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Abstract

Motivation: The deconvolution of isoform expression from RNA-seq remains challenging because

of non-uniform read sampling and subtle differences among isoforms.

Results: We present a weighted-log-likelihood expectation maximization method on isoform quan-

tification (WemIQ). WemIQ integrates an effective bias removal with a weighted expectation maxi-

mization (EM) algorithm to distribute reads among isoforms efficiently. The weight represents the

oversampling or undersampling of sequence reads and is estimated through a generalized Poisson

model without any presumption on the bias sources and formats. WemIQ significantly improves

the quantification of isoform and gene expression as well as the derived exon inclusion rates.

It provides robust expression estimates across different laboratories and protocols, which is

valuable for the integrative analysis of RNA-seq. For the recent single-cell RNA-seq data, WemIQ

also provides the opportunity to distinguish bias heterogeneity from true biological heterogeneity

and uncovers smaller cell-to-cell expression variability.

Availability and implementation: WemIQ can be downloaded from http://www-rcf.usc.edu/

~liangche/software.html

Contact: liang.chen@usc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The rapid advances in high-throughput sequencing technologies pro-

vide us an opportunity to dissect transcriptomes with unprecedented

resolution (Cloonan et al., 2008; Marguerat and Bahler, 2010;

Mortazavi et al., 2008; Nagalakshmi et al., 2008; Wang et al.,

2009). Based on RNA-seq studies, alternative splicing has become

more and more appreciated as a key mechanism in higher eukary-

otes to expand transcriptomes by generating multiple isoforms from

a single gene (Brett et al., 2002; Graveley, 2001; Nilsen and

Graveley, 2010). For example, it has been reported that up to 95%

of human multi-exon genes undergo alternative splicing (Pan et al.,

2008). Therefore, an accurate quantification of transcript isoforms

is important to understand gene regulation through alternative

splicing.

However, the accurate estimation of transcript isoform expres-

sion from RNA-seq data remains a challenge. Many state-of-the-art

approaches initially assumed that short sequence reads in RNA-seq

were uniformly sampled from each transcript. However, the pos-

ition-level read count often demonstrates larger variation than ex-

pected under the uniform sampling assumption (Li et al., 2010;

Srivastava and Chen, 2010), and shows enormous inter-gene and

intra-gene bias heterogeneity. As a result, read counts need to be ad-

justed in a dynamic way for the abundance quantification. Add-on

functions have been introduced to handle the overdispersion in the

methods of isoform expression estimation (Li and Dewey, 2011;

Roberts et al., 2011). These methods usually assumed a constant

bias factor for each relative position of genes or simply corrected the

sequence-specific bias caused by random hexamer priming.

VC The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 878

Bioinformatics, 31(6), 2015, 878–885

doi: 10.1093/bioinformatics/btu757

Advance Access Publication Date: 17 November 2014

Original Paper

http://www-rcf.usc.edu/~liangche/software.html
http://www-rcf.usc.edu/~liangche/software.html
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu757/-/DC1
,
,
,
,
,
,
,
over-dispersion
,
http://www.oxfordjournals.org/


However, the overall bias is complicated and caused by multiple fac-

tors including many unknown ones, and the bias pattern can vary

significantly across different regions and different protocols (Hansen

et al., 2010; Li et al., 2010; Roberts et al., 2011). In light of these

facts, previously we proposed to use the generalized Poisson (GP)

model to estimate the bias in a data-adaptive way without any pre-

sumption (Srivastava and Chen, 2010). However, this has not yet

been integrated into the isoform expression deconvolution.

In this article, we propose a robust isoform-expression quantifi-

cation method: Weighted-log-likelihood expectation maximization

Isoform Quantification (WemIQ). Given gene annotation, WemIQ

can accurately quantify RNA products at both the gene and tran-

script isoform level from RNA-seq data. WemIQ uses the expect-

ation maximization (EM) strategy to distribute reads among

different isoforms and incorporates the fragment length information

of paired-end reads. More importantly, bias in RNA-seq is corrected

by assigning different weights to reads from different gene regions

when calculating the weighted log-likelihood. The weighted-log-

likelihood approach enables efficient isoform expression deconvolu-

tion with appropriate bias removal.

