
Evidence of Heterogeneity by Race/Ethnicity in Genetic 
Determinants of QT Interval

Amanda A. Seyerle, Alicia M. Young, Janina M. Jeff, Phillip E. Melton, Neal W. Jorgensen, 
Yi Lin, Cara L. Carty, Ewa Deelman, Susan R. Heckbert, Lucia A. Hindorff, Rebecca D. 
Jackson, Lisa W. Martin, Peter M Okin, Marco V. Perez, Bruce M. Psaty, Elsayed Z. 
Soliman, Eric A. Whitsel, Kari E North, Sandra Laston, Charles Kooperberg, and Christy L. 
Avery
Departments of Epidemiology (Amanda A. Seyerle, Eric A. Whitsel, Kari E. North, Christy L. 
Avery) and Medicine (Eric A. Whitsel), University of North Carolina at Chapel Hill, Chapel Hill, 
North Carolina; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 
Seattle, Washington (Alicia M. Young, Yi Lin, Cara L. Carty, Charles Kooperberg); Charles 
Bronfman Institute of Personalized Medicine, Mount Sinai School of Medicine, New York, NY 
(Janina M. Jeff); Centre for Genetic Origins of Health and Disease, University of Western 
Australia, Crawley, Australia (Phillip E. Melton); Departments of Biostatistics (Neal W. 
Jorgensen), and Epidemiology (Susan R. Heckbert, Bruce M. Psaty), Cardiovascular Health 
Research Unit (Susan R. Heckbert, Bruce M. Psaty), and Divisions of Medicine (Bruce M. Psaty), 
and Health Services (Bruce M. Psaty), University of Washington, Seattle, Washington; Group 
Health Research Institute, Group Health Cooperative, Seattle, Washington (Susan R. Heckbert, 
Bruce M. Psaty); Information Sciences Institute and Computer Science Department, University of 
Southern California, Marina Del Rey, California (Ewa Deelman); Office of Population Genomics, 
National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 
(Lucia A. Hindorff); Department of Internal Medicine, Ohio State Medical Center, Columbus, Ohio 
(Rebecca D. Jackson); Division of Cardiology, George Washington University, Washington DC 
(Lisa W. Martin); Department of Medicine, Weill Cornell Medical College, New York, New York 
(Peter M. Okin); Division of Cardiovascular Medicine, Stanford University, Stanford, California 
(Marco V. Perez); Epidemiological Cardiology Research Center (EPICARE), Wake Forest School 
of Medicine, Winston Salem, North Carolina (Elsayed Z Soliman); Department of Genetics, Texas 
Biomedical Research Institute, San Antonio, Texas (Sandra Laston)

Abstract

Background—QT-interval (QT) prolongation is an established risk factor for ventricular 

tachyarrhythmia and sudden cardiac death. Previous genome-wide association studies in 

populations of the European descent have identified multiple genetic loci that influence QT, but 

few have examined these loci in ethnically diverse populations.
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Methods—Here, we examine the direction, magnitude, and precision of effect sizes for 21 

previously reported SNPs from 12 QT loci, in populations of European (n=16,398), African 

(n=5,437), American Indian (n=5,032), Hispanic (n=1,143), and Asian (n=932) descent as part of 

the Population Architecture using Genomics and Epidemiology (PAGE) study. Estimates obtained 

from linear regression models stratified by race/ethnicity were combined using inverse-variance 

weighted meta-analysis. Heterogeneity was evaluated using Cochran's Q test.

Results—Of 21 SNPs, seven showed consistent direction of effect across all five populations, 

and an additional nine had estimated effects that were consistent across four populations. Despite 

consistent direction of effect, nine of 16 SNPs had evidence (P < 0.05) of heterogeneity by race/

ethnicity. For these 9 SNPs, linkage disequilibrium plots often indicated substantial variation in 

linkage disequilibrium patterns among the various racial/ethnic groups, as well as possible allelic 

heterogeneity.

Conclusions—These results emphasize the importance of analyzing racial/ethnic groups 

separately in genetic studies. Furthermore, they underscore the possible utility of trans-ethnic 

studies to pinpoint underlying casual variants influencing heritable traits such as QT.

