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Abstract
Mitochondrial diseases often exhibit tissue-specific pathologies, but this phenomenon is poorly understood. Here we present
regulation of mitochondrial translation by the Mitochondrial Translation Optimization Factor 1, MTO1, as a novel player in this
scenario. We demonstrate that MTO1 mediates tRNA modification and controls mitochondrial translation rate in a highly
tissue-specific manner associated with tissue-specific OXPHOS defects. Activation of mitochondrial proteases, aberrant
translation products, aswell as defects in OXPHOS complex assembly observed inMTO1 deficientmice further imply thatMTO1
impacts translation fidelity. In ourmousemodel, MTO1-related OXPHOS deficiency can be bypassed by feeding a ketogenic diet.
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This therapeutic intervention is independent of the MTO1-mediated tRNA modification and involves balancing of
mitochondrial and cellular secondary stress responses. Our results thereby establishmammalianMTO1 as a novel factor in the
tissue-specific regulation of OXPHOS and fine tuning of mitochondrial translation accuracy.

Introduction
Mitochondrial diseases are a group of multisystemic, progressive
and fatal disorders that are often defined by defects in oxidative
phosphorylation (OXPHOS), which affect the cellular ATP supply
(1). A common feature of mitochondrial diseases is a strong tis-
sue-specific phenotype. However, the molecular mechanisms
that govern this tissue-specific regulation are only poorly under-
stood (2–4). Recently, modulation of mitochondrial translation
and its fidelity is increasingly being recognized as playing a sig-
nificant role in the tissue-specific variation of OXPHOS in health
and disease states (5,6).

A promising candidate that could be a novel regulator of this
phenomenon is the Mitochondrial Translation Optimization
Factor 1 (MTO1). MTO1 is an evolutionarily conserved protein.
In mammals, MTO1 is predominantly expressed in high-energy
demand tissue (7). In humans, various missense mutations
causing early-onsetmitochondrial disease associatedwitha strong
heart-specific phenotype have been described (Table 1). The
yeast (MTO1) and the Escherichia coli homolog (GidA) of the mam-
malian MTO1 are involved in the biosynthesis of the hypermodi-
fied 5-methylaminomethyl-2-thiouridine group ofmnm5s2U34 in
thewobble position of tRNALys, tRNAGlu and tRNAGln (10). In E. coli,
this modification is important for maintaining tRNA structure
and function by affecting its stability, aminoacylation and
codon recognition (11–14). This tRNA modification is conferred
by several proteins, within a complex pathway. However, many
steps remain unclear (15). Inmammals, the homologs of the thio-
lation-pathwayMss1 (E. coliMnmE),MTO1 (E. coliGidA) and TRMU
(also termed Mtu1 or Mto2, E. coli TrmU) are supposed to be in-
volved in taurine modification of tRNAs (τm5U), a modification
that is unique to mammalian mitochondria (16). These taurine-
modified tRNAs are then supposedly further modified by thiola-
tion to yield the τm5S5-modified uracil position.

Disturbed thiolation and taurine modification of mitochon-
drial tRNAs has been implicated in the pathomechanismofmito-
chondrial diseases caused by mutations in mitochondrial tRNAs
such as MELAS and MERFF (17–21). However, the exact mechan-
ismof the taurine and thiolmodification of tRNAs inmammalian
mitochondria and the function of each proposed component re-
mains speculative, and it is, as yet, unclear whether these factors
are truly dispensable for mammalian mitochondrial translation
(22,23).

In the present study, we demonstrate that MTO1 is a major
factor in the tissue-specific control of OXPHOS complexes by
regulating tRNA modification and mitochondrial translation in
a tissue-specific manner. We further highlight that MTO1 defi-
ciency activates mitochondrial proteases and severely affects
OXPHOS protein assembly and stability, suggesting an important
role for MTO1 in ensuring translation fidelity. Crucially, for the
patient population, we propose that a ketogenic diet (KD) may
have therapeutic potential for MTO1-associated disorders by bal-
ancing secondary stress responses without affecting the tRNA
modification defect, as these effects were seen in our mouse
model. These findings not only highlight modulation of mito-
chondrial translation in response to cellular nutrient sensing,
but also underline the importance of (mal)adaptive responses
in the pathomechanism of mitochondrial disorders.

Results

A novel pathogenic mutation of MTO1 results in a
combined CI + IV defect in patient fibroblasts associated
with a defect in mitochondrial protein synthesis and
tRNA modification

We identified a homozygous p.Ile408Phe mutation in MTO1
by next generation sequencing in a patient presenting with
hypertrophic cardiomyopathy associated with lactic acidemia.
Similar predominantly heart-related clinical symptoms were
also observed in previously described patients with MTO1 muta-
tions (Table 1). In our patient, Complex Iwas decreased in skeletal
muscle biopsy. In fibroblasts, a selective defect was detected in
Complex I and IV activity (Table 1). Human Ile408 is situated in
a region that is highly conserved throughout the kingdoms
(Fig. 1A). According to structural data of the MTO1 bacterial
homolog GidA, human Ile408 is situated in the C-terminal end
of β-sheet 22 adjacent to helix 9 in the designated FAD-binding
domain (24). Mutations in this domain do not impact on protein
stability but affect tRNA-modifying function and result in
decreased thiourdinylation in bacteria (24).

To understand the pathological impact of the Ile408Phemuta-
tion, we performed western blot analysis of whole cell lysates
from control and patient fibroblasts. While the mitochondrial-
encoded Complex I subunits ND1 and ND5 were significantly
decreased to ∼25% of control levels, the protein level of the nu-
clear-encoded Complex I subunit NDUFB8 was significantly
increased in patient cells. The α subunit of Complex V, as well
as the FeS subunit of the Complex II, was also increased. No sig-
nificant effect on the analyzedComplex IV (COXI) andComplex III
(Core 2) subunits could be detected (Fig. 1B). Recently, the ratio
between mitochondrial- and nuclear-encoded proteins, the so-
called mito-nuclear protein ratio, has been associated with life-
span regulation (6). When we assessed this value in our patient
fibroblasts, we observed a decreased mito-nuclear protein ratio
not only for the mitochondrial-encoded subunits ND1 and ND5
showing decreased protein levels, but also for COXI (Supplemen-
tary Material, Fig. S1A).

We next performed Blue-Native (BN)-PAGE analysis to assess
the impact of the MTO1 mutation on steady-state levels of
fully assembled OXPHOS complexes and their supramolecular
assemblies. These supercomplexes are particularly important
to stabilize Complex I (25,26). In patient fibroblasts, supercom-
plexes containing Complex I as well as free Complex IV were
decreased in line with decreased enzymatic activities (Fig. 1C;
Table 1).

HumanMTO1 was initially predicted to be involved in the op-
timization of mitochondrial translation. Expression of mutant
MTO1 carrying pathogenic human mutations in yeast results
in protein synthesis defects (8,9). However, the molecular basis
has not been unraveled. To understand how the p.Ile408Phe
MTO1 mutation affects human mitochondrial translation, we
performed a metabolic pulse labeling of mtDNA encoded pro-
teins. In patient fibroblasts, we found a general translation defect
as indicated by an overall decrease in the labeling intensity
(Fig. 1D). This result testifies for the first time that mutations in
MTO1 affect protein synthesis not only in a yeast model system
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Table 1. Clinical synopsis and biochemical features of MTO1 patients in present and published studies

Mutation in
MTO1

Familiarity Gender Clinical features Age/Cause
of death

Metabolic finding Biochemical MRC
defects

References

P[Ile408Phe];
[Ile408Phe]

Brother of four healthy
siblings, three deceased
siblings,
consanguineous parents

M Pyschomotor retardation, perinatal asphyxia,
hypotonia, dysdiachokinesia, hypertrophic
cardiomyopathy.

15 years
–

Lactic acidemia,
hyperalaninemia

Ms: CI ↓
Fbs: ↓ CI/CS: 0.02
(norm: 0.11–0.26)
↓ C13/CS: 0.08
(norm: 0.11–0.24)
↔ CII/CS: 0.34
(norm: 0.14–0.43)
↔ C23/CS: 0.37
(norm 0.10–0.29)
↔ CIII/CS: 1.61
(norm: 0.75–2.32)
↓ COX/CS: 0.66
(norm: 0.83–2.40)
↔ CV/CS: 0.75
(norm: 0.30–0.75)
↔ PDHC/CS: 0.031
(norm: 0.011–0.033)

Present study

p. [Ala428Thr];
[Arg477His]

No F Psychomotor delay, hypotonia, dystonia. Later,
hypertrophic cardiomyopathy.

14 years
–

Lactic acidemia,
hyperalaninemia

Ms: ↓ CI and CIV
Fbs: ↓ MRR

(8)

p. [Thr411Ile];
[Thr411Ile]

Brother of 3 siblings;
consanguineous parents

M Poor feeding due to swallowing difficulties. Failure
to thrive. Later, hypertrophic cardiomyopathy.
Aspiration pneumonia. Hypotonia.