To demonstrate the effectiveness of our method, we applied

WemIQ to both simulated and real data sets. Simulation studies

show that, in both transcript-isoform-centric and exon-centric quan-

tification, our approach significantly outperforms the state-of-the-

art software, such as Cufflinks (Trapnell et al., 2010), RSEM (Li

and Dewey, 2011) and SpliceTrap (Wu et al., 2011a). Cufflinks and

RSEM quantify isoform expression, while SpliceTrap quantifies

exon inclusion rates in an exon-centric way. Unlike other simulation

studies which generated reads based on the uniform assumption (Li

and Dewey, 2011; Mortazavi et al., 2008) or based on a pipeline in

consideration of only a few bias factors (Griebel et al., 2012), our

simulations generated reads with various bias patterns to mimic the

real situation. Analyses on a variety of real RNA-seq data sets also

show that our bias correction is more effective; our expression quan-

tification is more accurate; and the expression estimates are more

robust across different laboratories and different protocols. For the

application to the recent single-cell RNA-seq data, interestingly, we

found that compared with population-cell RNA-seq, single-cell

RNA-seq usually exhibits a larger bias variation across different

genes or different regions of the same gene, and WemIQ meets the

challenges by separating bias heterogeneity from true biological het-

erogeneity by obtaining smaller but still significant cell-to-cell

variability.

2 Methods

2.1 Bias estimation in WemIQ and weight assignment

for each read
As in our previous paper (Srivastava and Chen, 2010), we separated

a gene into non-redundant virtual exons. An overlapped exon would

be split into multiple virtual exons (see Supplementary Fig. S1). Let

X represent the number of mapped reads starting from a certain pos-

ition within a virtual exon, and it follows a GP distribution with

PðX ¼ xÞ ¼
(

hðhþ xkÞx�1e�h�xk=x! x ¼ 0; 1;2;. . .

0 x > q if k < 0
; (1)

where k represents the average bias effort from all possible sources

that makes the read deviating from the uniform sampling, and h is

the underlying true expression. Besides, qðq�4Þ is the largest posi-

tive integer for which hþ qk > 0 when k < 0. The limit on q when k
< 0 is imposed to ensure that there are at least five classes with

non-zero probabilities and the truncation errors (i.e.X1
x¼0

PðX ¼ xÞ is slightly smaller than 1) do not affect practical ap-

plication (Consul, 1989). Let k̂ denote the MLE of k, x denote

the sample mean of the mapped read counts. Then the MLE of h
can be expressed as ĥ ¼ ð1� k̂Þx, which is a weighted sample mean

and it preserves the true expression after the bias removal.

Therefore, for each read, we assign a weight w ¼ 1� k̂ to adjust for

its bias.

2.2 Isoform and gene expression quantification in

WemIQ
For a considered gene with m transcript isoforms, we estimate the

fraction of reads coming from each isoform s ¼ fs1;. . .; si;. . .; smg by

the EM strategy. Specifically, the observed data are the read set R

¼ fr1;. . .; ri;. . .; rng mapped to this gene, where n is the total number

of reads. The hidden data are the reads’ origins of transcript iso-

forms: p ¼ fp1;. . .; pi;. . .; png. pi ¼ j if ri belongs to isoform j. Then

the probability that ri comes from isoform j with the starting pos-

ition bi and ending position ei can be represented as:

Pfri comes from isoform jg

¼ PfBi ¼ bi;Ei ¼ ei; pi ¼ jjsg

¼ PfBi ¼ bijpi ¼ j; sgPfEi ¼ ei jBi ¼ bi;pi ¼ j; sgPfpi ¼ j j s;g

¼ 1

L0 j
� Pfli;jg � sIðpi¼jÞ

j

(2)

where L
0
j is the effective length of transcript j, and it can be can be

approximated by L
0
j ¼ Lj � EðlÞ where Lj is the length of transcript

j and EðlÞ is the average fragment length (either inferred from reads

mapped to single-isoform genes or specified by users). li;j denotes the

fragment length of ri if the read comes from isoform j and is a

Gaussian distributed random variable with parameters inferred

from single-isoform genes or specified by users. Pðli;jÞ ¼ 0 if ri is in-

compatible with transcript j. Then the complete-data log likelihood

for a regular EM algorithm can be expressed as

logðPfR;p j sÞ ¼
Xn

i¼1

Xm
j¼1

Iðpi ¼ jÞlog
1

L0 j
� P li;j

� �
� sj

�
:

�
(3)

However, considering bias in RNA-seq, we assign each read ri a

different credibility weight wi ¼ 1� k̂ i. If ri spans multiple virtual

exons, the first virtual exon was used for the bias assignment. As we

mentioned, the bias level k̂ i is estimated from its corresponding vir-

tual exon in a data-adaptive way. Our proposed weighted complete-

data log likelihood is:

weighted logðPfR;p j sÞ

¼
Xn

i¼1

Xm
j¼1

wiIðpi ¼ jÞlog
1

L0 j
� P li;j

� �
� sj

��
(4)

The expectation and maximization steps are iterated to estimate

s. The expression level of isoform j is then estimated as:

hj ¼
Xn

i¼1

wiPfpi ¼ jjŝ j;bi; eig ¼
Xn

i¼1

wi

1
L0 j
� Pfli;jg � sjXm

j0¼1

1

L0 j0
� P li;j0

� �
� sj0

(5)

The gene expression is estimated as the sum of the isoform ex-

pression: h ¼
Xm

j¼1
hj. The relative expression of isoform j is

defined as dj ¼ hj=h, and the relative estimation error can be ex-

pressed as
Xm

j¼1
jdj � d^

jj=dj.