Studies of the QT interval (QT), a measurement of ventricular depolarization and 

repolarization obtained from the electrocardiogram (ECG), have shown that QT 

prolongation is an established risk factor for ventricular tachyarrhythmias,1 coronary heart 

disease,2 sudden cardiovascular death, and all-cause mortality.2 Several correlates of QT 

prolongation have been identified, including structural heart disease,3 sex,4 and age.5 QT is 

also heritable, with estimates ranging from 35%-40%.6

Early family-based linkage studies have identified rare and highly penetrant mutations 

associated with long- and short-QT syndromes.7 Recent genome-wide association studies 

(GWAS) in large population-based studies of European descent populations also have 

identified several common single nucleotide polymorphisms (SNPs) associated with modest 

increases in QT, including NOS1AP, KCNQ1, and SCN5A,8-10 which altogether account for 

approximately 10% of the variance in QT.11 However, much of the variation in QT remains 

unexplained.

To date, the majority of published GWAS of QT have been conducted in populations of 

European descent.8-10 Few studies have examined the relevance of GWAS-identified QT 

SNPs in multi-ethnic populations,12,13 although such studies are needed to fully understand 

the genetic architecture underlying QT. Therefore, we examined evidence of generalizability 

for 21 SNPs associated with QT in previous GWAS8-10 across populations of African, 

American Indian, Hispanic, and Asian descent from the Population Architecture using 

Genomics and Epidemiology (PAGE) Study.

Methods

Study Populations

The PAGE study is a collaboration of four large, multiethnic, and deeply phenotyped 

consortia.14 Using the ethnically diverse populations of the participating studies, the goal of 

PAGE is to better understand the epidemiologic architecture of well-replicated genetic 
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variants associated with complex disease in global populations. Three PAGE consortia 

contributed the following studies to this research: the National Health and Nutrition 

Examination Surveys (NHANES) through the Epidemiologic Architecture for Genes Linked 

to Environment study,15 the Women's Health Initiative Clinical Trial through the Women's 

Health Initiative (WHI),16 and the Causal Variants Across the Life Course Consortium 

which included the Atherosclerosis Risk in Communities study,17 the Cardiovascular Health 

Study,18 the Strong Heart Study,19 and the Strong Heart Family Study.20 Each study was 

approved by the Institutional Review Board at the respective sites and all participants 

provided written consent. Further details on each study are available in eAppendix.

A total of 42,525 participants from the above studies were genotyped in PAGE. Of these, 

10,051 were excluded according to the following hierarchical criteria (eTable 1): QT 

information unavailable (n=5,286); poor ECG quality (grade=5, n=1,654); major conduction 

defects, including left- or right-bundle branch block and intraventricular conduction delay 

(n=1,197); QRS interval ≥ 120ms (n=662); pacemaker or defibrillator implants (n=20); atrial 

fibrillation or atrial flutter on baseline ECG (n=44); participants under 18 years of age 

(n=334); and genetic ancestry data unavailable (n=854).

QT-Interval Measurement

In each study, certified technicians recorded at baseline, resting, supine (or semi-recumbent), 

standard 12-lead ECGs using either Marquette MAC 12 or MAC PC machines (GE 

Healthcare, Milwaukee, WI, USA). Comparable procedures were used for preparing 

participants, placing electrodes, recording, transmitting, processing, and controlling quality 

of ECGs. The QT-interval was measured electronically using Marquette 12SL algorithm. 

ECGs from Atherosclerosis Risk in Communities study, Cardiovascular Health Study, and 

Women's Health Initiative were processed by the central Epidemiological Cardiology 

Research Center at Wake Forest University, Winston-Salem, NC, USA. Epidemiologic 

Architecture for Genes Linked to Environment study, Strong Heart Study and Strong Heart 

Family Study ECGs were read at independent ECG reading centers using comparable 

protocols (eTable 2).

SNP Selection and Genotyping

The 21 SNPs examined in this study were reported by previously published QT GWAS (as 

of January 2010). The SNPs represent 12 genetic loci, with multiple SNPs reported for 

NOS1AP (4 SNPs), KCNH2 (3 SNPs), KCNQ1 (3 SNPs), PLN (2 SNPs) and SCN5A (2 

SNPs). The 21 SNPs examined here were either targeted for genotyping by the PAGE study 

or were available on previous GWAS chips. Genotyping was done separately by each study 

(eAppendix). Cross-study quality control was performed centrally by the PAGE 

Coordinating Center using 360 samples from the International HapMap Project that were 

genotyped by each participating study.

