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Liquid chromatography mass spectrometry (LC-MS) is widely used
in analytical laboratories for measuring a range of (bio)chemicals
and as the principal technology for metabolomics and proteomics.
Developing new LC-MS methods and transferring existing methods
between instruments and laboratories are time consuming and chal-
lenging, mostly because of the large number of LC and MS param-
eters that require optimization. Varying all these parameters
systematically to optimize the analysis of selected chemicals is gener-
ally regarded as impossible because of the large search space.
Previously, a fully automated closed-loop strategy was reported
that successfully optimized gas chromatography (GC)-MS and
LC-MS methods for non-targeted metabolite analyses, resulting in
increased analytical sensitivity (O’Hagan et al., 2005, 2007; Zelena
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et al., 2009). Although highlighting the value of closed-loop opti-
mization in mass spectrometry, each of these implementations was
for a specific manufacturer’s analytical platform. Extending this to
further instruments would have required extensive reprogramming,
therefore significantly limiting the deployability of this approach.
Here, we present MUSCLE (multi-platform unbiased optimiza-
tion of spectrometry via closed-loop experimentation), a software
tool for robust and fully automated optimization of targeted
LC-MS/MS analyses. MUSCLE is instrument-manufacturer inde-
pendent and requires no knowledge of computer programming to
operate. Using a process called visual scripting, users create a set of
configuration scripts, which instruct MUSCLE how to operate an
LC-MS/MS. These scripts can be imported and exported from
MUSCLE to facilitate sharing and re-use across laboratories.
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We demonstrate MUSCLE by optimizing the analyses of six steroids
on two different manufacturer’s LC-MS/MS instruments.

2 Methods and implementation

MUSCLE is a stand-alone desktop application and has been tested
on Windows XP, 7 and 8; see system diagram in Supplementary
Figure S1. User-defined visual scripts imitate the keyboard and
mouse commands that an analyst would use to manually change
parameters and launch an LC-MS/MS analysis, enabling MUSCLE
to control multiple LC and MS parameters on any instrument
(Section 2.1). An experiment configuration contains all the informa-
tion MUSCLE requires to run an automated optimization, including
the user-defined LC and MS parameters to optimize and the
(bio)chemicals to be analysed (Section 2.2). A multi-objective gen-
etic algorithm (GA) optimizes the values of the LC and MS param-
eters, based upon the fitness of user-defined objective functions that
measure, e.g. analytical sensitivity and analysis time (Section 2.3).
On completion, MUSCLE presents a set of best solutions that the
analyst can inspect and then select their preferred solution, a set of
LC/MS parameters achieving both fast and sensitive analysis.

2.1 Visual scripting

Visual scripting enables direct visual references to be made to ob-
jects displayed on the screen, e.g. a ‘File’ menu item and allows
MUSCLE to mimic the keyboard and mouse actions that a user
would make. Here we use the Sikuli Java library (Yeh ez al., 2009),
providing a powerful and flexible API to allow users to create visual
scripts that can: click/double click on selected objects on the screen,
enter text into text fields and press selected keyboard keys, e.g.
Enter. These visual scripts can be saved and later reused or modified
for reuse on different analytical instruments and can be shared be-
tween laboratories using an import and export function.

2.2 Experiment configuration

Once visual scripts are set up to control a particular instrument, an
experiment configuration can be created, which contains all the in-
formation MUSCLE requires for an automated optimization study.
This includes: (i) details of the target list of (bio)chemicals to be ana-
lysed, including m/z values of the parent and fragment ions (e.g.
Supplementary Fig. S2 and Table S1), (ii) settings for the GA includ-
ing the user-defined objective functions (see Section 2.3 and
Supplementary Table S2) and (iii) user-defined list of LC and MS
parameters to be optimized, where each parameter has an associated
visual script and minimum, maximum and step size values (e.g.
Supplementary Table S3). Further details of the experiment config-
uration are provided in Supplementary Material.

2.3 Closed-loop evolutionary optimization

Closed-loop evolutionary optimization is a probabilistic search
heuristic, whereby potential solutions are evaluated by conducting
physical experiments (Knowles, 2009), which in the case of
MUSCLE corresponds to LC-MS/MS analyses. Each solution repre-
sents a set of control parameters for the LC-MS instrument and is
generated using a GA. Typically, GAs evaluate tens of thousands of
solutions in silico during an optimization process. Because of the
time constraints on evaluating each solution in an LC-MS/MS study,
closed-loop optimization requires the GA to perform well when lim-
ited to just a few tens or hundreds of evaluations. To evaluate each
solution, a fitness value is calculated for each of the objectives,
where each objective measures the quality of the LC-MS/MS spectra