We aligned sequence reads to the reference genome using

TopHat (version 2.04) (Trapnell et al., 2009). The resultant SAM
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files were taken into WemIQ and Cufflinks (version 2.02) for iso-

form quantification. RSEM (version 1.2.4) and SpliceTrap (version

0.90.5) took raw reads as input and performed the alignment intern-

ally by calling Bowtie (Langmead et al., 2009). MMSEQ (version

1.0.8) (Turro et al., 2011) was also used in the performance com-

parison for simulations under real gene structures. For MMSEQ, the

isoform percentage was calculated as the ratio between the isoform

expression and the gene expression estimates. Their Gibbs

Sampling-based estimates were also considered in Section 4 of

Supplementary Text S1. STAR (version 2.3.0) was utilized for part

of the read mapping (details in Section 5 of Supplementary Text S1).

The implementation of WemIQ is efficient. Starting from SAM files,

it only takes WemIQ approximately 8 min and <2 Gb memory to

estimate gene and isoform expression based on a total of 5.6 million

read pairs.

2.3 Normalization of gene and isoform expressions
Let G, mg and L

0
g;j denote the total gene number, the isoform num-

ber for gene g and effective length of transcript j in gene g. Our

‘isoform-reads per kilo base per million bias-corrected reads’ is

defined as:

h
0
g;j ¼

hg;jXG

g¼1

Xmg

j¼1
hg;j �

L
0
g;j

103

� 106: (6)

Note that we omitted subscript g in the previous paragraph for ease

of notation.

3. Results

3.1 Bias heterogeneity needs to be properly handled in

isoform expression quantification
Bias may arise from every step of the RNA-seq experiment in a dy-

namic manner and hence is intrinsically heterogeneous across differ-

ent genes or even across different regions within the same gene. To

explore the extent of sequencing bias heterogeneity, we first studied

the overdispersion variation in several human tissues (Illumina

BodyMap2 transcriptome). As expected, for different exons of the

same transcript, the degree of overdispersion, represented by k̂ in

the GP model (Srivastava and Chen, 2010), shows a large range. For

example, the largest k̂ difference within each gene had a median of

0.20–0.32 in a variety of tissues (brain, muscle, liver and kidney). In

addition, different genes exhibited different bias. For instance, the

gene-level bias reflected by the median of exon-level k̂ for a gene

could be as high as 0.95 or as low as 0.21 in the kidney tissue. Such

intra-gene and inter-gene bias heterogeneity need to be considered in

the quantification of isoform expression (more discussions in

Section 1 of Supplementary Text S1 and Fig. S2).

Although bias in RNA-seq has received much attention, the cur-

rent bias removal methods are still far from optimal. To demon-

strate the inappropriateness of the current bias removal methods, we

studied the expression of single-isoform genes in these human tissues

(Illumina BodyMap2 transcriptome). If read fragments are sampled

uniformly along a single-isoform gene, the position-level read count

is expected to follow a Poisson distribution. The observed extra het-

erogeneity of read counts reflects RNA-seq bias. We performed the

Kolmogorov–Smirnov (KS) test to compare the observed read-count

distribution with the expected Poisson distribution. A KS statistic

near zero indicates good fitting, while a lager KS statistic indicates

more severe bias. The solid lines (no bias correction) in Figure 1

clearly show severe deviations from the uniform sampling in real

data as the majority of genes display a large KS statistic. We then

corrected the sequence-specific bias from random hexamer priming

and the bias from relative positions similarly to those in Hansen

et al. (2010) and Wu et al. (2011b) in order to understand whether

these biases could account for most, if not all, of the deviations (de-

tails in Section 2 of Supplementary Text S1). Surprisingly, the devi-

ation from the uniformity was even worse (the dashed-dot lines in

Fig. 1). Notably, Cufflinks has recently changed to use only the se-

quence-specific bias correction in light of the reduced accuracy

caused by positional bias correction for some RNA-seq datasets. We

therefore corrected the sequence-specific bias alone. However, the

performance was still worse than that without any correction, and

similar to the performance when both types of bias were removed

(the dotted lines in Fig. 1 and they overlapped the dashed-dot lines

with slight differences).