Statistical Analysis

Study- and race-stratified tests of association between each SNP and QT (in milliseconds 

[ms]) were performed using linear regression models, and assuming an additive genetic 

mode of inheritance. We included the following confounders: study site (where appropriate), 
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sex, age (continuous in years), RR interval (ms) or heart rate (beats per minute) when RR 

interval was not measured directly, and ancestral principal components that assessed global 

ancestry among study participants. Results were combined by inverse-variance weighted 

meta-analysis using METAL,21 and heterogeneity was evaluated using Cochran's Q 

statistic.22 P-values were 2-sided.

Generalizability of SNPs originally identified in European descent populations was assessed 

by examining the direction, precision, and magnitude of estimated effects across racial/

ethnic groups. SNPs were considered directionally consistent if their direction of effect was 

the same across populations. For each non-European descent population, we categorized 

SNPs as stronger than, weaker than, or equal (within 0.05 ms) to the estimates from the 

European-descent population, based on the absolute value of the estimated effect sizes. 

Precision was gauged using the 95% confidence limit difference (CLD).

Haplotype Block Analysis

Given the potential for variation in linkage disequilibrium (linkage disequilibrium) patterns 

between SNPs across racial/ethnic groups,23 haplotype blocks were examined using 

HapMap III data.24 Briefly, we calculated pairwise measures of linkage disequilibrium using 

Hedrick's multiallelic D′, and we generated linkage disequilibrium plots using Haploview 

4.225 and dense genotype data from five International HapMap III populations: African 

Americans from the southwest U.S., Utah residents of northern and western European 

ancestry, Han Chinese from Beijing, China, Japanese from Tokyo, Japan, and a Mexican 

American population from Los Angeles, CA. In accordance with convention, data from the 

Chinese and Japanese populations were pooled before analysis and referred to as “Asian.”

Results

Study Population Characteristics

A total of 32,474 participants from the PAGE consortium were included in this analysis with 

the following breakdown by race/ethnicity: European American (n=18,802), African 

American (n=6,132), American Indian (n=5,465), Hispanic (n=1,143), and Asian (n=932) 

(Table 1). All studies contributed approximately equal proportions of male and female 

participants, with the exception of the Women's Health Initiative Clinical Trial, which 

enrolled only female participants. Notably, the Women's Health Initiative Clinical Trial was 

the only study contributing participants of Asian descent. Estimated mean age varied slightly 

by race/ethnicity, with the highest mean age observed among European Americans (63.8 

years) and the lowest among American Indians (59.1 years). Mean QT was consistent across 

race/ethnicity (range = 403 ms – 405 ms).

Evidence of variation in allele frequency by race/ethnicity was observed for a majority of 

GWAS-identified QT SNPs (Table 2). For example, we observed mean allele frequency 

differences between populations greater than 20% for thirteen SNPs. The two most striking 

differences were for rs12053903 and rs4725982, both of which had a difference of 44% 

between the lowest and highest frequency; for rs12053903, this difference translated to a 

coded allele frequency of 33% in European Americans and 77% in African American, while 
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for rs4725982, the largest difference was between European Americans (22%) and Asians 

(66%).

Summary Results Among European-Descent Populations

After meta-analysis, 20 of 21 SNPs (95%) representing all 12 genetic loci were associated 

with QT in European Americans, with little evidence of study heterogeneity (eTables 3 and 

4). The only European ancestry-identified SNP that was not associated with QT was 

rs12053903 (intronic to SCN5A), which had an estimated effect size of -0.21 (95% 

confidence interval [CI] = -0.86 to 0.45). For the remaining 20 SNPs, the estimated direction 

and magnitude of effects were consistent with previously published results.