+12 months
cardio-
respiratory
arrest

Hypoglycemia, lactic
acidemia

Ms: ↓ CI and CIV
Fbs: ↓ MRR

(8)

p. [Thr411Ile];
[Thr411Ile]

Brother of 2 siblings;
consanguineous parents

M Poor feeding due to swallowing difficulties. Failure
to thrive. Early-onset hypertrophic
cardiomyopathy. Hypotonia.

+3 months
n.d.

Lactic acidemia n.d. (8)

p. [Thr411Ile];
[Thr411Ile]

Sister of 5 siblings;
consanguineous parents

F Early-onset hypertrophic cardiomyopathy.
Bronchiolitis-like illness. Encephalopathy and
seizures.

19 years
–

Lactic acidemia Ms: ↓ CIV (8)

p. [Thr411Ile];
[Thr411Ile]

Sister of 4 siblings;
consanguineous parents

F Upper respiratory illness. Hypertrophic
cardiomyopathy andWPW. Psychomotor delay.

12 years
–

Lactic acidemia,
hyperalaninemia,
ketonuria

Ms: ↓ CIV (8)

p. [Ala428Thr];
[Arg620Lysfs*8]

Brother of 7 siblings M Hypertrophic cardiomyopathy. +19 days
sudden
bradycardia

Lactic acidemia,
hyperalaninemia

Ms: ↓ CI and CIV
Fbs: ↓CIII and CIV; ↓
MRR

(9)

p. [Ala428Thr];
[Arg620Lysfs*8]

Sister of 6 siblings F Hypertrophic cardiomyopathy with tachycardia.
Hypotonia.

+40 days
sudden
bradycardia

Lactic acidemia Ms: ↓ CI and CIV
Fbs: ↓ CI; ↓ MRR

(9)

p. [Ala428Thr];
[Ala428Thr]

No M Weakness, lack of ocular fixation. Hypertrophic
cardiomyopathy with sinus bradycardia.
Moderate bilateral optic atrophy.

20 years
–

Lactic acidemia Ms: ↓ CI and CIV (9)

Ms, muscle biopsy; Fbs, fibroblasts; MRC, mitochondrial respiratory chain; CI–CV, complexes I–V; C13, complex I + III activity; C23, complex II + III activity, CS, citrate synthase; PDHC, pyruvate dehydrogenase complex; WPW,

Wolff–Parkinson–White syndrome.

H
um

an
M
olecular

G
enetics,2015,V

ol.24,N
o.8

|
2249



(8,9), but also in the original mammalian context. The signal in
the patient samples was too weak to detect if any subunit was
specifically affected. The mitochondrial translation defect was

associatedwith up to 50% decreased levels ofmitoribosomal pro-
teins. Proteins of both the large (MRPL37) and small subunit
(MRPS35) showed decreased steady-state levels in patients’

Figure 1.Anovel pathological MTO1mutation results in a Complex I + IV defect associatedwith a compromisedmitochondrial translation, altered tRNAmodification and

activation of mitochondrial proteases in patient fibroblasts. (A) Alignment of MTO1 homologs fromdifferent species showing the area around themutated residue Ile408

(highlighted). (B) Western blot analysis and quantification of whole cell extracts from healthy control (C) and patient fibroblasts (P). Subunits of OXPHOS Complexes I

(NDUFB8, NDUFA9, ND1, ND5), II (FeS), III (Core2), IV (COX1) and V (ATPα) were probed. GAPDH was used as a loading control. (C) BN-PAGE analysis of digitonin-

extracted fibroblasts. Presence of OXPHOS complexes in their free (FC) and supercomplex form (SC) as assessed by immunoblotting using antibodies directed against

Complex I (SC) and the free complexes. (D) In vivo metabolic pulse-labeling experiment using [35S]-methionine in the presence of cyclohexamide to label

mitochondrial-encoded proteins and thereby assess de novo mitochondrial translation in control and patient fibroblasts. (E) Western blot analysis and quantification

of mitoribosomal proteins. Tested were components of the small (MRPS35) and the large mitoribosomal subunit (MRPL37). GAPDH was used as a loading control. (F)
APM-northern blot of total RNA to visualize 2-thiouridiniylated tRNAGlu, tRNAGln and tRNATrp. The thio-modified and unmodified forms are indicated. The changed

migration pattern of modified tRNAGln in the patient fibroblast is indicated by a dashed line. (G) Western blot analysis and quantification of mitochondrial proteases

in control (C) and patient fibroblasts (P). VDAC was used as a loading control. *P < 0.05, **P < 0.01, ***P < 0.001.
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fibroblasts (Fig. 1E), suggesting that MTO1 might influence the
mitoribosomal machinery itself.

Based on the homology with bacterial enzymes, MTO1 is hy-
pothesized to be involved in the thiolation of selectedmammalian
mitochondrial tRNAs (16), but a demonstration is still lacking. To
address this question, we analyzed the thiouridine modification
of mitochondrial tRNAs by the retardation of electrophoretic mo-
bility in a polyacrylamide gel containing [(N-acryloylamin) phenyl]
mercuric chloride (APM) following northern blotting. In the result-
ing blot, the upper band represents the thiouridinylated tRNA
(modified) and the lower band the unthioruridinylated species
(unmodified). The gross thiouridinylation pattern for tRNAGlu did
not change in our patient cells. However, the thiouridinylated
form of tRNAGln exhibited an altered pattern compared with the
control and migration more quickly indicating alterations in this
tRNAmodification (Fig. 1F). This finding indicates aberrant thiola-
tion of tRNAGln in MTO1 mutant cells and demonstrates for the
first time a role ofmammalian MTO1 inmodification of thismito-
chondrial tRNA.Thealtered thiolationpatterndidnot affect stabil-
ity of tRNAGln (Supplementary Material, Fig. S1B). We did not
observe any APM-modified form for tRNATrp, implying that there
is no thiolation occurring for this tRNA within mitochondria
(Fig. 1F).

Precise mitochondrial tRNA modification is necessary for cor-
rect codon–anti-codon recognition (20,27,28). This recognition is
part of a complex network tomaintain translation fidelity and ac-
curacy (29–31). Translational infidelity causes amino acid misin-
corporation, resulting in protein misfolding and hence assembly
defects or increased protein turnover. Amino acid misincorpora-
tionhas been found inMELAS, amitochondrial syndrome of ence-
phalomyopathy, lactic acidosis with stroke-like episodes, which is
associated with an OXPHOS defect (32). Intriguingly, aberrant
tRNA modification is implicated in MELAS (16,33) and might be
the underlying cause of the compromised translation accuracy.
A readout of a compromised translation fidelity is the activation
of mitochondrial proteases, which can serve as markers for the
mitochondrial unfolded protein response (UPR) (34) and has
been recently demonstrated to be sensitive to tRNA modification
(35).We assessed protein levels of themAAA-protease, Lon-prote-
ase and Clp protease by analyzing the steady-state levels of their
subunits (Fig. 1G). The mAAA-protease has been implicated in
the stability of OXPHOS proteins in a pathogenic context (36).
ClpP is part of the definedmtUPRprogram (34),while LonP is ama-
trix-localized protease proposed to be involved in the quality con-
trol of soluble proteins in this mitochondrial compartment (37).
While the protein level of the mAAA-subunit AFG3L2 remained
unchanged in patient fibroblasts, the MTO1 mutation p.Ile408Arg
induced a significant increase of LonP protein levels. Steady-state
levels of ClpP approximately doubled implying a robust activation
of mtUPR in the patient cell line (Fig. 1G). These findings are con-
sistent with decreased translation accuracy in MTO1mutant cells
and hence activation of the mitochondrial quality control system
as an adaptive response. A hyperactivation of the protease could
also explain the decreasedmito-nuclear protein ratio inMTO1 pa-
tientfibroblasts,which is a signofdisturbedmitochondrial protein
homeostasis.

MTO1 deficiency in MEFs recapitulates the pathogenic
CI + IV defect and is associated with aberrant
supramolecular assemblies of OXPHOS proteins

To further assess the molecular mechanism how MTO1 affects
OXPHOS, we obtained mouse embryonic fibroblasts (MEFs) from
amousemodel with of MTO1 deficiency (38). Thesemice develop

cardiovascular symptoms including bradycardia and cardio-
myopathy mimicking the clinical feature of patients with MTO1
mutations (38).

We grew MEFs obtained from mice which are wild-type (+/+),
heterozygous (+/−) and homozygous (−/−) for the MTO1 cassette
in high glucose media and in galactose-containing media. In the
latter,metabolism switches fromglycolytic to oxidativemetabol-
ism and hence relies on functional OXPHOS for cell survival
(39,40), thereby exacerbating OXPHOS defects (41). To assess the
effect of the MTO1 deficiency on OXPHOS, we performedwestern
blot analysis of isolated mitochondria. The Complex I subunit
NDUFB8 was reduced to ∼50% in MTO1-deficient mitochondria
isolated from MEFs grown in high glucose media. This defect
was worsened when cells had to rely on galactose: under these
conditions, the NDUFB8 subunit was barely detectable (Fig. 2A).
In glucose-based media, a significant decrease of the Complex
IV subunit COX1 was also detected. This defect was again wor-
sened by growth in galactose to only ∼10% of steady-state levels
control COX1 protein (Fig. 2A). Further analysis revealed that
other subunits of OXPHOS complexeswere unaffected. As a conse-
quenceof the reducedCOX1protein, themito-nuclear protein ratio
was also decreased in MTO1 mutant MEFs with the most severe
effect becoming evident when cells had to rely on galactose (Sup-
plementary Material, Fig. S1C). Since the galactose-containing
media revealed a severe OXPHOS defect, the cells did not tolerate
longer periods of growth and expansion in this media. We were,
therefore, forced to perform experiments that require a larger
number of cells in high glucose conditions.