Different from the other bias removal approaches, WemIQ uses

the GP-based model which captures the bias directly from the read-

count distribution without specifying the bias source (Srivastava and

Chen, 2010). WemIQ assigns each read a credibility weight w ¼ 1

�k̂ according to its bias level k̂ estimated from GP (details given in

Section 2). As shown in Figure 1 (boxplots given in Supplementary

Fig. S3), our correction (dashed lines) effectively removes the bias in

all considered tissues. For example, in the muscle tissue, up to

90.0% of the single-isoform genes had a KS statistic <0.1 after the

bias correction by GP. This percentage decreased to 52.4% with the

traditional positional and sequence-specific bias corrections. Hence,

WemIQ removed the bias effectively. Additional data sets were used

to further evaluate the performance of the WemIQ bias correction.

Similar results were obtained (Supplementary Fig. S4). However, it

is worth pointing out that the bias correction was usually integrated

into the expression quantification process. It is difficult to study

the benefit from the bias correction alone for these expres-

sion-quantification methods. However, the large bias heterogeneity

both within and across genes justifies the immediate necessity of

deliberate handling of the read non-uniformity.

Fig. 1. Comparison of different methods for bias correction in RNA-seq. The

cumulative distribution functions of the KS statistics are plotted for the uncor-

rected data (‘_non’), data whose bias has been corrected by WemIQ

(‘_WemIQ’), data corrected for the sequence-specific bias (‘_seq’) and data

corrected for both the sequence-specific and the positional bias (‘_seqþpos’)
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3.2 Simulations show improved quantification of

isoform expression by WemIQ
Our WemIQ removes the bias heterogeneity in RNA-seq when

deconvoluting isoform-level expression through a weighted EM al-

gorithm, as shown in the flow chart in Supplementary Figure S1. We

performed a variety of simulations to demonstrate the improvement

over other methods (Supplementary Fig. S5). Instead of using the

generative model with the uniform-sampling assumption or only a

few known bias sources (Griebel et al., 2012), we simulated read

counts with overdispersion to mimic the dynamic nature of real

RNA-seq experiment. For a fair comparison, the negative binomial

instead of the GP distribution was used to generate the reads (details

in Section 3 of Supplementary Text S1), even though the latter has

been shown to better fit the read-count distribution in real RNA-seq

data (Srivastava and Chen, 2010) and additional simulations based

on GP also demonstrated the significant improvement from WemIQ

(results not shown).

We started from a simple gene model with two transcript iso-

forms: the longer one contains five 250-nucleotide (nt) exons; while

the shorter isoform lacks the second exon (Supplementary Fig. S5A).

A total of 27.8 million 50-base pair (bp) pair-end reads were gener-

ated for 1000 cases of this gene model. We also turned on the bias

correction for Cufflinks and RSEM. For the simulated datasets, the

bias correction in RSEM improved its performance while Cufflinks

reported similar results regardless of its bias removal. For the real

data analyses in Sections 3.6–3.7, the results without the bias correc-

tion were similar or slightly worse than those with the bias correc-

tion (details in Section 5 of Supplementary Text S1). Hereinafter, we

adopted their internal bias correction options in RSEM and

Cufflinks in comparison with WemIQ. As shown in Figure 2A,

WemIQ significantly outperforms Cufflinks and RSEM no matter

when the longer (‘L’) or the shorter (‘cas2’) isoform was the minor

isoform. For example, when the shorter isoform was the minor one,

the mean relative error of isoform percentages for WemIQ was 0.20

as compared with 0.38 for Cufflinks and 0.36 for RSEM

(Ps<2.2�10�16, paired Wilcoxon tests).

Despite the advances of sequencing technologies, some regions

or genes still have limited sequence reads, either because of low ex-

pression levels or lower mappability (e.g. repetitive regions).

Therefore, we simulated another group of relatively low-coverage

data with the average position-level read count of 1.1 for the two-

isoform gene model. WemIQ still significantly outperformed the

other methods (Fig. 2B, Ps<2.2�10�16, paired Wilcoxon tests).

We extended the two-isoform gene model to a three-isoform

model by adding a third isoform (‘cas4’) in which the fourth exon

was skipped (Supplementary Fig. S5B). Consistent with the two-

isoform cases, WemIQ greatly improved the estimation of relative

expression of isoforms (Fig. 2C). The mean relative errors were

around 0.38–0.58 for WemIQ while they were as high as 0.74–1.10

for the other two methods. When the long (‘L’) isoform was minor,

the isoform quantification became more challenging. This is possibly

due to the limited number of the read fragments that spanned the

two cassette exons and uniquely belonged to the longer isoform.

WemIQ still achieved the smallest estimation errors (Fig. 2C). Under

this scenario, the chance for Cufflinks and RSEM to falsely declare

the minor isoform among the three isoforms was as high as 0.18 and

0.27, while the chance was only 0.04 for WemIQ.

To compare the performance of the models on isoforms with

subtle differences, we considered another three-isoform model with

a cassette-exon event (‘cas2’) and an alternative-splice-site event

(‘ASS’). The alternative splice sites were separated by only 15 nt

(Supplementary Fig. S2C). WemIQ again demonstrated significant

improvements (Fig. 2D). For example, the mean relative estimation

error of WemIQ was 0.43 when the long (‘L’) isoform was the minor

one. It increased to 0.80 and 0.66 in Cufflinks and RSEM, respect-

ively (Ps<3.8�10�8, paired Wilcoxon tests).

