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ABSTRACT
Research that uses stable isotope analysis often involves a delay between sample
collection in the field and laboratory processing, therefore requiring preservation to
prevent or reduce tissue degradation and associated isotopic compositions. Although
there is a growing literature describing the effects of various preservation techniques,
the results are often contextual, unpredictable and vary among taxa, suggesting the
need to treat each species individually. We conducted a controlled experiment to
test the effects of four preservation methods of muscle tissue from four species of
upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper
Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and
Red Snapper Lutjanus campechanus). We used a paired design to measure the effects
on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and
sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for
both δ13C and δ15N values from controls were lowest for samples preserved on ice,
intermediate for those preserved with salt, and highest with ethanol. Within species,
both salt and ethanol significantly enriched the δ15N values in nearly all comparisons.
Ethanol also had strong effects on the δ13C values in all three groupers. Conversely,
for samples preserved on ice, we did not detect a significant offset in either isotopic
ratio for any of the focal species. Previous studies have addressed preservation-
induced offsets in isotope values using a mass balance correction that accounts for
changes in the isotope value to that in the C/N ratio. We tested the application of
standard mass balance corrections for isotope values that were significantly affected
by the preservation methods and found generally poor agreement between corrected
and control values. The poor performance by the correction may have been due to
preferential loss of lighter isotopes and corresponding low levels of mass loss with a
substantial change in the isotope value of the sample. Regardless of mechanism, it was
evident that accounting for offsets caused by different preservation methods was not
possible using the standard correction. Caution is warranted when interpreting the
results from specimens stored in either ethanol or salt, especially when using those
from multiple preservation techniques. We suggest the use of ice as the preferred
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preservation technique for muscle tissue when conducting stable isotope analysis as
it is widely available, inexpensive, easy to transport and did not impart a significant
offset in measured isotopic values. Our results provide additional evidence that
preservation effects on stable isotope analysis can be highly contextual, thus requiring
their effects to be measured and understood for each species and isotopic ratio of
interest before addressing research questions.

Subjects Aquaculture, Fisheries and Fish Science, Biochemistry, Ecology, Ecosystem Science,
Marine Biology
Keywords Protein hydrolysis, Food webs, Fixatives, Protein fractionation, Stable isotope analysis,
Methodology

INTRODUCTION
The application of stable isotope analysis (SIA) has arguably been one of the most

important innovations in the field of ecology in the last 50 years. SIA has been used across

ecological sub-disciplines, providing a powerful tool to answer once intractable questions

(DeNiro & Epstein, 1981; Fry, 2006; Peterson & Fry, 1987). Stable isotopes of carbon

(13C/12C) and nitrogen (15N/14N) are innate components of all biological material, and

the ratio of heavy to light isotopes observed in organisms is controlled by a confluence of

biological and physical factors that fractionate the isotopes by differences in mass. These

values are set by autotrophs and incorporated into the ecosystem as primary production

is consumed (O’Leary, 1988). Carbon is typically used to identify primary production

sources. For example, plants that use the C3 photosynthetic pathway have carbon isotope

values depleted in the heavy isotope (−28 h) relative to grasses that use the C4 pathway

(−12h) (O’Leary, 1988). This difference has been used to determine when ancient cultures

switched from gathering to farming (Schoeninger & Moore, 1992) and when brewers skirted

Bavarian Purity Laws (Brooks et al., 2002). In contrast, nitrogen isotopes are often used

to establish trophic position (Post, 2002). After food is consumed, metabolic processes

preferentially cleave the bonds in proteins made with the lighter 14N isotope. These waste

products of metabolism are converted to urea and excreted leaving behind tissues made

with the enriched 15N amino acids (Wright, 1995). Typically, organisms are enriched

approximately 3h relative to their food (Hussey et al., 2014; Post, 2002).

Research that uses stable isotope analysis often involves a delay between sample col-

lection in the field and laboratory processing, therefore requiring preservation to prevent

or reduce tissue degradation and associated changes in isotopic compositions. Methods

used to preserve soft tissues, such as muscle, can present issues in the interpretation of the

observed isotope values (Sarakinos, Johnson & Zanden, 2002). Although there is a growing

literature describing the effects of various preservation techniques, the results are often

unpredictable and vary among taxa, suggesting the need to treat each species individually

(Arrington & Winemiller, 2002; Correa, 2012; Kelly, Dempson & Power, 2006; Sarakinos,

Johnson & Zanden, 2002). When a systematic offset in isotope values is detected, a mass
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Table 1 Sample sizes, length information [mean (SE), minimum, and maximum], and C/N values of
the focal species.