To further analyze the observed OXPHOS defect and to assess
steady-state levels of fully assembled complexes as well as their
supramolecular assemblies, we performed BN-PAGE analysis.
When assessing total complexes, we found that assembled Com-
plex I and IV levels were reduced in homozygous MTO1 mutant
MEFs while other OXPHOS complexes remained unaffected
(Fig. 2B), consistentwith ourwestern blotting data. BN-PAGE ana-
lysis of supramolecular assemblies of OXPHOS Complexes I or III
revealed an altered pattern of supercomplexes in MEFs contain-
ing one or two alleles of the cassette. Here, an additional band
migrating at a higher molecular weight than the WT supercom-
plexes was observed (Fig. 2C). To gain insight into the functional-
ity of these high-molecular CI + III positive species, we performed
CI in gel activity assay (IGA). Both hetero- and homozygous
MTO1 mutant MEFs generated an entity with the same migra-
tion height as WT. However, the staining intensity, was reduced
in both mutant cells lines with a more striking effect in the
homozygous MTO1 mutant. Interestingly, the higher molecular
entities detected by immunoblotting were catalytically inactive
by IGA, indicating that these higher CI + III positive supramolecu-
lar assemblies are non-functional with respect to CI activity
(Fig. 2C) and may represent misfolded and/or misassembled
complexes.

MTO1 deficiency compromises mitochondrial
translation efficacy and activates mitochondrial
proteases

To assess the cause of the selective Complex I + IV defect induced
by MTO1 deficiency in MEFs and analyze the role of MTO1 in
mammalian mitochondrial translation, we performed metabolic
pulse-chase labeling experiments of newly synthesized mtDNA-
encoded OXPHOS polypeptides to analyze mitochondrial protein
synthesis capacity. We did not observe gross differences in the
synthesis or turnover kinetics for the mtDNA-encoded subunits
except for ND5 in MTO1-deficient cells that was markedly
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Figure 2.MTO1 deficiency in MEFs induces a CI + CIV deficiency associated with a defect in mitochondrial protein synthesis and OXPHOS complex assembly. (A) Western

blot analysis and quantification of mitochondria isolated from MEFs of WT mice (+/+) and mice that are heterozygous (+/−) or homozygous (−/−) for the MTO1 cassette.

Subunits of OXPHOS Complexes I (NDUFB8), II (FeS), III (Core2), IV (COX1) and V (ATPα) were tested. The mitochondrial translocase Tim23 was used as a loading control.

Shown are representative blots. (B) BN-PAGE analysis of fully assembled total OXPHOS complexes inmitochondria extractedwith laurylmaltoside. Presence of complexes

as probed by immunoblotting. (C) BN-PAGE analysis of respiratory supercomplexes (SC) in mitochondria extracted with digitonin. Presence of OXPHOS complexes in the

SC as probed by immunoblotting. Complex I in-gel activity (SC (ac.)) was used to determine functionality of the different SC species in MTO1 mutant MEFs. (D) Metabolic

pulse-chase labeling of newly synthesized mtDNA-encoded proteins resolved on a SDS-gel to determine the turnover of newly synthesized proteins. (E) Metabolic pulse

titration of newly synthesized mtDNA-encoded proteins to determine changes in the rate of translation. Depicted is the quantification of total labeling intensity as a

function of pulse time. See Supplementary Material, Figure S1E for gel image. (F) Western blot analysis and quantification of mitochondrial proteases in mitochondria

isolated from MTO1 mutant and controls MEFs. (G) Metabolic pulse-chase labeling of newly synthesized mtDNA-encoded proteins resolved on a BN-PAGE to

determine the turnover of supercomplexes (SC) and free OXPHOS Complexes III, IV and V. Loading was normalized according to protein content. (H) Metabolic pulse

titration of newly synthesized mtDNA-encoded proteins resolved on BN-PAGE to visualize formation of OXPHOS complexes (CI, III, IV and V) and supercomplexes (SC).

After the pulse, the cells were incubated for 24 h to allow assembly of the newly synthesized proteins into the subunits. Loading was normalized according to protein

content. (I) Altered migration pattern of mitochondrial tRNATrp in a northern blot experiment. (J) APM-northern blot of total RNA to visualize 2-thiouridiniylated

tRNAGlu and tRNAGln. The thio-modified and unmodified forms are indicated. **P < 0.01, ***P < 0.001.
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decreased to ∼50% of theWT levels of newly synthesized protein
(Fig. 2D; SupplementaryMaterial, Fig. S1D). All other subunits, in-
cluding subunits COXI-III of Complex IV, remained unaffected by
MTO1 deficiency. Stability of the newly synthesized subunits
was not affected, as evidenced by an unchanged turnover pattern
in our metabolic pulse-chase experiment (Fig. 2D). This finding
suggests that post-translational mechanisms are likely to be
involved in causing the CIV defect in MTO1-deficient MEFs.

The pulse-labeling assay of mitochondrial-encoded subunits
is optimized onWT cells to assess themaximum protein synthe-
sis capacity with pulse times that achieve maximal labeling
intensity (42). To gain deeper insight into protein synthesis
kinetics, we performed a time course of metabolic labeling to
resolve time-dependent labeling intensity of mtDNA-encoded
proteins (Fig. 2E; Supplementary Material, Fig. S1E). After ∼3 h
of labeling, the maximal intensity is reached, but after only
0.5 h WT MEFs reached >50% and after 1 h ∼75% of the maximal
labeling intensity. In comparison, MTO1-deficient MEFs show a
translation defect in the form of a reduced translation rate.
While a labeling intensity similar to maximal WT was observed
at the 6 h time point, the intensity of MTO1 mutant MEFs was
reduced relative to the WT control at all other time points. Fur-
ther, the MTO1-deficient MEFs did not reach a plateau phase as
did the WT within the analyzed timeframe. Instead labeling in-
tensity continued to increasewith prolonged labeling times, sug-
gesting a reduced translation rate (Fig. 2E). This finding links
MTO1 to the regulation of mitochondrial translation kinetics
and concurs with a previous report of a reduced translation rate
caused by impaired mitochondrial tRNA modification due to the
MELAS mutation (43).

In patient fibroblasts, the MTO1mutation causes amitochon-
drial translation defect associated with an increase inmitochon-
drial proteases suggesting compromised translation fidelity.
MTO1 deficiency in MEFs recapitulated the CI + IV defect observed
in patients. This defect was associated with aberrant supra-
molecular assemblies of OXPHOS proteins, which lack enzymatic
functionality (see above). To assess whether these misassembled
complexes induce mitochondrial UPR, we tested the activation of
mitochondrial proteases in this context. We found a selective
increase of ClpP protease in MTO1-deficient MEFs (Fig. 2F) remin-
iscent of the observation in patient fibroblasts and consistentwith
the hypothesis that loss of MTO1 results in compromised transla-
tion accuracy and hence misfolded proteins.

Loss of MTO1 in MEFs results in an OXPHOS assembly
and stability defect

SinceMTO1 deficientMEFs showa defect in OXPHOS Complexes I
and IV but only manifest a clear translational defect in the
Complex I subunit ND5, we next addressed whether steps that
follow protein synthesis might be involved in the observed
OXPHOS defect. We therefore performed a pulse titration assay
to assess the time-resolved formation of the different complexes
as well as a pulse-chase experiment to analyze the turnover of
the assembled complexes using BN-PAGE.

To address this question, we assessed the stability of newly as-
sembled complexes by pulse-chase experiments that monitored
the fate of the complexes for 72 h after the initial pulse. In WT
cells, newly formed supercomplexeswere stable and decaywas de-
tected only after 48 h. In MTO1-deficient cells, we were not able to
detect supercomplexes at the assessed time points consistent
with the previous experimentwherewe found an assembly defect
of supercomplexes (Fig. 2G). With respect to CIV, the pulse-chase
experiment revealed that also assembly of CIV is affected by

MTO1 deficiency: despite equal labeling intensity, the appearance
of the signal for assembled CIV in MTO1 mutant MEFs lacked
behind compared with that of the control cells. Given that no
specific defect in the de novo synthesis of COX subunits could be
detected, we believe that the CIV defect in MTO1-deficient
MEFs is caused by suboptimal synchronization of assembly and
turnover of CIV. AWTpattern in a sucrose floatation assay implied
that integration of the newly synthesized subunits into the
membrane is not affected by loss of MTO1 (Supplementary
Material, Fig. S1F).

