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Abstract

Motivation: Quantifying variability in protein expression is a major goal of systems biology and

cell-to-cell variability in subcellular localization pattern has not been systematically quantified.

Results: We define a local measure to quantify cell-to-cell variability in high-throughput microscope

images and show that it allows comparable measures of variability for proteins with diverse subcellu-

lar localizations. We systematically estimate cell-to-cell variability in the yeast GFP collection and

identify examples of proteins that show cell-to-cell variability in their subcellular localization.

Conclusions: Automated image analysis methods can be used to quantify cell-to-cell variability in

microscope images.

Contact: alan.moses@utoronto.ca

Availability and Implementation: Software and data are available at http://www.moseslab.csb.

utoronto.ca/louis-f/

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Quantitative characterization of variability in gene expression has

been a major area of research in systems biology (Pelkmans 2012;

Snijder and Pelkmans 2011). Time-lapse movies of reporter genes in

live-cell fluorescence microscopy demonstrated differences in protein

expression between genetically identical cells (Elowitz et al. 2002;

Levine et al. 2013). Cell-to-cell variability in protein abundance was

measured for most yeast proteins (Newman et al. 2006) using high-

throughput flow cytometry of the GFP collection (Huh et al. 2003).

Time-lapse fluorescence microscopy experiments have also revealed

examples of proteins that show cell-to-cell variability in subcellular

localization (Cai et al. 2008). For example, the yeast stress-response

transcription factors Msn2 and Msn4 have been observed to continu-

ously shuttle between the cytoplasm and nucleus (Jacquet et al. 2003).

To our knowledge, cell-to-cell variability in subcellular localiza-

tion has not been systematically characterized. Here, we set out

to test whether cell-to-cell variability in protein abundance and sub-

cellular localization could be systematically extracted from large

image collections from automated microscopy. Still images have

been used to quantify cell-to-cell variability in yeast protein abun-

dance (Li et al. 2010), and advances in automated genetics and mi-

croscopy have led to large collections of yeast images (Huh et al.

2003; Riffle and Davis 2010). Recently, we and others have showed

that quantitative measurements of protein localization and abun-

dance can be extracted for single cells in these images (Handfield et

al. 2013; Loo et al. 2014). However, it is not obvious how to define

a metric that allows meaningful comparison of variability between

different proteins. In particular, proteins localized to different

subcellular compartments may show cell-to-cell variability simply

due to imaging artefacts (small organelles might be missed from

cells) or due to cell-to-cell variability in organelle size and shape. For

example, yeast mitochondria have highly variable size and shape
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(Okamoto et al. 1998); proteins localized there will have more cell-

to-cell variability than cytoplasmic proteins simply because of the

underlying morphological variability. Another important complica-

tion is due to differential protein regulation during the cell-cycle that

creates cell-to-cell variability in asynchronously growing cells.

Previous studies of cell-to-cell variability in subcellular localization

have used protein specific measures. For example, a study of Crz1

quantified bursts of nuclear localization using the median intensity

of the five brightest pixels in each cell (Cai et al. 2008). While effect-

ive for that case, that approach is unlikely to generalize to other pro-

teins or be quantitatively comparable between proteins of differing

subcellular localizations.

As in efforts to analyze image-based measurements of morpho-

logical variability (Levy and Siegal 2008; Yvert et al. 2013), we de-

fine a local measure of variability, which we call ‘Relative

Variability’ (RV) and show that it can be used to compare variability

in both protein abundance and spatial pattern between proteins

with different subcellular localization classes. We compare our

image-based cell-to-cell variability estimates for protein abundance

(cell-to-cell variability in total fluorescence intensity) with previous

measurements from flow cytometry and find reasonable agreement.

Because our analysis is based on images, we can also measure variabil-

ity in the subcellular localization pattern (which we quantify using the

spatial spread of the fluorescence in each cell), which is not possible

using conventional flow cytometry. We identify examples of proteins

that show cell-to-cell variability in their spatial distribution within the

cells. To our knowledge, this represents the first systematic measure-

ment of cell-to-cell variability in subcellular localization.

2 Methods

2.1 Image processing
High-resolution images of the yeast GFP collection were acquired

and analyzed by an automated pipeline described previously

(Handfield et al. 2013). Briefly, a highly expressed cytoplasmic RFP

was introduced into the GFP collection to facilitate automated

image analysis. High-resolution digital images (1331�1017, 12 bit)

were obtained of unsynchronized log phase cultures using confocal

fluorescence microscopy (Opera, PerkinElmer) with a water-immer-

sion 63� objective and image depth of 0.6mm. Object contours

were identified automatically using a combination of geometric el-

lipse fits and watershed approach. Budded cells are fit by two el-

lipses, and the cell stage of the pair is estimated using the size of the

bud cell. Each identified cell is assigned a confidence score wc that

represents that probability that it is a yeast cell (and not an artefact or

misidentified a cell). We used the same single cell data from �0.4 mil-

lion mother–bud pairs that we extracted for our previous study

(Handfield et al. 2013). The single cell data are available for download

(along with the image processing pipeline) at the author’s website.