3.3 WemIQ improves isoform expression quantification

despite incomplete gene annotations
Although RNA-seq provides an opportunity to dissect the complex-

ity of transcriptomes, it is still challenging to reconstruct transcript

isoforms from RNA-seq ab initio. In a recent survey of an array of

computational methods with multiple alignment protocols, the high-

est sensitivity is only about 21% and the highest precision is about

60% (Steijger et al., 2013). Our WemIQ requires the pre-assembled

gene annotations as input. To understand how incomplete annota-

tion would affect isoform quantification, we tested the performance

of our model and others through simulation studies where some

existing isoforms were missed by annotations.

There are many possibilities of how a missing isoform may affect

the quantification of remaining known isoforms. The scenario that

makes the deconvolution more challenging is when the missing iso-

form is very similar to one of the known isoforms. To simulate such

a case, we built on top of the two-isoform gene model, and assumed

a third isoform that was lowly expressed and missing in the annota-

tion. The missing isoform was similar to the longer (or the shorter)

transcript, but used an alternative splice site 100 nt away from the

original splice site at the fourth exon (Supplementary Fig. S5D and

S5E). As shown in Figure 3, WemIQ still significantly outperforms

RSEM and Cufflinks. For example, when the missing isoform was

truncated from the longer one (‘ML’), the mean relative error for the

two known isoforms was 0.56 for WemIQ, but increased to 0.74

Fig. 2. The boxplots of the relative estimation error for the isoform expression

percentage are presented for A: the two-isoform gene model with an exon-

skipping event; B: the low read coverage scenario for the two-isoform gene

model; C: the three-isoform gene model with two exon-skipping events;

D: the three-isoform gene model with an exon-skipping event and an alterna-

tive-splice-site event. The curves are drawn separately for scenarios when

each isoform (‘L’ for the longer isoform, ‘cas2’ for the one skipping the se-

cond exon, ‘cas4’ for the one skipping the fourth exon) was specified as the

minor one
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and 0.68 for Cufflinks and RSEM, respectively (Ps<5.1�10�7,

paired Wilcoxon tests).

3.4 WemIQ provides more accurate and robust

estimation of exon inclusion rates
Exon-centric studies require the accurate inference of the inclusion

rates of cassette exons. We compared the performance of WemIQ,

Cufflinks, RSEM and SpliceTrap on this task in the two-isoform

model (Fig. 4). Specifically, we considered six scenarios where the

simulated true inclusion rates of the cassette exon were 1/5, 1/4, 1/3,

2/3, 3/4 and 4/5, respectively (the red lines in Fig. 4). In all cases,

WemIQ outperformed Cufflinks, RSEM and SpliceTrap by provid-

ing more accurate estimation of inclusion rates with smaller vari-

ation (Fig. 4). When the exon was included at a relatively low level

(i.e. 1/5–1/3), WemIQ still accurately inferred the inclusion rate

while the performance of the other three methods was unsatisfac-

tory. In general, Cufflinks and RSEM tended to overestimate the in-

clusion rates and SpliceTrap underestimated the inclusion rates.

These deviations were further compounded by a large variation of

the estimates (Fig. 4). In studies of splicing regulation, a difference

of 0.1 in the inclusion rate is usually of high interest. We found that

18.9%, 21.6% and 40.9% of the exons analyzed by Cufflinks,

RSEM and SpliceTrap, respectively, exhibited an inclusion rate devi-

ating from the true rate by more than 0.1. Conversely, only 1.4% of

cassette exons in WemIQ had such an error.

3.5 WemIQ provides accurate isoform quantification for

simulations based on real gene structures
To test the performance of WemIQ under complicated gene struc-

tures, we also selected 78 genes with a variety of annotation struc-

tures from the Ensemble annotation. We then generated RNA-seq

reads that shared similar bias characteristics as real data (see details

in Section 4 of Supplementary Text S1). Besides, another quantifica-

tion method MMSEQ (Turro et al., 2011) was included in the com-

parison here. The errors of isoform percentage estimates are shown

in Supplementary Figure S6. WemIQ demonstrates lower estimation

errors than those for Cufflinks, RSEM and MMSEQ (Ps<0.0007,

Wilcoxon tests). Linear regression models were used to evaluate the

consistency between the true and estimated isoform percentages.