The supercomplex defect in this pulse-chase experiment
prompted us to investigate whether a longer labeling procedure
and hence the possibility to produce more required subunits
could enhance the assembly of the supercomplexes.We therefore
performed a pulse titration experiment followed by BN-PAGE ana-
lysis. Here we observed a striking defect of supercomplex forma-
tion in MTO1-deficient MEFS. While supercomplex formation
increases with prolonged pulse times and reaches a stationary
phase at ∼2 h of pulse time in WT MEFs, the level of correctly
formed supercomplexes is much lower in MTO1-deficient MEFs
at 0.5, 1 and 2 h of time points. After 2 h, assembled supercom-
plexes are no longer visible implying increased instability of the
newly synthesized and assembled complexes (Fig. 2H). This find-
ing clearly indicates that a longer time frame for the production of
labeled subunits does not increase the supercomplex levels in
MTO1 mutant MEFs as is the case in WT cells. As also observed
by immunoblotting, the steady-state level of supercomplexes in
this pulse titration experiment detected a higher migrating entity
inMTO1-deficientMEFs,which is also rapidly turnedover (Fig. 2H).
Taken together, these findings imply that loss of MTO1 causes
aberrant assembly of supercomplexes which results in decreased
levels and rapid turnover as deduced from the pulse-chase experi-
ment. In addition, this pulse titration experiment gave insight into
the cause of the CIV defect in MTO1-deficient MEFs: we observed
that formation of CIV showed a slower kinetics in the assembly
process. In MTO1-deficient cells, the maximal assembled level of
CIV was reached at 6 h compared with 2 h in WT MEFs (Fig. 2H).
It is possible that impaired translation fidelity in combination
with the decreased translation rate inMTO1-deficientMEFs affects
the assembly of supercomplexes and CIV. Moreover, potentially
decreased translation accuracy and hence the presence of mis-
folded proteins, as suggested by the activation of mtUPR marker
ClpP, might also contribute to both the assembly defect and the
supercomplex instability.

MTO1 deficiency affects modification of tRNATrp

independent of thiouridinylation and causes decreased
mitochondrial tRNA levels

To investigate whether a disturbed RNA modification could con-
tribute to the protein synthesis and OXPHOS assembly defect in
MTO1-deficient MEFs, we assessed mitochondrial tRNA levels as
well as the modification of tRNAGlu, tRNATrp and tRNAGln, which
are hypothesized to be the targets of MTO1-mediated modifica-
tion by northern blotting and APM-gel electrophoresis.

Loss of MTO1 affected the migration pattern of tRNATrp in
northern blotting in both, glucose- and galactose-grown cells.
In wild-type and heterozygous cells, tRNATrp migrated as two
species, while MTO1 deficiency resulted in the loss of the more
slowly migrating form (Fig. 2I). Although the loss of this species
clearly correlates with the observed OXPHOS defect, the nature
of this species aswell as its significance is not clear at present. Po-
tentially, this species could be the taurine modified form of
tRNATrp that has been reported for this tRNA (44).
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We then subjected mitochondrial tRNAs to APM-gel electro-
phoresis to investigate further the impact of MTO1 deficiency
on tRNA thiouridinylation, which lies in the pathwayMTO1 puta-
tively acts in. InMTO1mutant MEFs, thiouridinylation of tRNAGlu

and tRNAGlnwas not abolished (Fig. 2J).We did not observe a thio-
modified form when probing for tRNATrp, suggesting that the
differences in migration pattern are not caused by this tRNA
modification (Fig. 2J).

By standard northern blots, we observed that all tRNA levels
analyzed except tRNAAla were decreased to 50–60% in MTO1-de-
ficient MEFs. In response to galactose stress, the condition where
the OXPHOS defect was more pronounced, tRNAAla steady levels
also dropped to ∼50% of wild type (Supplementary Material,
Fig. S1G), suggesting that loss of MTO1 results in decreased
tRNA stability without apparent alteration in thiolation.

MTO1 deficiency results in a tissue-specific CI + IV
defect in vivo

Mutations in MTO1 are associated with mitochondrial disorders
and a strong heart-specific pathology. To shed light on the patho-
logical consequence of loss of MTO1 in vivo, we examined a
mouse model of MTO1 deficiency that recapitulates the cardiac
disorder observed in patients (38).We focused on the high-energy
demand tissues of liver, heart, brain and skeletal muscle, which
are predominantly affected in many mitochondrial disorders.
When examining OXPHOS subunits in mitochondria isolated
from 3-month-old animals by western blotting, a marked de-
crease of the Complex I subunit NDUFB8 was detected in all
tissues except brain, with heart and muscle being most severely
affected (Fig. 3A–E). In addition, the Complex IV subunit COX1
was decreased in liver and muscle while no change was evident
in brain and heart (Fig. 3A–E). Subunits of other OXPHOS com-
plexes such as Core 2 (Complex III) and ATP α (Complex V)
remained unaffected (Fig. 3A–E). This tissue-specific CI + CIV
defect remained unchanged, and no additional defect in other
complexes was observed during aging, underlining the CI + IV
and tissue-specific effect as a consequence of the MTO1 defi-
ciency. However, we did observe an age-related effect on the
imbalance of the mito-nuclear protein ratio: here the ratio was
decreased in MTO1-deficient liver to ∼50% of control and during
aging decreased even further to ∼25% (Supplementary Material,
Fig. S2A). In the heart, the CI defect resulted in a drastic increase
in the mito-nuclear protein ratio, which increased further during
aging. However, when other complexes were taken into account,
no significant change was observed in this tissue. In contrast, in
muscle, the CI + IV specific defect resulted in an increase in the
mito-nuclear protein ratio based on Complex I subunits, while
the ratio based on CIII and CII was decreased (Supplementary Ma-
terial, Fig. S2B). The Complex I defect induced by loss ofMTO1was
also evident when isolated mitochondria were subjected to BN-
PAGE analysis followed by western blot (Supplementary Material,
Fig. S2B). Complex I containing supercomplexes was strongly
diminished inmitochondria isolated from liver, heart andmuscle
of MTO1 mutant mice.

The OXPHOS defect determined by western blot analysis was
also evident when we measured enzymatic activities of Complex
I and IV in isolated mitochondria (Fig. 3F–I). At 3 months of age,
liver MTO1 mutant mitochondria exhibited a significant COX de-
fect in both heterozygous and homozygousmutants. CI + III activ-
ity was also mildly, but significantly reduced in mitochondria
isolated from homozygous MTO1 mutant animals. Upon aging,
both COX and CI + III activity diminished dramatically in liver
mitochondria of both hetero- and homozygous animals at 12

months of age, implying an age-related worsening of the OXPHOS
defect (Fig. 3F). This age-related declinewas also visible inwestern
blot analysis, where a further decrease in levels of Complex I and
IV subunits was detected (Fig. 3B). In MTO1-deficient heart mito-
chondria isolated from 3-month-oldmice, we observed a decrease
in enzymatic activity of COX (Fig. 3H), although no Complex IV
defect was evident by western blot. The CI + III activity in MTO1
mutant heart mitochondria was not significantly affected in 3-
month-old mice, but declined on aging (Fig. 3H). In western blots
of MTO1-deficient heart mitochondria, we observed a trend to-
wards a lowered steady-state level of Complex I subunit, but it
did not reach significance (Fig. 3D). In skeletalmuscle,weobserved
amild but significant CI + III defect inMTO1-deficientmitochondria
that worsened with age. COX activity in mutant MTO1 mitochon-
dria was slightly decreased at 3 months of age, but this defect
only reached statistical significance at 12 months of age (Fig. 3I).
The same trend was observed by western blot analysis of skeletal
muscle mitochondria, where the CIV and CI defect was mildly ag-
gravated during aging, with a trend towards lowered protein levels
of Complex I and IV subunits (Fig. 3E). Mitochondria isolated from
brain did not exhibit an OXPHOS defect, neither on the enzymatic
level nor inwestern blot analysis at anyassessed age (Fig. 3C andG).