2.2 Feature profiles for protein expression patterns
To define a local measure of cell-to-cell variability, we need to quan-

tify the similarity between each protein (represented by images of a

GFP-tagged strain) in our collection. To do so, we assign to each

protein, p, a profile, u
!

p of features. In principle, any image features

(or other measurements) that adequately capture the pattern can be

used, as long as the same features can be calculated for each protein

and proteins can be compared quantitatively in the feature space.

Here, we use four simple features (GFP intensity, expected distance

to GFP centre of mass, expected distance to cell periphery and

expected distance to bud neck) calculated in five discrete bins of bud

cell size (to capture change over the cell cycle) that we previously

showed can be used to recover most previously recognized subcellu-

lar localization patterns in our yeast image collection (Handfield et

al. 2013). For a given feature, X, for each protein, feature measure-

ments from mother and bud cells are assigned to different bins, so

that a total of 10 means (E½X�) and variances (Var½X�) are computed.

Elements of u
!

p have the form

E½Xpi� ¼

X
c2Bpi

wcxcX
c2Bpi

wc

Var½Xpi� ¼

X
c2Bpi

wcx
2
cX

c2Bpi

wc

� E½Xpi�2

(1)

where xc is a feature measurement for the cell, c, that has been as-

signed the ith bin Bpi. To ensure that our estimates of variance were

reasonably accurate, strains that have less than five cells assigned to

any cell cycle bin are filtered out for the analysis, leaving 2860 pro-

teins in the analysis (1144 out of 4003 filtered).

2.3 Subcellular ‘spread’ feature
Although the local method we propose to measure variability can be

applied to any image feature (or more generally any observation of

interest), in this study we chose a single feature to measure spatial

variability, the ‘expected distance to GFP centre of mass’ (Handfield

et al. 2013). An empirical probability distribution fc for the subcel-

lular position of GFP protein can be obtained by normalizing the

GFP signal at each pixel coordinate z
! ¼ ðzx; zyÞ by the total GFP sig-

nal in the area of the cell (Tc), such that

fcðz
!Þ ¼ GFPðz!Þ

Tc
; where Tc ¼

X
z
!
2Ac

GFPðz!Þ (2)

where Ac is the set of pixel coordinates of a cell area. From the

above, we then define the coordinates of the GFP pattern centre of

mass, m
!

, as the intensity weighted average of pixel coordinates. We

then define ‘expected distance to GFP centre of mass’, which we

refer to here as ‘subcellular spread’, by evaluating the distance to

centre of mass under the empirical probability distribution:

Xcðz
!Þ ¼

X
z
!
2Ac

jjz! �m
!jjfcðz

!Þ; where m
! ¼

X
z
!
2Ac

z
!

fcðz
!Þ (3)

where the jja! � b
!
jj represents the Euclidean distance between

vectors a
!

and b
!

, and summations in each case are over all the pixels,

z
!

, within the area of the cell.

2.4 Co-efficient of variation
The variability in positive quantities (such as protein abundance) is

usually quantified using the co-efficient of variation (CV, Newman

et al. 2006), given by the standard deviation divided by the mean.

Because we divided the cells into five cell-cycle bins, for mother and

bud cells, we took the geometric mean of the CV over the 10 bins

for protein, p.

log 2ðCVpÞ ¼
1

10

X10

i¼1

1

2
log 2

Var½Xpi�
E½Xpi�2

 !
(4)
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In this equation, log 2ðyÞ represents the base-2 logarithm of y

and E½X� and Var½X� are the mean and variance of the expected dis-

tance to centre of mass as defined above.

2.5 Relative variability
Our main methodological contribution is to introduce an alternative

method to estimate cell-to-cell variability in a feature measurement.

Specifically, we define the ‘relative variability’ as the log ratio of the

observed variance to the expected variance based what is observed

in ‘similar’ proteins in the image collection (Fig. 1). To compute this

local expected variance, we use a so-called conditional variance

estimator (CVE, Auestad and Tjøstheim 1990; Hardle 1990). To

compute the CVE, we first variance standardize the profiles, u
!