obtained using the selected instrument settings. For targeted LC-
MS/MS analysis, the user-selected objectives include (i) minimizing
the analysis time (measured as the retention time of the last eluting
target analyte, not the total analysis time); (ii) maximizing the num-
ber of analytes detected from the target list and (iii) maximizing the
total peak area of these analytes. Fitness values are calculated based
on the results of a custom peak detection algorithm (see Supplemen-
tary Material), which processes mzML files (Supplementary Fig.
S1). This enables MUSCLE to analyse results from any LC-MS/MS
instrument following conversion of the vendor specific data format
to mzML. Because the three objectives are in conflict, a multi-object-
ive GA must be used, which can efficiently find a set of Pareto opti-
mal solutions. Typically, a large number of optimization
experiments are required to achieve a highly optimized search
method, which due to cost implications of conducting LC-MS/MS
analyses was not feasible. We therefore opted to use the PESA-II
multi-objective GA (Corne et al., 2001) as it is widely used, and we
are familiar with configuring this algorithm for the optimization of
mass spectrometry analyses. The Java library implementation of the
algorithm, jMetal (Durillo ez al., 2010), was used in this case. The
values of each LC and MS parameter in the first # runs (where 7 is
user defined) are chosen randomly. For each subsequent run, the GA
decides the LC and MS parameters based upon the evaluation of
previous LC-MS/MS analyses, favouring parameters that produced
high fitness values. The GA maintains a set of the best solutions in
an archive set and from these solutions decides on the next set of
parameters by applying selection, crossover and mutation operators.
If suboptimal parameters are selected by the GA, a low-quality chro-
matogram will result with low fitness values, which will not be
added to the archive set.

The user selects the maximum number of runs to be performed,
which fixes the overall time and cost of the optimization. Because of
the limited number of runs, the optimization algorithm will never
realistically reach the global optima but instead has a high likeli-
hood of converging towards a local optima. The user is shown real-
time results of the optimization and if the convergence towards an
optimum set of parameters seems to be complete, they have the abil-
ity to pause or completely stop the optimization.

3 Results and discussion

We have demonstrated MUSCLE in two common laboratory scen-
arios, using two manufacturers’ LC-MS/MS instruments and associ-
ated software, to optimize the targeted analysis of a mixture of six
steroids (Supplementary Fig. S2). First, we used MUSCLE to im-
prove an LC-MS/MS analysis that had previously been optimized
manually by an experienced analytical chemist, using a Thermo
Scientific UHPLC Ultimate 3000 TSQ Vantage running under
Xcalibur software V2.0.7. Second, we transferred this manually
optimized method from the Thermo Scientific instrument to a
Waters ACQUITY UPLC Xevo TQ LC-MS/MS running under
MassLynx software V4.1 and used MUSCLE to re-optimize the LC
and MS parameters.

In the first study, the user selected minimum and maximum val-
ues and step sizes for each of 10 LC and MS parameters to be
optimized (Supplementary Table S3 and Fig. S3) along with settings
for the GA (Supplementary Table S2). Following an ~48-h opti-
mization, comprising 200 LC-MS/MS analyses, this fully automated
approach discovered an improved set of parameters that provided a
faster (34.5%) and more sensitive (10.0%) analysis than achieved
manually (Supplementary Table S4). Figure 1a shows the final
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Fig. 1. (a) Pareto front. The total peak area axis has been reversed for read-
ability, each cross represents a solution with the corresponding objective val-
ues. (b) Generation-by-generation lowest run time in the archive set
(considering the set of best solutions for which six out of six peaks are de-
tected). The first generation was 20 randomized runs and each subsequent
generation consisted of two runs

Pareto front after 200 analyses. Figure 1b shows how the LC ana-
lysis time decreases through the optimization process, considering
the set of best solutions for which six out of six steroids are detected,
plateauing around generation 20.

Following transfer of the manually optimized method from the
Thermo Scientific to Waters instrument, the minimum and max-
imum values and step sizes for nine LC and MS parameters were
selected (Supplementary Table S5) and then optimized during an
~48-h fully automated LC-MS/MS study. Again, MUSCLE was able
to discover an improved set of parameters that provided a faster
(18.5%) and much more sensitive (104%) analysis (Supplementary
Table S6). Supplementary Figure S4a shows the final Pareto front
after 200 analyses. Supplementary Figure S4b shows how the total
peak area increases through the optimization.

One limitation of MUSCLE is that an optimization is prone to
finding local rather than global optimum solutions. Also the conver-
gence of some optimizations may plateau before the maximum num-
ber of runs has been reached. To combat this, the user has the ability
to view the results of the optimization generation by generation, and
if they feel that MUSCLE is no longer improving the quality of the
analysis, the optimization can be paused or stopped completely. A
further limitation is the peak detection procedure, which is based on
a relatively simple algorithm that is designed to work for data
derived from a range of mass spectrometers, as described in Section

1.1.3 (Supplementary Material). However, MUSCLE has been pro-
grammed to enable the user to add alternative peak detection algo-
rithms from a drop-down box, should the current implementation
not work well for a particular dataset.

In conclusion, MUSCLE shortened the analysis times and
increased the analytical sensitivities of the targeted analysis of mul-
tiple steroids on two manufacturer’s LC-MS/MS instruments in a
fully automated manner and is anticipated to benefit several fields
including pharmacology, metabolomics and proteomics.
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