MTO1 deficiency results in a tissue-specific
mitochondrial protein synthesis defect associated with
a systemic activation of mitochondrial proteases

To gain further insight into the molecular cause of the OXPHOS
defect and hence elucidate the molecular role of mammalian
MTO1 in vivo, we assessedmitochondrial protein synthesis in dif-
ferent tissues, the process that MTO1 is hypothesized to interfere
with and which we found to be affected in MTO1-deficient MEFs
and patient fibroblasts harboring the MTO1 mutation. We there-
fore isolated mitochondria from different tissues and performed
in organello metabolic labeling of newly synthesized mtDNA-en-
coded proteins. In liver, the loss of MTO1 results in a decreased
overall labeling intensity and a change in the labeling pattern,
implying a general mitochondrial protein synthesis defect and
changes in translation of specific mt-mRNAs. In the heart, label-
ing intensity was also reduced and in addition a new species was
detected. In brain andmuscle, no gross alteration with respect to
labeling intensity or pattern could be observed (Fig. 4A). Although
the gross pattern was not disturbed, it remains possible that
MTO1 deficiency causes translation infidelity and hence could re-
sult in the observed OXPHOS defect. Translation infidelity caused
by amino acidmisincorporation is observed in E. coli as a result of
mutations in the bacterial homolog of MTO1 (15). In mammals,
mutations in mitochondrial tRNAs such as in MELAS result in
hypomodified tRNA (43,45,46) and amino acid misincorporation.
These alterations result in OXPHOS complex instability, even so
the translation pattern, determined by metabolic pulse labeling,
remains unchanged (32). We also performed this assay, in mito-
chondria isolated from tissue of aged animals. In MTO1-deficient
liver, we detected a decreased labeling intensity in comparison to
WTtissues indicating that the translationdefectobserved in young
animals persisted during aging. While neither brain nor heart
showed any changes, we observed that the translation pattern in
aged MTO1 mutant muscle mitochondria is altered indicating
the ensuing of a translation defect during aging (Supplementary
Material, Fig. S2C). The signal-to-noise ratio in thesemitochondria
was increased so that we were not able to confidently detect the
aberrant translation products.

As outlined earlier, an unaltered labeling pattern or kinetics
does not exclude compromised labeling fidelity. As an indirect
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readout of translation accuracy, we assessed steady-state levels of
mitochondrial proteases that are activated byunfolded andpoten-
tially mistranslated proteins. In MEFs and patient fibroblasts,
these proteases were selectively upregulated and in line with
this a decreased assembly and enhanced turnover of OXPHOS
complexes and supercomplexes in MTO1-deficient MEFs was ob-
served. These findings are consistent with the hypothesis that
translation accuracy is compromised when MTO1 is deficient. In
the assessed tissues, activation of mitochondrial proteases was
recapitulated. Steady-state protein levels of LonP and ClpP were
significantly increased with the strongest effect in heart tissue,
where levels increased to 150 and 200% of the control level,
respectively. Also in brain, which did not exhibit a detectable
OXPHOS defect, we found a significant increase in these two
proteases. Levels of AFG3L2 were not influenced by loss of MTO1
(Fig. 4B). This selective induction of LonP and ClpP in MTO1-
deficient tissue further increased during aging (Supplementary
Material, Fig. S3D). These findings indicate disturbed mitochon-
drial protein homeostasis when MTO1 is lost, which is consistent
with compromised translation fidelity.

In MEFs, we had observed that MTO1 deficiency reduces the
translation rate as deduced from a pulse titration experiment. To
increase our understanding of the effect of MTO1 on translation
kinetics in vivo, we performed a pulse titration in mitochondria
isolated from different tissues to determine labeling capacity as

a functionof pulse time. Inbrain andmuscle, therewas essentially
no difference in the timing of the labeling intensity and the trans-
lation kinetics ofMTO1-deficientmitochondria (Fig. 4C and F; Sup-
plementary Material, Fig. S2D). However, liver and heart show a
reduction in the translation rate as well as in the final labeling
intensity within the analyzed timeframe. In liver, the MTO1-
deficient mitochondria lagged behind in the overall labeling cap-
acity at all time points and reached only ∼40% of WT labeling
intensity at 60 min pulsing time. The labeling intensity increased
more slowly in MTO1-deficient mitochondria compared with WT
controls indicating a slower translation rate (Fig. 4D; Supplemen-
tary Material, Fig. S2D). We also observed a translation defect in
the heart. Here, the overall translation rate of labelingwas reduced
compared with WT reaching only ∼50% of the final labeling yield
of WT heart mitochondria (Fig. 4E; Supplementary Material,
Fig. S2D and E).

MTO1 regulates systematic tRNATrp modification and
tissue-specific thiouridinylation of tRNAGlu and tRNAGln

To shed light on the role of MTO1 inmitochondrial RNAmetabol-
ism in tissues, we assessedmitochondrial tRNA levels alongwith
their modification as well as mRNA levels in MTO1mutant mice.
As observed previously in MEFs, all MTO1 mutant tissues ana-
lyzed showed an alteredmigration pattern of tRNATrp in northern

Figure 3.MTO1 deficiency induces a tissue-specific Complex I + IV defect (A) Western blot analysis of mitochondria fromWT, heterozygous and homozygousMTO1mice.

The high-energy demand tissues of liver, brain, heart and muscle were analyzed. Subunits of OXPHOS Complexes I (NDUFB8), III (Core2), IV (COX1) and V (ATPα) were

probed. Porin (VDAC) was used as a loading control. Depicted are representative blots. (B–E) Quantification of the protein steady-state levels at different ages relative

to WT. (F–I) Enzymatic activity of CI + III and COX measured in isolated mitochondria from liver, brain, heart and muscle at 3 and 12 months of age. All activities were

normalized relative to WT. *P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 4. MTO1 deficiency causes a tissue-specific defect in mitochondrial translation and tRNA modification associated with a systemic activation of mitochondrial

proteases (A) In organello metabolic labeling of mtDNA-encoded proteins using mitochondria isolated from high-energy demand tissues in WT (+/+) mice and mice

homozygous (−/−) for the MTO1 cassette. Shown are representative labeling images and the quantification of the overall labeling capacity. (B) Western blot analysis

and quantification of mitochondrial proteases. VDAC was used as a loading control. (C–F) Kinetics of in organello labeling in mitochondria isolated from tissue of (+/+)

and (−/−) mice. Different pulse times were used in an in organello pulse titration assay. The overall labeling capacity was quantified and depicted as a function of pulse

time. Gels are depicted in Supplementary Material, Figure S2D. (G) Migration pattern of mitochondrial tRNATrp in a northern blot experiment in 3-month-old animals. (H)

APM-northern blot of total RNA to visualize 2-thiouridiniylated tRNAGlu and tRNAGln of 3-month-old animals. The thio-modified and unmodified forms are indicated. The

altered migration pattern of tRNAGlu in heart and muscle is indicated by a dashed line. (I) Same as (H) for 12-month-old animals to show age dependence of tRNA

modification in muscular tissues. see Supplementary Material, Figure S3C for other tissues. ***P < 0.001.
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blot analysis: while WT tissues exhibited two species, RNA
extracted from MTO1 mutant tissues showed a bias towards the
lower migrating form (Fig. 4G). In wild-type tissues, the higher
migrating form is the predominant entity. In all heterozygous
and homozygous MTO1 mutant tissues, we observe a relative
decrease of the higher migrating form and a relative increase of
the lowermigrating form, but the strongest effect was seen in tis-
sue carrying the homozygous MTO1mutation. Interestingly, this
change in migration pattern is also observed in brain, where we
did not detect an effect onOXPHOS complexes or their enzymatic
activity. This alteration in the tRNATrp migration pattern did
not change during aging (Supplementary Material, Fig. S3B). The
higher migrating formmay represent a putative taurinemodifica-
tion of mammalian mitochondrial tRNATrp. In liver, heart and
muscle of MTO1 mutant mice, we could not detect any traces of
this higher migrating form, indicating that loss of MTO1 abolishes
thismodification.However, in the brain ofMTO1mutantmice, low
amounts of the higher migrating form were detectable. These
findings are consistent with a hypothesized role of MTO1 in taur-
ine modification of tRNATrp, which can be partially compensated
in the brain, but not in other tissues. Remarkably, the level
of this modification correlates well with the manifestation of a
residual OXPHOS defect in the brain, the only assessed tissue
with partial levels of modified tRNATrp.

SinceMTO1 is also hypothesized to act in the thiouridinylation
and carbomethylation pathway of tRNAs, we assessed the thiour-
idinylation-capacity of tRNATrp, tRNAGlu and tRNAGln in control
and MTO1 mutant moue tissue by APM-electrophoresis. General
thiouridinylation was not abolished by the deficiency of MTO1 as
evidenced by the presence of the retarded,modified upper species
in all analyzed tissues at 3 months of age (Fig. 4H). In heart and
muscle, the modified band for tRNAGlu migrated faster in MTO1
mutant tissues comparedwith control samples implying an alter-
ation in the thiouridinylation in these tissues. Upon aging, in add-
ition to the alteration in the tRNAGlu thiouridinylation pattern,
there was also a shift of tRNAGln to a lower migrating thiolated
form inheartwhich recapitulates the change in tRNAGlnmigration
seen in patient fibroblasts (Fig. 4I). No change inmigration pattern
of themodified tRNAGlu or tRNAGlnwas detected in liver or brain at
any age analyzed (Fig. 4I; SupplementaryMaterial, Fig. S3C). These
findings support a role of MTO1 in correct thiouridinylation of se-
lected tRNAs in muscle tissues and highlight the heart as being
sensitive to disturbances in this system in accordance with the
cardiac phenotype in patients. We could not detect thiolation of
tRNATrp (Fig. 4H).

The alteration in the thiolation pattern in muscle tissues did
not affect the stability of the respective tRNAs as revealed by nor-
thern blot analysis (Supplementary Material, Fig. S3A). Instead,
we observed a tissue-specific response of tRNA levels to the
MTO1 deficiency, which does not correlate with the changes in
tRNA modification (Supplementary Material, Fig. S3A).