,

such that covðu!1;. . .; u
!
jCjÞ ¼ I (Scott and Sain 2004), where C

indicates the set of all proteins in the collection and jCj indicates the

size of the set C. We then use a multivariate Gaussian kernel, Khp
,

to weight each protein q based on its similarity to the protein of

interest p.

Khp
ðu!p � u

!
qÞ ¼

1

ðhp

ffiffiffiffiffiffi
2p
p
Þd

exp � 1

2hp
2
ðu!p � u

!
qÞTðu

!
p � u

!
qÞ

� �
(5)

Where hp is a bandwidth parameter (discussed below) and d is

the dimensionality of the feature space (length of u
!

, Scott and Sain

2004). We then compute the CVE, dVar½X�, for each protein, p, based

on the observed variability of all other proteins, q. We have:

bE½Xpi� ¼

X
q2Cnfpg

Khp
ðu!p � u

!
qÞ
X
c2Bqi

wcxcX
q2Cnfpg

Khp
ðu!p � u

!
qÞ
X
c2Bqi

wc

dVar½Xpi� ¼

X
q2Cnfpg

Khp
ðu!p � u

!
qÞ
X
c2Bqi

wcx
2
cX

q2Cnfpg
Khp
ðu!p � u

!
qÞ
X
c2Bqi

wc

� bE½Xpi�2

(6)

where, once again, xc is a feature measurement for the cell, c, that

has been assigned the ith bin for protein q, Bqi and Ê½X� indicates

the kernel regression (the conditional mean, Hardle 1990) of a fea-

ture X, in our case the subcellular spread feature or GFP intensity.

We note that Equation (6) differs from the standard formulas

(Auestad and Tjøstheim 1990) because we carry through the cell

confidence, wc, so that, e.g. we do not normalize by the total num-

ber of proteins, but rather the ’expected number’,
X

c
wc. We com-

pute the CVE for each protein, p, in each cell cycle bin, i. Because

the data are non-uniformly distributed in the feature space, we use a

locally adaptive bandwidth parameter (Altman 1992; Simonoff

1996), hp, which we evaluate at each protein p (Fig. 1). This scales

the kernel width to use a consistent number of ’similar’ proteins to

evaluate dVar½X�, so that the RV estimate for each protein is some-

what independent of scale of the differences in the local neighbour-

hood of ‘similar’ proteins (Breiman et al. 1977). To choose the

bandwidth for each protein, a fixed point iterative procedure was

used find the bandwidth, hp, such that:

0:05% � jC n fpgj ¼ ðhp

ffiffiffiffiffiffi
2p
p
Þd
X

q2Cnfpg
Khp
ðu!p � u

!
qÞ (7)

where once again C indicates the set of all proteins in the collection

and d is the dimensionality of the feature space. By choosing hp to

satisfy equation (7), the number of neighbours considered for the

local estimate is a fixed fraction of the whole protein collection

(Breiman et al. 1977). In the following, we used 0.05% of the data,

but we found that as long as the fraction was small enough, there

was little overall effect on the RV distribution (Supplementary

Information).

Previous studies have used deviations from LOESS regression

(Hastie and Loader 1993) of the variance on the mean to quantify

variability in image features (Levy and Siegal 2008; Yvert et al.

2013), which is also a local approach using a univariate measure of

the difference between proteins. In principle, many choices of simi-

larity measures between proteins could be used to compute the

CVE. We explored using lower dimensional measures, such as simi-

larity based only on the subcellular spread feature measurement and

found that this also yielded more comparable variability estimates

than the CV. However, we found that using the full feature profile

further improved the distributions of variability estimates for differ-

ent localization classes (Supplementary Information).

We define the RV for protein p as the log of a geometric mean

over the 10 bins.

RVp ¼
1

10

X10

i¼1

1

2
log 2ðVar½Xpi�Þ � log 2ðdVar½Xpi�Þ
h i

(8)

We note that, rather than dividing the cell cycle into discrete

bins, it is also possible to use a kernel-based approach to estimate an

RV using all of the cells, weighted by their cell stage estimates. We

also implemented such an approach (see Supplementary

Information) and find that it gives overall qualitatively similar re-

sults to the binning strategy we used here. However, we consider

treating the cell stage as a series of independent categories to be a

more generally applicable approach, because in other applications,

there are likely to be high-dimensional, correlated sets of feature

measurements, but these might not be related by time. For example,

the discrete categories of features might be genetic or environmental

perturbations.