Species No.
collected

Mean (SE)
TL (mm)

Max
TL (mm)

Min
TL (mm)

Mean (SE)
C/N

E. morio 24 569 (26) 360 764 3.22 (0.13)

M. microlepis 19 841 (38) 500 1090 3.25 (0.15)

M. phenax 15 569 (13) 512 664 3.22 (0.15)

L. campechanus 20 677 (16) 546 794 3.22 (0.10)

balance correction can be employed using the variation in C/N ratio to correct the isotope

values of the preserved tissue (Fry et al., 2003; Ventura & Jeppesen, 2009). The underlying

assumption of this method is that the preservation technique removes substances from the

whole tissue (e.g., hydrolyzed lipids), altering the isotope value of the whole tissue, and this

can be accounted for by relating the change in isotope value to the change in C/N ratio.

However, these corrections are not always successful and there are still open questions

about the mechanisms that alter tissue isotope values after preservation (Kelly, Dempson &

Power, 2006).

In the current study, we conducted a controlled experiment to test the effects of four

preservation methods of muscle tissue from four species of upper trophic-level reef

fish (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca

phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the

effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol,

and sodium chloride (table salt), against that in a liquid nitrogen control. Additionally, we

tested the application of standard mass balance corrections for isotope values that were

significantly affected by the preservation methods.

METHODS
Collection and preservation of samples
Red Grouper, Gag, Scamp, and Red Snapper are co-occurring, essential members of

reef ecosystems in the eastern Gulf of Mexico. They are ecologically important, mid-

to upper-level predators that have also been among the most highly targeted fishes by

commercial and recreational fishermen in the region.

Specimens were collected using hook-and-line from reef habitats in the eastern Gulf

of Mexico as part of an ongoing fishery-independent study (Fig. 1). Collections of fishes

were conducted in accordance with ethics policies followed by the University of South

Florida Institutional Animal Care and Use Committee (approval no. W4193) and permits

from the Florida Fish and Wildlife Conservation Commission (Special Activity License

SAL-13-1244-SRP-2) and the US National Oceanic and Atmospheric Administration

(Letter of Acknowledgment and Exempted Fishing Permit). A total of 78 individuals

were collected for this study, across a range of sizes commonly observed for each species

(Table 1). White muscle tissue ventral to the dorsal fin was removed from each specimen

and cut into four, equal-sized pieces. Each piece was then subjected to one of four

Stallings et al. (2015), PeerJ, DOI 10.7717/peerj.874 3/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.874


Figure 1 Study region in the eastern Gulf of Mexico where samples were collected (locations of
collection sites shown with black stars). 10 m isobaths are shown from 10–100 m.

preservation techniques flash freezing using liquid nitrogen (control), ice, 95% ethanol,

or salt—all placed in uniquely-labeled, 2 ml microcentrifuge tubes. Control samples

were frozen instantaneously by being placed in liquid nitrogen in a 4 liter vacuum flask.

Liquid nitrogen served as a control as it neither effects existing isotopic values, nor does

it allow bacterial degradation of the tissue to occur (Michener & Lajtha, 2007). Samples

preserved with liquid nitrogen and those placed on ice were transferred to a −20 ◦C freezer

after 48 h, representing a likely sequential scenario commonly used by field ecologists

for tissue preservation. Freezing is one of the most commonly used controls for studies

on preservation effects, as it has been shown to have negligible effects on isotope values

of fish tissues (Bosley & Wainright, 1999; Sarakinos, Johnson & Zanden, 2002). For the

other preservatives, samples were placed in microcentrifuge tubes with 1 ml of either 95%

ethanol (CH3CH2OH) or table salt (NaCl), and were kept at ambient room temperature

(22 ◦C). All samples were held for 30 days prior to processing for stable isotope analysis.
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Analytical procedures
At the conclusion of the preservation period, all tissues were rinsed with deionized water,

and placed in glass vials in a drying oven (55–60 ◦C) for 48 h. Each desiccated muscle

sample was then ground to a fine powder using a mortar and pestle to ensure even

combustion during mass spectroscopy. The mortar and pestle, as well as additional tools

and work surfaces, were cleaned with 99.5% ethanol and Kimwipes® between individual

processing to prevent cross-contamination of samples. Ground samples with a dry weight

of 200–1000 µg were placed in tin capsules and sealed for combustion and isotopic analysis.