MTO1 interacts with the mitochondrial ribosome
and loss of MTO1 affects mitoribosomal assembly
in a tissue-specific manner

To further understand the effect of MTO1 on mitoribosomal pro-
teins and hencemitochondrial translation, we performed immu-
noprecipitation using a HeLa cell line with inducible expression
of FLAG-tagged MTO1. We performed the immunoprecipitation
from isolated mitochondria in the absence or presence of RNase
to determine the potential contribution of RNA to interactions.
In induced cells, we see co-immunoprecipitation of MRPL37 and
MRPS35 implying that MTO1 interacts with both large (LSU) and

small (SSU) mitoribosomal subunits. This interaction was RNase
insensitive, suggesting that MTO1 interacts directly with those
proteins and not via RNA (Fig. 5A). This finding could be inter-
preted as (i) MTO1 interacts with the assembled monosome and
aids in its assembly prior mRNA binding. (ii) Different pools of
MTO1 interact with either the large or small subunit independent
of each other. In addition, FLAG-taggedMTO1 appeared to interact
with HSP60, which is thought to be involved in import and assem-
bly of nuclear-encoded OXPHOS subunits but no interaction was
seen with HSP70.

To further assess the influence ofMTO1 on themitoribosome,
we next analyzed the effects of MTO1 on mitoribosomal subu-
nits. In mutant MTO1 liver mitochondria, both small and large
ribosomal subunits appeared decreased. In contrast, protein le-
vels of MRPL12 were significantly elevated in brain, the tissue
that lacked an OXPHOS defect. Mitoribosomal SSU and LSU pro-
teins were also elevated in heart and even more so in skeletal
muscle (Fig. 5B).

To determine whether the alterations in mitoribosomal com-
ponents affected mitoribosome assembly, we separated control
and MTO1 mutant mitochondria from various tissues by sucrose
gradient centrifugation. Mutations in the yeast and bacterial
homolog result in disturbed tRNA and mRNA levels (47,48), but
we are not aware of any report on an effect on ribosome assem-
bly. Western blotting on sucrose gradient fractions from MTO1
mutant brain mitochondria revealed increases in MRPS of SSU,
LSU and 55S comparedwith thewild-type, implying upregulation
of mitoribosomal assembly (Fig. 5D; Supplementary Material,
Fig. S4B). In contrast, MTO1-deficient mouse liver mitochondria
displayed decreased levels of MRPL37 associated with an altered
migration pattern. Indeed LSU and assembled monosome could
no longer be differentiated. MRPS35 levels in both free SSU and
assembled monosome were also decreased (Fig. 5C; Supplemen-
tary Material, Fig. S4A). A similar MRPL37 phenotype was ob-
served in MTO1-deficient heart, where a strong decrease in LSU
and assembled ribosome was revealed, but with no apparent
changes to the SSU. Surprisingly, the monosome fraction from
MTO1 mutant mitochondria displayed a concurrent increase in
MRPS25 signal together with a loss of MRPL37 signal in the
same fractions. This finding indicates an alteration of mitoribo-
some assembly/composition (Fig. 5E; Supplementary Material,
Fig. S4C). Skeletal muscle mitochondria of MTO1-deficient ani-
mals displayed decreased levels of MRPL37 in both the free LSU
and assembled monosome; unchanged MRPS35 levels in the
free SSU, but less MRPS35 inmonosomes (Fig. 5F; Supplementary
Material, Fig. S4D). Since the signals were normalized to the
original input and hence the altered content of mitoribosomal
proteins, the observed changes in mitoribosomal subunits and
assembled monosome cannot be attributed to the altered stea-
dy-state protein levels inMTO1mutantmitochondria. Decreased
monosome assembly was also revealed by sucrose gradient frac-
tionation of MTO1-deficient MEFs (Supplementary Material,
Fig. S4E). Although the molecular basis of the tissue specificity
remains elusive, these data highlight for the first time a role
of MTO1 in mitoribosome assembly.

A ketogenic diet partially ameliorates the OXPHOS defect
in MTO1-deficient mice

In bacteria, variations in nutritional conditions can exert an effect
on tRNA modification (15), which is modulated by the MTO1-bac-
terial homolog GidA (49,50). This could suggest that tRNA modifi-
cation and its impact on translation fidelity may be part of the
cellular, and potentially in mammals of mitochondrial, nutrient
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Figure 5. MTO1 interacts with mitoribosomal subunits and affects mitoribosome assembly. (A) Immunoprecipitation of MTO1 from HeLa cells expressing flag-tagged

MTO1 from a TET promoter. Immunoprecipitations were performed in the absence and presence of RNase. The eluate was probed by immunoblotting for the

presence of the mitoribosomal proteins MRPL37 and MRPS35 as well as for HSP60 and HSP70. (B) Western blot analysis and quantification of mitochondria of WT,

heterozygous and homozygous MTO1 mice to assess enzymes connected to the mitochondrial translation. Steady-state levels of mitoribosomal proteins MRPS27/10

and MRPL12 tested. Porin (VDAC) was used as a loading control. Depicted are representative blots. (C–F) Analysis of mitoribosomal assembly by sucrose gradient

ultracentrifugation using mitochondrial extracts. Sedimentation of the 28S (small subunit), 39S (large subunit) and 55S (monosome) were determined by western blot

analysis. Shown is the quantification of the western blots. The amount relative to the input is depicted. See also Supplementary Material, Figure S4. **P < 0.01, ***P < 0.001.
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sensing pathway. To assess whether the biochemical phenotype
of MTO1 deficiency in mice can be modulated by metabolic mea-
sures, we subjected mice to a KD. This dietary intervention has
been implicated in increased mitochondrial biogenesis (41,51)
and hence could also impact mitochondrial translation as part
of this process.

Dietary intervention started at 3months of age and analysis at
12 months of age to assess the response to long-term KD feeding
and compared with age-matched mice which have been fed the
standard diet (SD). In somemouse models of mitochondrial dys-
function, a KD has a proven therapeutic effect (51), while in
others the shift to increased mitochondrial biogenesis worsens
or even induces an OXPHOS defect (41). This ketogenic regime in-
hibits themTOR pathway akin to rapamycin (52), which has been
recently shown to be a powerful therapeutic approach for mito-
chondrial disorders by an as yet unknown mechanism (53). The
mTOR pathway is implicated in cytosolic ribosome biogenesis
and a link between nutrient availability and translation fidelity
is established (54). Feeding a KD protected MTO1-deficient mice
from diet-induced weight gain (Fig. 6A). Since the therapeutic ef-
fects of a KD can be partially due to increasing mitochondrial
mass, we assessed OXPHOS function in isolated mitochondria
and normalized againstmitochondrial markers to preventmask-
ing of any potential positive effects.

The dietary intervention partially ameliorates the OXPHOS
defect in mitochondria. In liver of KD mice, steady-state levels
of NDUFB8, the Complex I subunit, recovered nearly reaching
control levels (Fig. 6B and C). This increase was accompanied by
a recovery of Complex I + III activity compared with age-matched
MTO1 mutant mice on a SD (Fig. 6G). As described above, at this
age (12 months), MTO1 mutant mice exhibit a clear CI + III and
CIV defect in livermitochondria. The CIV defect was also amelio-
rated inMTO1-deficient liver in response to a long-term KD as in-
dicated by significantly increased COX1 protein steady-state
levels and increased COX activity (Fig. 6B, C and G). In brain, no
effect was observed on OXPHOS function or protein levels imply-
ing that KD does not induce a neurological OXPHOS defect in our
MTO1 mutant mouse model (Fig. 6B, D and H) as had been ob-
served in aMTERF2mousemodel (41). In heart, long-termKD res-
cued COX activity and partially rescued C + III activity in MTO1
mutant mice, both of which are reduced in SD-fed mutant mice
(Fig. 6B, E and I). As seen before, protein levels of CIV subunit
COX1 were not affected by MTO1 deficiency. KD modestly but
significantly increased levels of NDUFB8 (Complex I subunit).
In skeletal muscle, the OXPHOS defect was also partially amelio-
rated by the KD regime. Here, the reduced levels of NDUFB8 and
COX1 (Complex IV) seen at 12months of age on SD-fedmicewere
significantly increased in response to the KD. This partial rescue
was also seen when measuring enzymatic activities (Fig. 6B, F
and J).

A ketogenic diet in MTO1 mutant mice does not
ameliorate the translation nor the tRNA modification
defect, but balances the secondary stress responses
induced by the loss of MTO1

To shed light on themolecular mechanism bywhich a long-term
KD can ameliorate OXPHOS defects in MTO1-deficient mice, we
assessed the key affected processes in animals on the SD. Ana-
lysis of de novo mitochondrial protein synthesis using mitochon-
dria isolated from 12-month-old KD animals revealed no gross
effect on the overall labeling capacity in MTO1-deficient mice
relative to control mice on the same diet (Supplementary Mater-
ial, Fig. S5A).