Fig. 1. RV. A conditional variance estimate (dVar½�) is computed for a feature,

X, at every point in the feature space based on the nearby data points. For

points of interest (corresponding to proteins, indicated by p and q), a band-

width parameter hp is computed based on the density of points (proteins with

similar localization patterns) in that region of the space. The RV compares the

conditional variance estimate (surface) to the observed variability (bold P and

Q). In this example, the observed variability is high for protein p (P is above

the surface) and is low for q (Q is below the surface)
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3 Results and discussion

Overview: We sought to quantify cell-to-cell variability from

images. Although the CV has been used previously to quantify vari-

ation in protein abundance, we find that the CV for our image-

derived measurements systematically varies between proteins in dif-

ferent subcellular localization classes, particularly when used to

quantify variability in spatial spread of protein expression. This

means that identifying highly variable proteins based on CV might

be biased towards identifying certain classes of proteins (such as nu-

cleolar and mitochondrial proteins). We show that this bias is much

less pronounced for the RV and test whether bona fide cell-to-cell

variable proteins can be identified by ranking proteins based on

the RV.

3.1 Quantifying cell-to-cell variability in protein

abundance from images
To test whether we could quantify cell-to-cell variability in protein

abundance from high-throughput images, we first extracted GFP in-

tensity measurements (which reflect protein abundance) from each

cell for each protein, computed the CV for the cells in each cell cycle

bin and averaged these. The CV is a standard measure of variability

for protein abundance (Bar-Even et al. 2006). We compared the re-

sults to high-throughput variability estimates for the yeast GFP col-

lection based on flow cytometry (Newman et al. 2006). For

example, variable proteins identified previously, such as Pry3, ap-

pear highly variable in our images (Fig. 2a). We note that technically

we are not detecting Pry3 but rather the GFP-tagged fusion protein,

Pry3-GFP. However, for brevity, we omit the ‘-GFP’ throughout

when referring to our images; our images always show tagged fusion

proteins. Overall, we found a correlation of 0.333 with the deviation

to the median (DM) estimates of ‘noise’ (Newman et al. 2006).

Although this correlation far exceeds what could be expected by

chance (P < 10�10), there are many factors that we expect to affect

the agreement of the image measurements with the previous esti-

mates (Newman et al. 2006), such as different typical sample

sizes, different treatment of the cell cycle, correction for autofluores-

cence, etc.

We were particularly interested in the effect that differences in

subcellular localization might have on the variability in protein

abundance inferred from images. To test this, we plotted our CV es-

timates for all the proteins in several localization classes defined

based on manual inspection of the original images of the GFP collec-

tion (Huh et al. 2003). We found that certain classes (e.g. nucleolus;

Fig. 2b) display skewed distributions of CVs (Fig. 2c). This variabil-

ity could be due to our imaging, as the nucleoli might be randomly

missing from the focal plane or to variability in organelle shape.

Regardless of the underlying reason, it is not fair to compare a vari-

ability estimate from a nucleolar protein to an estimate from a cyto-

plasmic protein, which will (almost) always be included in the focal

plane or whose shape variation is better accounted for by the cell

segmentation.

We designed the RV measure (see Section 2) to correct for differ-

ences in subcellular localization by comparing proteins’ variability

to ‘similar’ proteins in our protein expression feature space

(Handfield et al. 2013). Therefore, if the measure works correctly,

2

1

0

1.3

0

1.3

A

B

C

Fig. 2. Variability in protein abundance. (A) Pry3 shows high cell-to-cell variability in protein abundance. (B) Gar1 shows a nucleolar localization pattern but little

cell-to-cell variability in abundance. (C) CVs for nucleolar proteins are systematically biased relative to other localization classes. Each ‘-’ symbol represents the

cell-to-cell variability for GFP fluorescence intensity for a single strain (tagged protein) in the collection. Gar1 (indicated by **) shows a higher CV than Pry3 (indi-

cated by *). (D) RV estimates show much less bias between classes. Pry3 (indicated by *) shows a much higher RV than Gar1 (indicated by **). Example cell

images are contiguous sections cropped from larger images. Contrast settings for Gar1 were adjusted to highlight the nucleolar pattern
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the variability of a nucleolar protein will be compared with other

nucleolar proteins, because they display ‘similar’ protein expression

patterns. Consistent with this prediction, the distributions of RV

measurements for nucleolar proteins are much more similar to the

other classes than the CVs (Fig. 2d). For example, Pry3 shows dra-

matic cell-to-cell variability in our images (Fig. 2a) but has a CV that

is lower than 13 nucleolar proteins that do not appear highly vari-

able (e.g. Gar1, Fig. 2b). This is because ER proteins are biased to

appear less variable than nuclear and nucleolar proteins based on

the CV (Fig. 2c). In contrast, using the RV, Pry3 maintains its rank

within the ER subcellular location class but ranks higher than any

nucleolar protein (Fig. 2d). That the overall distributions of RVs for

proteins in previously defined subcellular localization classes (Huh

et al. 2003) are more similar than the CVs is supports the idea that a

local estimate of variability is better suited to identify examples of

unusually variable proteins. Furthermore, the correlation between

RV and the DM estimates (Newman et al. 2006) is 0.398, such that

RV explains nearly 5% more of the variance in the flow cytometry

measured variability (DM) than does the image-based CV.