Generalizability of GWAS-Identified QT SNPs to Populations of Non-European Descent

Direction and Precision of Effect—Seven of the 21 previously reported QT SNPs 

(33%) had a consistent direction of effect across all populations (Figure 1). These seven 

SNPs (rs12143842, rs12029454, rs11129795, rs2074238, rs37062, rs2074518, and 

rs1805128) represented six genetic loci (NOS1AP, SCN5A, KCNQ1, NDRG4, LIG3 and 

KCNE1). Results were noticeably less precise for rs2074238 and rs1805128 (imprecise in all 

four non-European populations) than for the other five SNPs, which were precise in all five 

populations. Estimated imprecision for these two SNPs likely reflects the low estimated 

minor allele frequency across race/ethnicity (0.02 – 0.08 frequency for rs2074238; 0.002 – 

0.01 for rs1805128) and a smaller sample size for rs2074238. Additionally, rs12143842, 

rs37062, and rs1805128 showed heterogeneity within at least one race/ethnicity (eTables 

5-7).

Nine SNPs (43%) showed a consistent direction of effect in four of the five populations 

(Figure 1). These nine SNPs (rs17779747, rs12053903, rs11756438, rs4725982, rs2968864, 

rs2968863, rs10919071, rs10494366, and rs12296050) represented seven loci (KCNJ2, 

SCN5A, PLN, KCNH2, ATP1B1, NOS1AP, and KCNQ1). There was no race/ethnicity 

identified as an outlier across these nine SNPs: the directionally inconsistent effect estimate 

was observed in the African American, Asian, and American Indian populations four, three, 

and two times, respectively. Of these nine SNPs, imprecision was noted among Hispanic 

and Asian subpopulations for rs10919071 and rs2968863 and in Asians alone for rs2968864 

and rs17779747; these groups had smaller sample sizes than the other race/ethnic groups. 

Additionally, two SNPs (rs4725982 and rs12296050) in African Americans and five SNPs 

(rs2968864, rs2968863, rs4725982, rs12296050, and rs17779747) in American Indians 

showed within-population heterogeneity in American Indians (eTables 5-7).

The remaining five SNPs (24%: rs12210810, rs16857031, rs846111, rs12576239, and 

rs8049607) showed considerable variation in direction of effect across race/ethnicity, with 

notable variation in precision.

Magnitude of Effect—In general, populations of non-European descent were more likely 

to have weaker estimated effect sizes than the European American population, although we 

found some variation in precision, particularly for Hispanic and Asian populations (eTable 

3). Evidence of effect attenuation was particularly apparent among African American 
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participants (18 of 21 SNPs with effects closer to the null). Notably, Hispanics were equally 

likely to have weaker or stronger effects compared with European-descent populations.

Heterogeneity of Estimated Effects Across Race/Ethnicity

Overall, evidence of heterogeneity was observed for 12 of the 21 examined SNPs (57%). Of 

the seven directionally consistent SNPs, heterogeneity of P < 0.05 among racial/ethnic 

groups was observed for two NOS1AP SNPs (rs12143842 [P = 2×10-3] and rs12029454 [P = 

2×10-5]) (Figure 1, eTable 8). Among the nine SNPs showing a consistent direction of effect 

in four populations, seven demonstrated notable heterogeneity among groups: rs109109071, 

rs111756438, rs10494366, rs4725982, rs12296050, rs2968863, and rs2968864. For SNPs 

with an inconsistent direction of effect, heterogeneity of P < .05 was observed for three of 

these five SNPs (rs8049607 [P = 1×10-8], rs12576239 [P = 2×10-4], and rs846111 [P = 

0.04]).

Haplotype Structure

Given the substantial evidence of among-race heterogeneity, we examined linkage 

disequilibrium patterns using data from five HapMap 3 populations to determine whether 

the observed heterogeneity of effect could be attributed to differences in linkage 

disequilibrium among racial/ethnic groups. For example, a large haplotype block surrounded 

rs12143842 (test for heterogeneity among racial/ethnic groups, P = 0.002) in the European 

ancestry (24 kilobases [kb]), Asian ancestry (14 kb), and Hispanic ancestry (10 kb) 

populations (Figure 2). However, for African Americans, the haplotype block containing 

rs12143842 was much smaller (4kb) and did not contain any SNPs downstream of 

rs12143842. Another example of population-specific linkage disequilibrium patterns that 

may help explain the observed heterogeneity was provided by rs2968864 (test for 

heterogeneity, P = 0.03), which exhibited marked variation in effect size and haplotype 

block structure by race/ethnicity. Conversely, rs17779747, which did not exhibit among-race 

heterogeneity (P = 0.2), showed very similar linkage disequilibrium patterns across HapMap 

populations.