A long-term KD also did not alter the tRNATrp migration pat-
tern in the analyzed tissues. KD and SD animals showed the
same pattern with absence (heart, liver, muscle) or reduction
(brain) of the more slowly, potentially modified form of tRNATrp

(Supplementary Material, Fig. S5B). Nor was any modulatory
effect of the KD on thiouridinylation detected. In all assessed
tissues, thiouridinylation was not affected so that in KD-fed
MTO1-deficient mice the altered migration pattern persisted for
tRNAGlu in heart andmuscle, and tRNAGln in heart. This suggests
that the therapeutic effect of a KD is not mediated by correcting
the tRNA modification defect (Supplementary Material, Fig. S5C
and D). However, we did observe that the KD affected the stea-
dy-state levels of tRNA, thereby relieving the imbalance in liver,
brain and muscle, which persisted in the heart (Supplementary
Material, Fig. S5E–H). Since the KD did not correct the mutated
MTO1-induced tRNAmodification defect, we assessed the impact
of the dietary intervention on secondary stress responses as
potential disease-modifyingmechanisms.We focused on the ac-
tivation of mitochondrial proteases, which were hyperactivated
in MTO1-deficient mice. Twelve-month-old MTO1 mutant KD
mice showed an amelioration of the hyperactivation of LonP
and ClpP in liver, brain and muscle. In the hearts of these ani-
mals, the hyperactivation of ClpP and reduced the levels of
LonP were ameliorated. No effect on AFG3L2 as a marker for the
mAAA-protease was observed (Fig. 6A–D). Activation of mito-
chondrial proteases can be a sign for misfolded proteins in the
mitochondrial matrix compartment, resulting from translation
infidelity. We did not observe any alteration of the gross pattern
of de novo protein synthesis comparing mitochondria isolated
from mice on a SD or a KD diet. However, an unchanged pattern
in these studies does not preclude impaired translation accuracy
as demonstrated inMELAS patient fibroblasts, where the labeling
pattern is indistinguishable from controls, but in-depth analysis
revealed impaired translation fidelity (32). The rebalancing of the
mitochondrial proteases in MTO1-deficient mice on a KD would
be consistent with improved translation accuracy. KD has been
shown to reduce overall protein synthesis in muscle (55) in a
mechanism that could involve mTOR inhibition (52). Reduction
in protein synthesis rates via mTOR modulation could also con-
tribute to less error-prone translation and hence higher transla-
tion fidelity (56). The same effect is conceivable as part of a
mitochondrial nutrient sensing program.

To investigate the cellular responses that are modulated by
the KD in MTO1-deficient mice, we assessed the major cellular
metabolic regulators AKT, mTOR and AMPK. These proteins are
highly sensitive tometabolic disturbances, serve as powerful nu-
trient sensors and are part of a cellular reprograming network to
optimize nutrient utilization (57). In addition, their impact on
cytosolic translation has been shown by us and others to contri-
bute to the co-regulation of mitochondrial and cytosolic protein
synthesis (58,59). MTO1 deficiency induces an imbalance in
AKT, mTOR and AMPK signaling in all tissues independent of
any OXPHOS defect (Fig. 7E–H). Feeding a KD reversed the
mTOR hyperactivation in liver and partially recovered AKT phos-
phorylation. This rescuewas associatedwith ahyperactivation of
AMPK (Fig. 7E). In brain, KD feeding ameliorated the AMPK hyper-
activation without a significant effect on the other pathways
(Fig. 7F). In heart, KDmice had decreased AKT activation without
any gross effect on the other markers (Fig. 7G), while in muscle,
the KD regime reversed the activation defect in AMPK and AKT
(Fig. 7H). Due to the complexity of these effects, it remains elusive
which of them is adaptive or rather maladaptive and what the
exact role is of the KD, with its own complex physiological conse-
quences on this scenario.
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Figure 6. Long-termKD feeding partially ameliorates the OXPHOSdefect inMTO1mutantmice. (A)Weight curve ofWT, heterozygous and homozygousMTO1mice on SD and onKD (n = 10) (B–F)Western blot analysis and quantification

of mitochondria of WT, heterozygous and homozygous MTO1 mice on SD and KD. All values were normalized relative to respective WT. Mice were 12 months old at the time of the analysis. (G–J) Enzymatic activity of CI + III and COX

measured in isolated mitochondria from SD- and KD-fed mice. All activities were normalized relative to WT. Mice were 12 months old at the time of the analysis. *P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 7.KD feeding balancesmitochondrial protease and starvation signaling responses inMTO1-deficientmice. (A–D) Quantification ofmitochondrial proteases inMto1mutant and controlmice fed a SD andaKD. See Supplementary

Material, Figure 6 for blots. (E–H) Quantification of markers of the starvation pathway AMPK, mTOR and AKT based on analysis of their unphosphorylated and their phosphorylated form. Values are normalized relative to the control.

Mice are 12 months of age. (I) Model of the function of MTO1 in mammalian mitochondria: MTO1 is bound to the mitoribosome and involved in tRNAmodification. Both functions could happen simultaneously or by different protein

pools. MTO1 thereby controls the fidelity of mitochondrial translation and hence OXPHOS assembly and stability. (J) Model for the responses evoked due to MTO1 deficiency: loss of MTO1 results in a tissue-specific tRNAmodification

defect resulting in compromised translationfidelitywhich affectsOXPHOSprotein assembly. As a consequence,mitochondrial UPR in formofmitochondrial proteases is hyperactivatedwhich impactsOXHOSprotein stability and gives

rise to the OXPHOS defect. The partially ameliorating effect of KD feeding could be caused by the impact of secondary effects of thismitochondrial defect on the cellular starvation signaling aswell as on themitochondrial UPR. It is also

possible that the cytoplasmic and mitochondrial translation machinery communicate by an unknown mechanism. *P < 0.05, **P < 0.01, ***P < 0.001.
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Discussion
Defects in the mitochondrial energy-generating system often re-
sult in tissue-specific phenotypes that might arise from highly
tissue-specific regulation of the OXPHOS system in healthy but
also pathological conditions. So far, this phenomenon is only
poorly understood. Regulation of mitochondrial translation is in-
creasingly recognized for contributing to this diversity (16,60,61).
Our results underline the role of the Mitochondrial Translation
Optimisation Factor 1, MTO1, in this scenario.

Genetic alterations in MTO1 have recently been associated
with mitochondrial diseases and a growing number of patients
are being reported, including a new one in this study (8,9). The
reported MTO1 patients exhibit hypothrophic cardiomyopathy
indicating a strong susceptibility of the heart for MTO1 deficiency
independent of the exact mutation.

MammalianMTO1 shares ahighhomology to the bacterialGidA
and the yeast MTO1. GidA is involved in tRNA modification, which
contributes to codon recognition, as well as stability and function-
ality of tRNAs (15,62). Yeast MTO1 is thought to be involved in the
same process, and its deficiency in yeast results in reduced tRNA
modificationassociatedwitha severemitochondrial translationde-
fect (47,48). Yeast has been also used to model the patient muta-
tions, all of which confer a mitochondrial translation defect in
yeast (8,9). However, no role of MTO1 in mammalian tRNA modifi-
cation and translation could be established up to now. Here, we
demonstrate for the first time that MTO1 is involved in tRNAmodi-
fication and in the regulation of mitochondrial translation on a tis-
sue-specific level (see Table 2 for summary) and thereby establish
MTO1 as a novel player in the tissue-specific regulation of OXPHOS.

Here,we show for the first time thatMTO1mutations in patient
fibroblasts result in a decreased translation capacity associated
with an altered thiourdinylation pattern of mitochondrial tRNAs.
The effect of MTO1 on mitochondrial translation and tRNA modi-
fication is recapitulated inMTO1 deficient MEFs andmice: herewe
found that loss of MTO1 reduced the mitochondrial translation
rate. While we only detected an altered translation pattern in
MTO1-deficient hearts, we observed a robust activation of mito-
chondrial proteases in all tissues independent of the OXPHOS de-
fect. These findings indicate an increased abundance of mutated
proteins in the mitochondrial compartment which is consistent
with the hypothesis that MTO1 is a key factor for maintaining
translation accuracy and that loss of MTO1 results in error-prone
protein synthesis. In accordancewith this hypothesis,we observed
an assembly and stability defect of CI and CIV-containing entities
which could be caused by misfolded ormutated proteins originat-
ing from error-prone mitochondrial translation.

In tissues and in MEFs, the activation of mitochondrial pro-
teases correlated with an altered migration pattern of tRNATrp.
Neither in tissues nor in cell models did we observe thiolation
of tRNATrp, suggesting that the alteration is not induced by chan-
ged thiourdinylation. This tRNA has been shown to be taurine
modified in mammalian mitochondria (44). It is plausible that
loss of MTO1 causes an altered tRNATrp taurine modification re-
sulting in the observed migration pattern. In addition, in heart
and muscle, MTO1 deficiency results in aberrant thiolation of
tRNAs without affecting the overall thiouridinylation capacity.
In heart, this impairment increases with aging. These data dem-
onstrate for the first time that MTO1 has indeed in a role in fine
tuning the tRNA-thiolation pattern inmammalianmitochondria
and that it is a crucial player in precise thiolation of tRNA inmus-
cular tissue. This finding clearly demarcate MTO1 from MTO2,
which affects in patient fibroblasts the thiouridinylation capacity
without alteration of the thiolation pattern (22).