3.2 Quantifying cell-to-cell variability in subcellular

localization from images
We next sought to test whether we could quantify the cell-to-cell

variability in the spatial component of protein expression pattern.

We computed the subcellular spread (see Section 2) for each cell and

plotted its CV and RV (see Section 2) for several large classes of pro-

teins based on their subcellular localization as defined through in-

spection of the original GFP collection images (Huh et al. 2003).

As expected, we found even more pronounced biases in the CV be-

tween classes, such that classes with variable morphology (such as

mitochondria; Fig. 3a) and small organelles that might be out of the

focal plane (such as nucleolus) showed very different distributions of

CVs. Once again, we found that the RV effectively corrected these

distributions, so that proteins with outstanding variability in each

class were now ranked near the extremes of the entire RV distribu-

tion (Fig. 3b). For example, Spo12 shows cell-to-cell variability in

subcellular localization (varying between the cytoplasm and nucleus,

Fig. 3c) but is buried behind 330 proteins according to the CV.

However, in the RV distribution, it is ranked 27th in the collection.

The similarity of the RV distributions for proteins with very differ-

ent spatial patterns of GFP expression indicates that comparison

with nearby proteins yield comparable variability estimates, despite

the heterogeneity in subcellular localization patterns.

We note that given the annotations of subcellular localization

for each protein, it is possible to quantify cell-to-cell variability

using the CV (Figs. 2 and 3). For example, the most variable protein

cytoplasmic protein, in CV and RV, is Ade4 (Fig. 3d) and appears to

exhibit punctae of varying intensity, probably reflecting a response

to adenine starvation (Narayanaswamy et al. 2009). Indeed, pro-

teins at the extreme of the distribution for each class tend to be bona

fide variable proteins. However, this relies on the prior subcellular

categorization of proteins (Huh et al. 2003). In practice, proteins

may display localization to multiple organelles, have been annotated

as ambiguous or change their localization over the cell cycle

(Handfield et al. 2013) and therefore may not always fall into a sin-

gle localization class. Therefore, it is not possible to identify variable

examples systematically using the CV. Because the RV compares

2

1.5

1

0.8

0

0.8

A

B

Fig. 3. Variability in protein subcellular localization. (A) CVs for a spatial feature are systematically biased by localization class. (B) RV estimates show much less

bias between classes. Each ‘-’ symbol represents the cell-to-cell variability for GFP spatial spread for a single strain (tagged protein) in the collection. (C) Spo12

shows cell-to-cell variability between nuclear and cytoplasmic localization. It has a typical CV for a nuclear protein (indicated by * in A and B) but has a high RV.

(D) Ade4 shows cell-to-cell variability in localization and is the most variable cytoplasmic protein, but it falls below many nucleolar and mitochondrial proteins ac-

cording to the CV. In contrast, according to the RV, it is one of the most highly variable proteins (indicated by ** in A and B)
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each protein to those most similar to it (as defined using quantitative

image features, see Section 2), it can be applied regardless of the sub-

cellular localization and therefore can be applied to the whole

collection.

3.3 Systematic search for cell-to-cell variable proteins
We next tested whether the RV (see Section 2) could systematically

identify proteins that show cell-to-cell variability in both intensity

and spatial spread in our images. We plotted the RV in subcellular

localization against the RV in protein abundance (Fig. 4), as we ex-

pect variability in one aspect to influence the other. We chose arbi-

trary cutoffs (dashed lines in Fig. 4a) to identify predicted proteins

likely to be variable in abundance, subcellular localization, both or

neither. The most extreme examples were Hsp78 (Fig. 4b) and

Rpc82 (Fig. 4c), which are identified as both abundance and subcel-

lular variable. Rpc82 shows bright nuclear localization in some cells

and very little fluorescence in others, whereas Hsp78 shows very

bright dots mixed with a much dimmer mitochondrial pattern,

which is barely visible at the contrast settings used to clearly display

the bright dots).