The R-squared value for WemIQ was as high as 0.9273, larger than

0.879 for cufflinks, 0.8748 for RSEM and 0.883 for MMSEQ. In

addition, WemIQ provides noticeably smaller number of isoform es-

timates with errors �0.1 (smaller number of red dots in Figure 5 as

compared with other methods), suggesting improved estimation ac-

curacy. Then we extended this simulation scheme to the genome-

wide scale by selecting the annotation structures of all the multi-iso-

form autosomal genes in the Ensemble annotation (version 75).

WemIQ still provided improved isoform-level estimation

(Supplementary Fig. S7).

3.6 Comparison of gene expression estimation with

qRT-PCR
In addition to the advantages in the estimation of relative isoform

expression and exon inclusion rates, WemIQ also provides more

accurate overall gene expression estimation (i.e. the sum of isoform

expressions). We used the TaqMan qRT-PCR results on �1000

Fig. 3. Comparison of isoform expression estimation in simulated data with

incomplete gene annotation. ‘ML’ or ‘MS’ represents that the missing isoform

is similar to the long or the short isoform but with an alternative splice site.

The missing isoform was simulated to be lowly expressed as the minor

isoform

Fig. 4. Comparison of exon inclusion rate estimation in the simulated data.

The underlying true inclusion rates are also shown by the red horizontal lines

Fig. 5. Isoform percentage estimation for simulations based on real gene an-

notation structures. WemIQ still demonstrates improved estimation accuracy

with better agreement with the true percentages and smaller number of iso-

forms with large errors (red dots, jestimate�true valuej �0.1)
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genes in the Microarray Quality Control Project as a benchmark for

gene expression measurements (Shi et al., 2006). Then we applied

WemIQ, Cufflinks and RSEM on a set of 50-bp paired-end reads

from the same human brain sample used in the qRT-PCR experi-

ments and compared the estimates from both platforms (Au et al.,

2010). The Pearson correlation of the log scale qRT-PCR and

WemIQ gene quantifications was 0.739, higher than those of

Cufflinks (0.681) and RSEM (0.700), indicating an improved overall

gene expression estimation. The scatter plots of the RNA-seq quan-

tification by different methods versus the qRT-PCR measurements

are shown in Supplementary Figure S8. In addition, we investigated

the gene-level estimation when its transcripts are heavily overlapped

through simulations (Section 6 of Supplementary Text S1). WemIQ

still performs better than other considered methods (Supplementary

Fig. S11).

3.7 Robustness of expression estimates across

laboratories and protocols
It is well known that even in the same tissue, biases in RNA-seq data

usually vary significantly across different laboratories or protocols

(Hansen et al., 2010; Li et al., 2010; Roberts et al., 2011).

Therefore, a robust mRNA quantification method providing consist-

ent estimation is valuable, particularly for the comparison or inte-

grative analysis of RNA-seq data across laboratories. Here, we

tested WemIQ, Cufflinks and RSEM on four RNA-seq datasets

from two laboratories (‘Caltech’ and ‘Cshl’) with different proto-

cols. Each laboratory provided two RNA-seq technical replicates for

the GM12878 cells.

We observed a small but significant difference in the k̂ (i.e. the

bias estimator) distribution in the four data sets, demonstrating dif-

ferent bias levels across laboratories. For example, the median k̂ for

the ‘Caltech’ data (without preserving the strand information) were

only 0.175 and 0.230, but they increased to 0.270 and 0.256 for the

‘Cshl’ data (preserving the strand information) (Ps<2.2�10�16,

paired Wilcoxon tests). To evaluate the estimation consistency

across laboratories, we calculated the expression fold change be-

tween the two laboratories. The median gene expression fold change

(i.e. the ratio of the larger value to the smaller value) was 1.74 for

WemIQ, consistently <1.86 for Cufflinks and 2.05 for RSEM

(P¼5.8�10�11 for Cufflinks, and P<2.2�10�16 for RSEM;

paired Wilcoxon tests). However, ideally the median fold change

should be around one to enable the direct cross-laboratory analysis.

We further focused on the 628 highly expressed genes (details in

Section 5 of Supplementary Text S1) because the estimation power

for them is usually higher. The median fold change from WemIQ

reduced to 1.47, still remarkably less than those from Cufflinks and

RSEM (1.68 and 1.80, Ps<2.2�10�16; paired Wilcoxon tests). In

addition, we found that WemIQ consistently provided less number

of genes with large expression fold changes (Fig. 6A). Specifically,

only 20.5% of the highly expressed genes showed more than 2-fold

expression changes, compared with 35.0% for Cufflinks and 42.0%

for RSEM (scatter plots in Supplementary Fig. S9).