Using a Carlo-Erba NA2500 Series II elemental analyzer (Carlo Erba Reagents, Rodano,

Milan, Italy) coupled to a continuous-flow ThermoFinnigan Delta + XL isotope ratio

mass spectrometer, (Thermo Finnigan, San Jose, California, USA) we measured 13C/12C,
15N/14N and C/N at the University of South Florida, College of Marine Science in St. Pe-

tersburg, Florida. The lower limit of quantification for this instrumentation was 12 µg C or

N. We used calibration standards NIST 8573 and NIST 8574 L-glutamic acid standard ref-

erence materials. Analytical precision, obtained by replicate measurements of NIST 1577b

bovine liver, was ±0.19h for δ15N and ±0.11h for δ13C. Results are presented in standard

notation (δ, in h) relative to international standards Pee Dee Belemnite (PDB) and air.

Mass balance corrections
We used an arithmetic correction based on changes in C/N and preserved vs control

stable isotope values (Fry et al., 2003; Smyntek et al., 2007; Ventura & Jeppesen, 2009). This

method assumes the preservation method alters the isotope values of the original tissue by

leaching material into the preservative, specifically through the loss of hydrolyzed proteins

or lipids. The assumption is that the loss of protein or lipid will be expressed by changes in

the C/N of the preserved tissue and can be corrected by relating changes in isotope value of

the preserved tissue to the change between the control and preserved tissue C/N as:

δcontrol = δpreserved − Δδ(preserved−control) (1)

Δδ(preserved−control) = X


C/Ncontrol − C/Npreserved

C/Npreserved


(2)

where the δcontrol is the isotope value of the unpreserved tissue and δpreserved is the isotope

value of the preserved tissue. Δδ(preserved−control) is the net effect of preservation of the

isotope value of the preserved tissue. X is the difference between the isotope value of the

preserved and control tissue.

Statistical analysis
We provide mean (SE) offset values for preservative—control both across and within

species. For each species, we used paired t-tests to determine whether δ15N and δ13C

isotopic values from preserving samples with ice, ethanol, and salt were statistically

different from control samples preserved in liquid nitrogen. We also use linear regression

with 95% confidence intervals of corrected against control isotopic values to determine

efficacy of the mass balance corrections.
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Table 2 Mean (SE) offset (h) for nitrogen and carbon isotopes across four focal species based on
absolute values of preservative–control.

Preservative δ15N δ13C

Ice 0.20 (0.02) 0.28 (0.03)

EtOH 0.56 (0.04) 0.42 (0.04)

NaCl 0.47 (0.04) 0.34 (0.05)

Figure 2 Offsets (preservative–control) in (A) δ15N and (B) δ13C isotopic values due to preservation
technique (mean ± 2 SE). Offsets for preservatives that were statistically different from the liquid
nitrogen controls are noted as ∗(P < 0.05), ∗∗(P < 0.01), and ∗∗∗(P < 0.001). Fish illustrations courtesy
of Diane Peebles.

RESULTS
Across species, mean offsets for both δ13C and δ15N values from controls were lowest for

samples preserved on ice, and highest for those preserved with ethanol (Table 2). Offsets

for δ15N were generally higher than those for δ13C. For δ13C, salt imparted a 21% offset

and ethanol a 50% offset compared to ice. For δ15N, salt imparted a 135% offset compared

to ice and ethanol a 180% offset.

Within species, the effects of the different preservatives ranged in both magnitude and

statistical significance (Fig. 2 and Table 3). Ethanol preservation significantly affected

δ15N values in all four species, and δ13C values in all three groupers. Salt preservation

significantly affected δ15N values in three species (Red Grouper, Scamp and Red Snapper),

and δ13C in only Red Grouper. Ice preservation did not impart a strong or statistically

significant offset in either isotope ratio of any species measured.

C/N corrections
Overall, there was poor agreement between corrected and control values using the mass

balance approach. Although all regressions were within 95% confidence of a 1:1 slope

(i.e., slope = 1, intercept = 0), with the exception of ethanol-preserved δ13C for Red Snap-

per, the fit was low for both corrected ethanol- (mean R2
= 0.23; R2range =< 0.01–0.39;

Figs. 3–6A and 6B) and salt-treated samples (mean R2
= 0.23; range =< 0.01–0.55;

Figs. 3–6C and 6D) across all four species. Corrected values for both preservatives fell

Stallings et al. (2015), PeerJ, DOI 10.7717/peerj.874 6/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.874


Table 3 Summary of paired t-tests and two-sided P-values across species and preservation method
for δ15N and δ13C isotopes. Significant P-values are bold-typed.