Previous studies have identified a few yeast transcription factors

that stochastically translocate from the cytoplasm to the nucleus

(Cai et al. 2008; Jacquet et al. 2003). These proteins have been

studied in time-lapse movies, and it is currently unknown how many

other proteins of this type exist and whether cell-to-cell variability in

subcellular localization other than cytoplasm and nucleus can exist.

Consistent with the prevalence of nuclear-cytoplasmic variability,

we found several other proteins with high RV exhibiting nuclear lo-

calization in a subset of the cell population (Fig. 4d and e, Table1).

Because the environment of the cells in our images is expected to be

constant, these represent new candidates for stochastic nuclear-cyto-

plasmic translocation but could also represent static variability in

the cellular response to the growth conditions.

In addition to nuclear-cytoplasmic variability, the most variable

30 proteins according to RV (Table 1) include many subcellular lo-

cations. Some of these are rare and have a strong cell-stage depend-

ence (bud neck, spindle pole and bud specific), so that it is difficult

to visually assess cell-to-cell variability. Still, Ade4 (Fig. 2b) and

A B

C

D E F G

Fig. 4. Systematically identifying variable proteins. (A) RV estimates for subcellular localization vs. protein abundance. Each dot represents one protein. The

dashed lines represent thresholds for defining proteins with high variability in either protein abundance or subcellular spread. (B–G) Examples of proteins with

variability in subcellular localization

Cell-to-cell variability in microscope images 945

Methods
,
relative variability (
, 
Methods
ure
ure
figure
figure
while
[
],
[
]).
,
ure
,
,
-
, 
-
ure


Ena1 (Fig. 4f) appear to represent clear examples of spatial variabil-

ity. Visual inspection suggests that Ena1 is localized to the cell per-

iphery or to several punctae inside the cell. Ade4 (Fig. 3d) shows a

bright dot or bright cytoplasmic intensity. We were particularly

interested to identify proteins like Hsp78, Ena1 and Ade4, because

they show that spatial variability other than nuclear-cytoplasmic is

in principle possible; this type of variability can only be identified

using microscopy, and our analysis represents the first systematic ef-

fort to identify these. That many classes of cell-to-cell variability

could be identified using the RV in a single-feature measurement

suggests that prior knowledge of subcellular location is not needed

to detect unusual heterogeneity in spatial pattern.

To obtain a more objective measure of the power of our new

measure (RV) to identify cell-to-cell variability in subcellular local-

ization pattern, we examined images for the top 30 most spatially

variable proteins according to the RV and CV. The main difference

is that seven proteins with nuclear-cytoplasmic variability are found

in the group of 30 proteins with highest RV, whereas only three of

them are found using CV. In addition, two variable proteins (Ena1

and Ade4) with other localization patterns are identified by the RV

but not by the CV. Among the 10 proteins found in both rankings, 6

are localized to the mitochondria. The mitochondrion is an organ-

elle with a complex tubular network morphology but often also may

show a punctate pattern (Okamoto et al. 1998). Among mitochon-

drial proteins with highest CV or RV, several showed a punctate

pattern, but only Ald5 and Ilv2 (Fig. 4g) show a punctate pattern

with a brightness comparable to Hsp78. All three have high rank for

RV and CV (Table 1) consistent with the bias in the CV estimates

for mitochondrial proteins (Fig. 3A). Overall, based on our inspec-

tion of the images, 12 true positives are found in the 30 most vari-

able proteins using RV and only 5 are found using CV. This means

that the RV analysis has positive predictive power of �40% com-

pared with �17% for the CV.

False negatives are difficult to quantify, as a set of known ‘spa-

tially variable’ proteins is difficult to define. For instance, Crz1 lo-

calizes to the nucleus if cells are treated with calcium (Cai et al.

2008) and Msn2 localizes to the nucleus as a general stress response

(Jacquet et al. 2003). For Msn2 and Crz1, only one and four cells

are found having protein with nuclear localization (out of 257 and

347 cells, respectively) in our images, likely because they were taken

of cells in standard growth conditions. RV and CV both fail to de-

tect this scarce variability (all ranks above 1400 out of 2860 pro-

teins). For this experiment, where the nuclear localization was not

induced, it is unclear whether to consider Crz1 and Msn2 false

negatives.

An important limitation of the RV is that the local estimate of

the variance level for a given protein relies on ‘similar’ proteins. If a

protein has a pattern that has little similarity to any other protein

(e.g. due to cell-stage dependencies or unusual protein abundance

distributed into multiple subcellular locations), the local estimate of

the variance may not be a good estimate for that protein. Indeed,

several of the proteins we identify as most cell-to-cell variable in

subcellular localization are either known to show cell-cycle regu-

lated localization [Mcm6, Nguyen et al. (2000) and Ace2,

O’Conalláin et al. (1999)] or are cell-cycle regulated proteins whose

subcellular localization has not been characterized [Spo12, Tomson

et al. (2009) and Net1, Visintin et al. (1999)] These proteins may be

examples of proteins with unusual cell-cycle patterns. However, it is

also possible that our simple strategy of binning cells according to

bud size does not fully capture the cell-cycle variation in their pro-

tein expression.