Patients carrying mutations in MTO1 have a cardiac-specific
phenotype (Table 1). This heart-specific pathology is recapitulated
by the MTO1 mouse model that we used in this study (38). Our
findings show that the CI defect is most severe in the heart com-
pared with that in other tissues that might be the driving force for
this cardiac specific pathology. The heart is also most affected by
alterations of tRNAmodification, and the onlyassessed tissue that
showed an age-related aggravation of this defect. Since precise
tRNA modification is part of the translation fidelity control, this
heart-specific alteration could result in a tissue-specific increased
burden of translation inaccuracy. This hypothesis is in line with
our finding of a heart-specific alteration in the mitochondrial
translation pattern.

Our results also indicate a newand surprising role of MTO1 on
mitoribosomal assembly. Interaction studies revealed thatMTO1
interacts with mitoribosomal proteins in an RNA-independent
manner. This finding is in line with the hypothesis that MTO1
interacts with the small and the large subunit and aids in the as-
sembly or stability of the monosome. Consistently, loss of MTO1
results in an aberrant monosome assembly as well as an imbal-
ance ofmitoribosomal proteins. It is yet unclearwhether the pool
of MTO1 that interacts with the mitoribosome is different from
the pool being involved in tRNA modification.

The function ofMTO1-bacterial homolog GidA in tRNAmodifi-
cation depends on nutrient supply (49,50). We therefore used the
mouse model to probe how metabolic intervention interacts
withMTO1 deficiency to determinewhetherMTO1 andmitochon-
drial translation are involved in nutrient sensing as seen in the
bacterial system. Long-term KD feeding partially ameliorated the
OXPHOS defect in all affected tissue of MTO1 mutant mice. Intri-
guingly, this effect was independent of tRNA modification or the
translation capacity. However, KD feeding had a balancing effect
on secondary stress responses: the dietary intervention relieved
the hyperactivation of mitochondrial proteases including the
mtUPR marker ClpP. These responses are increasingly recognized
for driving disease pathogenesis (35). MTO1 deficiency also
resulted in strong and tissue-specific alteration of starvation
signaling, independent of the OXPHOS defect. We and others
could recently show that mitochondrial and cytosolic translation
are co-regulated via mTOR/AMPK/AKT signaling and that this
scenario is responsive to changes in nutrient supply (58,59). It is
conceivable that the disturbance in mitochondrial translation
induced by MTO1 deficiency is sensed by the cytoplasmic system
and finally results in imbalanced co-regulation. In our mouse
model, KD feeding reversed or diminished the hyperactivation of
the tissue-specific starvation responses. While it is unclear how
this effect contributes to the partial OXPHOS rescue, the dietary
intervention contributes to a balanced co-regulation through
affecting the mTOR/AMPK/AKT signaling cascade.

Based on our findings, we propose the followingmodel: MTO1
is involved in controlling the accuracy of tRNA modification in
mammalianmitochondria and thereby regulates translation effi-
ciency and translation fidelity (Fig. 7I). Loss ofMTO1 results in ab-
errant tRNA modification, which decreases translation rate and
translation accuracy. As a consequence of the error-prone trans-
lation, the mitochondrial UPR becomes hyperactivated which
can affect stability of OXPHOS proteins. The resulting mito-nu-
clear protein imbalance is also sensed by the starvation signaling
which governs cytoplasmic translation and hence contributes to
the co-regulation of both systems (Fig. 7J). Dietary intervention
such as KD feeding alleviates this imbalance by resolving the hy-
peractivation of mitochondrial proteases and interfering with
the starvation signaling which finally results in a partial OXPHOS
rescue independent of the tRNA modification defect.
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Overall, our data demonstrate for the first time a role of mam-
malian MTO1 in mitochondrial tRNA modification and trans-
lation efficiency and fidelity. These findings also highlight
mitochondrial translation and MTO1 as important determinants
in the tissue specificity of OXPHOS regulation. Importantly, we
could demonstrate that KD feeding partially ameliorates the
OXPHOS defects caused by MTO1 deficiency by bypassing tRNA
modification and impaired translation fidelity through modulat-
ing downstream responses. These findings not only add a newdi-
mension of developing therapies for disorders associated with
impaired mitochondrial tRNA modification and compromised
mitochondrial translation fidelity, but also imply MTO1 as part
of a nutrient-sensing program within mitochondria and link
translation fidelity to nutrient supply.

Materials and Methods
Cell culture

MEFs and patient fibroblasts were cultured at 37°C in humidified
5% CO2 and 95% air in DMEM medium supplemented with 10%
fetal bovine serum, 1 m pyruvate and 50 µg/ml uridine, 1×
NEAA and -glutamine. For galactose challenging, glucose was
substituted with equimolar amounts of galactose, and dialyzed
serum was used.

Animal husbandry

Micewere held in a 12/12 h light/dark cycle at room temperature,
and tissue was extracted after PBS perfusion. The KD increased
fat intake to 60% while maintaining the caloric intake of the con-
trol diet. Metabolic challenges were initiated at 3 months of age.
This study was carried out in strict accordance with the recom-
mendation of German Animal Protection laws. The protocol
was approved by the Committee on the Ethics of Animal Experi-
ments of the Office for Nature, Environment and Protection,
North Rhine-Westphalia (Landesamt für Natur, Umwelt und Ver-
braucherschutz). All efforts were made to minimize suffering.

Measurement of mitochondrial enzymatic activities

Mitochondrial enzymatic complex activities were measured
spectrophotometrically in isolated mitochondria using a Perkin
Elmer Lambda 35 UV/VIS spectrophotometer (Perkin Elmer,
Waltham, MA, USA) as reported before (63). All assays were per-
formed at room temperature. Experiments were performed min-
imally in triplicate, followed by statistical analysis.

Western blot analysis

Extracts prepared from cells, tissue and mitochondria were sepa-
rated by SDS-PAGE and transferred to polyvinylidene difluoride
membranes (Bio-Rad, Munich, Germany). Membranes were
blocked in 5% milk TBS and incubated with the primary antibody
overnight followed by a secondary anti-mouse IgG conjugated to
horseradish peroxidase (HRP). The chemiluminescent signal was
detected using the Chemiluminiscence Detection Kit (Applichem,
Darmstadt, Germany). Antibodies were obtained from Invitrogen
(OXPHOS Cocktail, NUDFA8, NUDUFA9, COXI), Cell Signaling
(pmTOR/mTOR, pAMPK/AMPK, pAKT/AKT) and Abcam (VDAC,
MRPS35, MRPL37, UQCR2, ClpP, LonP). AFG3L2 was a gift from
Prof. Thomas Langer.

from Abcam (Cambridge, UK), Invitrogen or Santa Cruz Bio-
technology (Heidelberg, Germany). Experiments were performed
in triplicate followed by densitometric and statistical analysis.T
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BN-PAGE

BN-PAGE was carried out as described to resolve fully assembled
OXPHOS complexes in a laurylmaltoside extract aswell as supra-
molecular assemblies of OXPHOS complexes in digitonin extracts
(64,65). In-gel activity assayswere performed following the proto-
cols reported in Ref. (64). Metabolic chase of OXPHOS complexes
and supercomplexes was carried out as described following
extraction of OXPHOS proteins (42).

Metabolic pulse-chase labeling and flotation assay

The BN-pulse-chase experiment was carried out according to
Ref. (66). Mitochondrial pulse-chase labeling was performed as
described in Ref. (67). Flotation assaywas carried out as published
previously (68). In organello labeling was performed as previously
described in Ref. (69). For the pulse titration, the incubation time
with radiolabeled 35S-methionine/cysteine was varied as de-
scribed in the text.

Northern blot analysis

Regular northern blot analysis was performed as previously
described, on total RNA isolated from cells and tissue (70–72).
[(N-acryloylamino)phenyl]mercuric chloride (APM)-northern
blotting analysis was performed as described previously to as-
sess the thiolation status of mitochondrial tRNAs (73). Experi-
ments were performed in triplicates followed by densitometric
and statistical analysis.

Mitoribosomal fractionation

Mitoribosomal fractionation of 28S and 39S ribosomal subunits
as well as of 55S monosome was effected by ultracentrifugation
through a linear density sucrose gradient as described previously
in Ref. (74).

Immunoprecipitation

Mitochondria were isolated from cells and were resuspended in
lysis buffer (50 m Tris, pH 7.4, 150 m NaCl, 1 m MgCl2, 1%
NP-40). Immunoprecipitation was performed with α-FLAG-Gel
following manufacturer’s recommendations (Sigma Aldrich, St
Louis, MO, USA). Elution was effected with FLAG peptide

Statistics and quantification

ImageJ was used for densitometric analysis (75). Student’s T-test
was used for statistical evaluation.

Supplementary Material
Supplementary Material is available at HMG online.
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