δ15N δ13C

Species Preservation(df) t-value P-value t-value P-value

E. morio

ice(23) −1.494 0.149 −0.885 0.385

ethanol (22) −9.956 <0.001 −7.446 <0.001

salt(23) −7.400 <0.001 −2.472 0.021

M. microlepis

ice(18) −1.276 0.218 −0.418 0.681

ethanol(18) −11.077 <0.001 2.438 0.025

salt(15/18) −1.569 0.134 −0.939 0.360

M. phenax

ice(13) −0.498 0.627 −0.533 0.603

ethanol(12) −6.906 <0.001 −5.794 <0.001

salt(13) −5.464 <0.001 −0.892 0.389

L. campechanus

ice(19) −1.318 0.203 −0.802 0.432

ethanol(18) −5.040 <0.001 −1.269 0.221

salt(18) −6.246 <0.001 −0.189 0.852

Table 4 Mean (SE) change in C/N due to ethanol and salt preservation methods.

Species EtOH NaCl

E. morio 0.06 (0.19) 0.03 (0.15)

M. microlepis 0.02 (0.20) −0.18 (0.57)

M. phenax 0.04 (0.20) −0.02 (0.14)

L. campechanus −0.09 (0.22) −0.07 (0.24)

on both sides of the 1:1 line, thus our correction did not tend to systematically under or

overestimate the change in nitrogen isotope values after preservation. The poor correction

values were a direct consequence of the small change and small degree of correlation

between the change in the C/N ratio of the control and preserved tissues relative to the

change in isotope values (Table 4).

DISCUSSION
Using a controlled experiment, we have demonstrated that three techniques used to

preserve muscle tissue can have varying effects on measured isotope values for four

species of reef fish. Both ethanol and salt caused significant changes to the measured

isotope values, but the effects were contextual on species and the isotope being measured.

Conversely, preservation of muscle tissue on ice for 48 h, followed by storage in a −20 ◦C

freezer for 28 days, did not impart a significant offset in the isotopic values of either carbon

or nitrogen for any of our focal species. Because ice is widely available, inexpensive, and

easy to transport relative to liquid nitrogen, we suggest its use as a preservation technique
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Figure 3 Mass balance corrected values against control values for E. morio. The 1:1 line (hashed),
predicted (solid), and 95% confidence intervals are given for (A) ethanol δ13C, (B) ethanol δ15N, (C)
salt δ13C, and (D) salt δ15N.

for muscle tissue from Red Grouper, Gag, Scamp and Red Snapper when conducting stable

isotope analysis.

There is a substantial and growing number of studies on the effects of various

preservatives and methods on carbon and nitrogen stable isotope values in animal tissues

(Barrow, Bjorndal & Reich, 2008; Sarakinos, Johnson & Zanden, 2002; Ventura & Jeppesen,

2009). Despite the large body of work on the topic, there is little consensus on the effect

of preservation techniques on stable isotope values with a near even number of studies

finding significant and non-significant shifts (Kelly, Dempson & Power, 2006; Sweeting,

Polunin & Jennings, 2004; Ventura & Jeppesen, 2009). When significant differences between
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Figure 4 Mass balance corrected values against control values for M. microlepis. The 1:1 line (hashed),
predicted (solid), and 95% confidence intervals are given for (A) ethanol δ13C, (B) ethanol δ15N, (C) salt
δ13C, and (D) salt δ15N.

control and preserved tissues have been observed, researchers most often opt to develop a

correction curve based on the variation in the C/N in the preserved tissues (Fry et al., 2003;

Logan et al., 2008; Sarakinos, Johnson & Zanden, 2002). However, our results show that even

very small changes in C/N can co-occur with a slight enrichment in carbon and significant

enrichment in nitrogen stable isotope values (Fig. 2).