The correspondence of our statistical approach and our examin-

ation of images (Fig. 4) confirms our computational methodology but

does not provide confirmation of biological relevance of the cell-to-cell

variability we identified. Because the microscope setup, medium com-

position, long-term storage of strain collections and other factors can

affect the consistency of GFP-patterns, we first reimaged several of the

variable proteins identified (Hsp78, Cbf1, Rpc82, Bcy1, Rnr4 and

Ume1) and confirmed that the images in our high-throughput collec-

tion accurately reflected the GFP collection (Supplementary

Information). Because high-throughput analysis of the GFP collection

is typically done using automated liquid handling from 384-well plates,

we next sought to confirm that the observed variability was indeed due

to differences in protein expression among genetically identical cells.

We tested this by streaking out individual colonies from the variable

strains and imaging the resulting cultures. In several cases, we found

that individual cultures did not recapitulate the variable pattern

observed in the collection strain. For example, individual colonies from

Rpc82 and Cbf1 showed homogeneous subcellular localization

patterns (nuclear or cytoplasmic, but never both, Table 1 and

Supplementary Information) strongly suggesting that the strains in the

Table 1. Most spatially variable proteins

RV# CV# Name Subcellular localization Cells

1 10 RPC82a Cytoplasm, nucleusb 155

2 3 HSP78a Mitochondrionc 86

3 7 RNR4a Cytoplasm, nucleusd 145

4 39 ERG6 Lipid particle 83

5 137 LEU4 Cytoplasm, mitochondrion 195

6 2 ATP2 Mitochondrion 130

7 4 CBF1a Nucleusb 72

8 146 ADE4a Cytoplasm 71

9 6 ALD5a Mitochondrion 123

10 230 ENA1a Cell periphery 130

11 129 DAD3 Spindle pole 192

12 32 ILV2a Mitochondrion 77

13 56 GIN4 Ambiguous, bud neck, cytoplasm, bud 182

14 151 BCY1a Cytoplasm, nucleusc 198

15 437 UME1a Cytoplasm, nucleusd 164

16 398 SRD1a Cytoplasm, nucleus 200

17 302 ACE2 Cytoplasm, nucleus, bud 148

18 274 VPS54 Punctate composite, early Golgi 95

19 21 LYS4 Mitochondrion 107

20 9 NET1 Nucleolus 206

21 266 EDE1 Punctate composite 168

22 1 ATP1 Mitochondrion 57

23 82 SPC34 Spindle pole 82

24 517 SNO1 Cytoplasm 66

25 80 MCM6 Cytoplasm, nucleus 100

26 247 TGL4 Lipid particle 159

27 331 SPO12a Nucleus 153

28 466 SEC10 Ambiguous, bud neck, cell periphery, bud 164

29 102 DAD1 Spindle pole 185

30 22 GCV2 Mitochondrion 56

The top 30 spatially variable proteins ranked by RV (RV#) are listed. Their

ranks according to the CV (CV#) are also included for comparison.

Subcellular localization categories as defined previously (Huh et al. 2003) are

also indicated. The total number of mother–bud pairs available for the ana-

lysis (Cells) is also indicated. A complete listing of all proteins we analyzed is

available as Supplementary Information.
aProteins that actually appear variable upon visual inspection of the

images.
bSubsequent experiments indicated that variability is due to mixed

genotypes.
cSubsequent experiments were inconclusive.
dSubsequent experiments confirmed variability in genetically identical cells.
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collection represent mixtures: the variability we observe is due to gen-

etic differences and is not due to ‘noise’ in protein expression. We note

that the variability for Rpc82 is clearly visible in the original GFP col-

lection images (Huh et al. 2003), indicating that the mixture of strains

has persisted. On the other hand, individual colonies from Rnr4 and

Ume1 recapitulated the variability observed in the image collection and

showed variability even in cells with buds in the same size range

(Table 1 and Supplementary Information). Consistent with our obser-

vations, a mixed cytoplasmic and nuclear localization pattern for Rnr4

has been noted in response DNA damage (Yao et al. 2003). Ume1 may

represent a new example of a protein with variable subcellular localiza-

tion pattern. Nevertheless, we note that the variability we observe may

simply be due to insufficient nutrients or other cultivation conditions

(Narayanaswamy et al. 2009). Further experiments will be needed to

determine the biological causes and consequences of the variability we

have identified. Taken together, these experiments confirm that statis-

tical analysis of high-throughput microscopy images can identify pro-

teins with variability in subcellular localization.