Similarly, WemIQ provided more consistent expression estimates

at the isoform level. The median fold change of expressed isoforms

between the two laboratories was 1.83 for WemIQ, significantly less

than those for Cufflinks and RSEM (1.92 and 2.09; P¼1.4�10�10

for Cufflinks, and P<2.2�10�16 for RSEM; paired Wilcoxon

tests). We also selected 1938 highly expressed isoforms (details in

Section 5 of Supplementary Text S1), the median fold change in

WemIQ was only 1.36, but increased to 1.50 in Cufflinks and 1.66

in RSEM (Ps<2.2�10�16, paired Wilcoxon tests). Furthermore,

12.7% of the highly expressed isoforms showed a larger than 2-fold

expression change in WemIQ, compared with 23.8% and 32.9% in

Cufflinks and RSEM, respectively (Fig. 6B, scatter plots in

Supplementary Fig. S10). All these results suggest the improved

robustness of isoform level estimation across laboratories.

3.8 WemIQ accounts for the bias heterogeneity in

single-cell RNA-seq data
There is a rapidly emerging need to dissect the transcriptome from a

tiny quantity of RNA (e.g. RNA from a single cell) (Adiconis et al.,

2013; Shalek et al., 2013). Starting from very limited amount of

genetic material, many more rounds of amplification are necessary

during the library construction steps, possibly resulting in different

bias patterns and additional computational challenges (Adiconis

et al., 2013; Griebel et al., 2012). Here, we applied our method on

21 RNA-seq samples, including 18 single-cell and 3 population-cell

RNA-seq data sets for the mouse bone–marrow-derived dendritic

cells (Shalek et al., 2013).

The degree of bias is more variable in single-cell RNA-seq than

population-cell RNA-seq. Compared with population-cell RNA-seq

(‘P1–P3’), single-cell RNA-seq (‘C1–C18’) demonstrated larger vari-

ation among exon-level bias within a gene (Fig. 7A, Ps<4.1�
10�16, Wilcoxon tests). As shown in the barplot of Figure 7B, the

gene-level bias in a single-cell RNA-seq also varies a lot across dif-

ferent genes, demonstrating more severe bias heterogeneity across

genes than that of population-cell RNA-seq (Ps<2.6�10�11,

Wilcoxon tests). Besides, we calculated the pairwise gene-level k̂ cor-

relation between the samples and provided the heatmap in

Figure 7B. We found that the largest Pearson correlation coefficients

were among the population-cell RNA-seq data sets (0.559–0.610),

and the correlation between single-cell RNA-seq data sets (or be-

tween single-cell and population-cell RNA-seq) was much lower

(0.279–0.583). The above results suggest that bias from single-cell

RNA-seq varies more across genes or different regions of a specific

gene than population-cell RNA-seq. Therefore, the heterogeneity of

the observed read counts among individual single cells was severely

complicated by the bias heterogeneity among single-cell RNA-seq

experiments. The appropriate bias correction is essential to dissect

real transcriptome differences among individual cells.

By correcting the heterogeneous bias patterns through WemIQ,

we obtained lower cell-to-cell expression variability than other

methods (Fig. 8). Specifically, we selected 991 highly expressed

Fig. 6. Estimation consistency between two laboratories. A: Expression fold

change for highly expressed genes. B: Expression fold change for highly

expressed isoforms. X-axis is the fold change threshold, and y-axis is the per-

centage of genes (or isoforms) exhibiting a fold change greater than the

threshold. Results from four pair-wise comparisons between the two labora-

tories are pooled together
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genes (details in Section 5 of Supplementary Text S1) and calculated

the coefficient of variation (CV) values of the 18 single-cell expres-

sion estimates for each gene. CV is often used to describe the extent

of variability with respect to the mean, and a larger CV value sug-

gests larger data variability. The median CV for WemIQ was 0.78,

significantly less than 0.87 and 0.89 for Cufflinks and RSEM

(Fig. 8A, Ps<2.2�10�16, paired Wilcoxon tests). Besides, 907

highly expressed isoforms were selected and similarly we observed

significantly smaller CV values from WemIQ (Fig. 8B, 0.76 versus

0.84 and 0.85 for Cufflinks and RSEM; Ps<2.2�10�16, paired

Wilcoxon tests). Although the cell-to-cell variability was smaller, it

was still significantly larger than the CV from population-cell RNA-

seq (Ps<2.2�10�16, paired Wilcoxon tests for highly expressed

genes or isoforms).

Furthermore, we focused on expression fold changes between

the values averaged across the 18 single-cell estimates and those

from each of the population-cells (e.g. >10 000 cells) data. At both

gene and isoform level, WemIQ provided less number of genes or

isoforms with large fold changes. For example, only 25.9% and

25.3% of the highly expressed genes and isoforms exhibited at least

2-fold expression changes, obviously less than those from Cufflinks

and RSEM (31.2% and 30.3% for Cufflinks, 36.8% and 35.2% for

RSEM).