For carbon isotope values, the enrichment was statistically significant in 3 of the

4 fishes examined for ethanol preservation. We conclude this slight enrichment was

caused by the loss of lipids from the tissue. Lipids are depleted in 13C relative to the

sugars they are created from by approximately 7h as a result of fractionation during the
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Figure 5 Mass balance corrected values against control values for M. phenax. The 1:1 line (hashed),
predicted (solid), and 95% confidence intervals are given for (A) ethanol δ13C, (B) ethanol δ15N, (C) salt
δ13C, and (D) salt δ15N.

oxidation of pyruvate to acetyl coenzyme A (DeNiro & Epstein, 1977). Ethanol is relatively

non-polar compared to the water in the muscle tissue and could extract the lipids into the

preservative, and indeed enrichment of tissues has been shown after the application of lipid

extraction techniques to muscle tissue (Logan et al., 2008; Nelson et al., 2011). All of the

pre-extraction tissues had C/N ratios typical of fish muscle, ∼3.4, prior to preservation

and showed slight changes in isotope values typical of those observed in previous studies

(Logan et al., 2008; Nelson et al., 2011).

All fishes showed a significant enrichment of nitrogen isotope value with ethanol and

salt preservation with little change in C/N ratio. This indicates there was a significant loss of
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Figure 6 Mass balance corrected values against control values for L. campechanus. The 1:1 line
(hashed), predicted (solid), and 95% confidence intervals are given for (A) ethanol δ13C, (B) ethanol
δ15N, (C) salt δ13C, and (D) salt δ15N.

the light isotope from tissue upon preservation with little change in mass from the sample

itself. Therefore, we conclude there were some critical fractionation processes associated

with the loss of amino acids linked with the breakdown of proteins. This resulted in low

levels of mass loss but a substantial change in the isotope value of the sample.

There are a two mechanisms that may be responsible for the observed results. Ethanol

is known to denature proteins and form new bonds between ethanol and the protein side

chains (Herskovits, Gadegbeku & Jaillet, 1970; Nozaki & Tanford, 1971). The free energy

required to conduct these reactions is high and therefore likely favors the cleaving of
14N–14N bonds. Thus, such reactions may explain the very high fractionation yet low
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Figure 7 Carbon and nitrogen isotope values for the four study species showing the relative trophic
positions and the effects of different preservation methods. Fish illustrations courtesy of Diane
Peebles.

mass loss observed in this study with preservation in ethanol. We also observed a strong

fractionation of the nitrogen isotope values of the preserved tissues with salt. Salt is highly

effective at extracting proteins from tissue samples, removing as much as 91% of the

available protein (Dyer, French & Snow, 1950). Because our samples were stored at a low

temperature, the extraction was likely less efficient. Regardless, it preferentially removed

the light nitrogen bonds, resulting in little mass loss with high fractionation.

We designed our experiment to represent a “typical” sampling, preservation, and pro-

cessing time used in ecological studies. The rates of the processes described above would

all vary with changes in time, temperature, preservative volume, and physical dimensions

of the sample (e.g., surface area to volume ratio). In addition, differences among species in

the protein and lipid content of the muscle tissue could affect the post-preservation isotope

values. Exposure to preservatives longer than 30 days or samples with higher lipid contents

may produce greater changes in isotope values after preservation. It is our suggestion that

given both preservatives are known to extract proteins, amino acids, and lipids with the

potential for an unknown amount of fractionation to occur in proteins, caution be used

when interpreting the results from specimens stored in either ethanol or salt.

To further illustrate why caution is warranted for interpreting isotope values for

specimens preserved in ethanol or salt, we provide a standard biplot with mean

(SE) values of δ13C and δ15N for each species-by-preservation method (Fig. 7). In
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δ13C–δ15N space, samples preserved in liquid nitrogen and on ice are indistinguishable

from each other. However, a strong departure from control values is evident especially

in δ15N space for salt and even more so for ethanol. While the ecological importance

of these statistically significant offsets would be dependent upon the questions being

asked, the biplot illustrates how both quantitative and qualitative conclusions may be

hindered by ethanol and salt preservation. This observation could be further exacerbated

by comparing stable isotope values from samples preserved with multiple techniques in

the same study. For example, mixing isotopic values from tissues preserved differently

could lead to misleading conclusions regarding niche space (e.g., Layman et al., 2007).

Researchers using stable isotope analysis on the species presented here, and any others

involving soft tissues, should either use a common preservation method, or at a minimum,

understand the potential effects of different preservation methods before making

cross-study comparisons. Further work should also be conducted to determine whether

long-term storage, including freezing, may have important effects on isotope values before

historic specimens (e.g., museum collections) are used. Our results provide additional

evidence that preservation effects on stable isotope analysis can be highly contextual, thus

requiring their effects to be measured and understood for each species and isotopic ratio of

interest before addressing research questions.
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