4 Conclusion

We defined a local statistic to compare cell-to-cell variability, which

alleviates potential biases arising from heterogeneity of subcellular

localization of proteins. We performed the first systematic search

for the most spatially variable proteins and found several examples

of proteins that show variability in their subcellular localization pat-

tern. These include new classes of cell-to-cell variability, where cyto-

plasm, mitochondria and cell periphery are mixed with the

occurrence of bright punctae. This demonstrates that a statistical

analysis of still images can be used to quantify cell-to-cell variability

in protein abundance and subcellular localization pattern. We be-

lieve that local statistics will be useful for other high-throughput

data analysis applications, where data are highly heterogeneous, but

clear boundaries between classes cannot be defined.

Acknowledgements

We thank an anonymous reviewer for pointing out the connection with kernel

regression, Alex Nguyen Ba for comments on the manuscript and Dr. Gelila

Tilahun for help with statistics. We also thank Dr. Brenda Andrews for access

to data, supervisory support and invaluable help and guidance throughout the

project.

Funding

This work was supported by the National Sciences and Engineering Research

Council of Canada (to L.F.H. and B.S.); Canadian Institutes of Health

Research [MOP-119579 to A.M.M.]; infrastructure grants from the Canada

Foundation for Innovation (to A.M.M. and Brenda Andrews) and by grants

from the Canadian Institutes for Health Research (to Y.T.C.).

Conflict of Interest: none declared.

References

Altman,N.S. (1992) An introduction to kernel and nearest-neighbor nonpara-

metric regression. Am. Stat., 46, 175–185.

Auestad,B. and Tjøstheim,D. (1990) Identification of nonlinear time series: first

order characterization and order determination. Biometrika, 77, 669–687.

Bar-Even,A. et al. (2006) Noise in protein expression scales with natural pro-

tein abundance. Nat. Genet., 38, 636–643.

Breiman,L. et al. (1977) Variable kernel estimates of multivariate densities.

Technometrics, 19, 135–144.

Cai,L. et al. (2008) Frequency-modulated nuclear localization bursts coordin-

ate gene regulation. Nature, 455, 485–490.

Elowitz,M. et al. (2002) Stochastic gene expression in a single cell. Sci. Signal.,

297, 1183.

Handfield,L.-F. et al. (2013) Unsupervised clustering of subcellular protein ex-

pression patterns in high-throughput microscopy images reveals protein

complexes and functional relationships between proteins. PLoS Comput.

Biol., 9, e1003085.

Hardle,W. (1990) Applied Nonparametric Regression. Vol. 27. Cambridge

University Press, Cambridge, United Kingdom.

Hastie,T. and Loader,C. (1993) Local regression: automatic kernel carpentry.

Stat. Sci., 8, 120–129.

Huh,W. et al. (2003) Global analysis of protein localization in budding yeast.

Nature, 425, 686–691.

Jacquet,M. et al. (2003) Oscillatory nucleocytoplasmic shuttling of the general

stress response transcriptional activators msn2 and msn4 in Saccharomyces

cerevisiae. J. Cell Biol., 161, 497–505.

Levine,J.H. et al. (2013) Functional roles of pulsing in genetic circuits. Science,

342, 1193–1200.

Levy,S.F. and Siegal,M.L. (2008) Network hubs buffer environmental vari-

ation in Saccharomyces cerevisiae. PLoS Biol., 6, e264.

Li,J. et al. (2010) Exploiting the determinants of stochastic gene expression in

Saccharomyces cerevisiae for genome-wide prediction of expression noise.

Proc. Natl Acad. Sci. USA, 107, 10472–10477.

Loo,L.-H. et al. (2014) Quantitative protein localization signatures reveal an

association between spatial and functional divergences of proteins. PLoS

Comput. Biol., 10, e1003504.

Narayanaswamy,R. et al. (2009) Widespread reorganization of metabolic

enzymes into reversible assemblies upon nutrient starvation. Proc. Natl

Acad. Sci. USA, 106, 10147–10152.

Newman,J. et al. (2006) Single-cell proteomic analysis of S. cerevisiae reveals

the architecture of biological noise. Nature, 441, 840–846.

Nguyen,V.Q. et al. (2000) Clb/cdc28 kinases promote nuclear export of the

replication initiator proteins mcm2–7. Curr. Biol., 10, 195–205.
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