4 Discussion

Sequencing bias during RNA-seq experiments hinders the deconvo-

lution of transcript isoform expression, because the expression het-

erogeneity caused by multiple isoforms of the same gene is mixed

with that caused by different biases for different regions. Hence, iso-

form-level expression estimation from RNA-seq experiments is still

a challenging problem and lines of methods were proposed for more

accurate quantification (Bohnert and Ratsch, 2010; Hu et al., 2014;

Huang et al., 2013; Li and Dewey, 2011; Mezlini et al., 2013; Suo

et al., 2014). We previously developed a hierarchical Bayesian

model (BASIS) to identify differentially isoforms without quantify-

ing the absolute isoform expression for each condition (Zheng and

Chen, 2009). However, the estimation of the absolute expression

levels of transcript isoforms requires a more delicate handling of

bias in RNA-seq. Our GP-based model can effectively separate bias

from true expression signals (Srivastava and Chen, 2010). However,

the simple integration of the GP probability mass function to the iso-

form deconvolution makes the computation infeasible.

WemIQ targets the challenges of accurate isoform quantification

by an efficient weighted-log-likelihood-based EM algorithm. Reads

from different genomic regions were assigned with different weights

according to the degree of the sequencing bias. The bias parameter

was estimated in a data-adaptive manner without any assumption

about the bias source and format. The weight assignment can be

treated as a ‘weighted sampling’ scheme to penalize or compensate

oversampled or undersampled sequence reads.

Simulation studies with simple and real gene structures demon-

strated that WemIQ significantly improved the expression estima-

tion from both the isoform-centric and the exon-centric perspectives

under a variety of gene structures. WemIQ can handle the additional

overdispersion caused by missing transcripts and thus provides more

robust estimations over Cufflinks and RSEM when gene annotation

is incomplete. Besides, we compared the overall gene expression lev-

els with other platforms such as the qRT-PCR results and WemIQ

showed an improved estimation. It is worth mentioning that al-

though qRT-PCR may not perfectly measure gene expression, it rep-

resents another independent platform with potentially different bias

sources. Due to the lack of benchmark dataset, it is difficult to dir-

ectly compare the isoform expression measurements. In addition to

the improved estimation accuracy, WemIQ also provides very ro-

bust estimates based on the study of sub-sampled reads from a real

RNA-seq data set (details in Section 7 of Supplementary Text S1,

Supplementary Figs S12 and S13). On the other hand, we should

note that there may be some extreme gene structures with many iso-

forms and each of them containing only a few nucleotide differ-

ences. The power of isoform quantification for these cases is limited

Fig. 7. Comparison of the single-cell and population-cell bias parameter.

A: Within-gene bias variation. The boxplots show the maximum k̂ difference

(Dk̂) among exons within a gene. Single-cell RNA-seq (C1–C18) exhibits larger

Dk̂ than population-cell RNAs-seq (P1–P3). B: Across-gene bias variation.

Pair-wise gene-level k̂ correlation heatmap was given. The variance of gene-

level k̂s for each data set was plotted in the bars on top of the heatmap

Fig. 8. Expression variation across single cells by different methods. Based

on the expression estimates from WemIQ, Cufflinks and RSEM, the CV across

18 single-cell RNA-seq data is calculated and their empirical cumulative distri-

bution functions are shown for A: 991 highly expressed genes; and B: 907

highly expressed isoforms
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and waits for more advanced sequencing technologies with more

and longer sequence reads.

We also applied our method on a variety of real RNA-seq data,

including the ENCODE data from different laboratories and single-

cell sequencing data with very low input genetic materials. Results

demonstrate that WemIQ provides more robust expression estima-

tion at both the gene and isoform level. Therefore, WemIQ may

serve as a powerful tool to make direct comparison across different

experiments. We also note that in the cross-laboratory comparison,

the median fold change was still higher than the ideal value of 1.0

and could be as large as 1.735 even for highly expressed genes or

isoforms. Since we simply used the total bias-corrected reads to per-

form the normalization across samples, additional improvements on

the normalization may further help the cross-laboratory analysis of

RNA-seq data. In addition, we observed larger bias heterogeneity

from single-cell RNA-seq data than the population-cell RNA-seq,

which further complicated the exploration of true cell-to-cell expres-

sion variation. Due to the careful read weighting scheme, WemIQ

discovered smaller expression variability in single cells.

WemIQ utilizes only reads that are uniquely mapped to the gen-

ome for the expression quantification. For earlier RNA-seq data

where the read length is usually 36 nucleotides or less, it might be an

issue to discard reads mapped to multiple genomic locations.

However, with the development of sequencing technologies for

longer reads, the effect of discarding multireads could be small for

majority genes.

In summary, we propose WemIQ to quantify gene expression

from the RNA-seq data with the transcript isoform resolution.

It separates sequencing bias heterogeneity across different genomic

regions or different laboratories from expression heterogeneity due

to different transcript isoforms or different single cells. WemIQ can

serve as a powerful quantification tool for transcriptomics.
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