Discussion

In this study, we evaluated evidence of generalizability for 21 index QT SNPs identified by 

prior GWAS of European descent populations in multi-ethnic populations from the PAGE 

study. Evidence of heterogeneity of effect across race/ethnicity was observed for a majority 

of SNPs, including SNPs from NOS1AP, the most commonly identified QT locus.8-10,12,13 

Analyses of HapMap 3 populations suggested that variation in estimated effect by race/

ethnicity may reflect underlying variation in linkage disequilibrium among race/ethnicity. 

Variation in linkage disequilibrium patterns as a cause for estimated effect size variation is 

further supported by the weaker effects seen in African Americans, where linkage 

disequilibrium blocks are smaller, which suggests that the causal SNPs may not be as 

effectively tagged as in European Americans.

Heterogeneity of effect by race/ethnicity can reflect several phenomena, including variation 

in linkage disequilibrium among populations,23 allelic heterogeneity (i.e. the same locus but 
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different causal variants influencing a trait across populations),26 or gene-gene and gene-

environment interaction.27 Variation in linkage disequilibrium by race is a plausible source 

of the observed heterogeneity, given that several PAGE populations, particularly African 

Americans and Hispanics, have smaller linkage disequilibrium blocks than populations of 

European descent.23 For this reason, the index SNPs identified in European American 

populations may not tag the underlying causal SNP in populations of African or Hispanic 

descent because it resides in a different linkage disequilibrium block.

Another potential cause of heterogeneity of effect across race/ethnicity is allelic 

heterogeneity, which has been demonstrated by studies of other ECG traits, particularly the 

PR interval.28 In addition to the potential for race/ethnicity-specific alleles influencing QT, 

allelic heterogeneity is complicated by the potential for rare causal variants that can create 

“synthetic” signals. GWAS-identified index SNPs, including QT index SNPs, could simply 

represent a collection of rare causal variants, which would likely differ among populations – 

rather than a single causal SNP.29 As the number of rare variants increases, so too does the 

potential for these synthetic associations to be found.29 Thus, estimated effects would be 

expected to differ among racial/ethnic groups, as the SNPs evaluated above are 

representative of a diverse collection of rare variants.

Furthermore, heterogeneity of effect could be caused by underlying gene-gene or gene-

environment interaction, especially if potential modifiers vary among populations. Previous 

studies have shown interaction between genetic variants and QT-altering pharmaceuticals, 

although only a single SNP examined in this study (rs1805128) was previously identified as 

a potential modifier in a large pharmacogenomics effort examining QT.30 Additionally, 

lifestyle factors (including physical activity, rest/sleep, and emotional stimuli) may also 

interact with genetic variants associated with long-QT syndromes,31 although few studies 

have evaluated these potential modifiers in large population-based samples. Gene-gene 

interactions also are biologically plausible causes of heterogeneity, given evidence of 

population-specific variants influencing QT.32 However, very few studies have examined 

the influence of gene-gene interactions with QT, given the immensity of the task of testing 

interactions among millions of GWAS variants.

Regardless of the source of heterogeneity, these results, as well as studies of other heritable 

traits including type 2 diabetes33 and obesity,34 suggest that genomic studies of ancestrally 

diverse populations should analyze racial/ethnic groups separately, unless strong evidence of 

homogeneity is observed. However, the pooling of results across these groups is common in 

genetic epidemiology studies, particularly when there are small samples of non-European 

populations.35,36 A similar practice is the meta-analysis of summary results across racial/

ethnic background,37,38 although for common variants this approach is equivalent to 

pooling.39 Therefore, strategies that pool or meta-analyze results across race implicitly 

assume that the index SNP tags the causal variant across all populations; they also assume 

the absence of allelic heterogeneity and among-race gene-gene or gene-environment 

interactions. Instead, to fully understand the genetic architecture underlying disease in 

diverse populations, studies should allow for these potential differences across distantly 

related populations and analyze them independently.

Seyerle et al. Page 7

Epidemiology. Author manuscript; available in PMC 2015 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although a hurdle for researchers who wish to combine results, genetic heterogeneity can be 

leveraged to identify novel genes and narrow intervals flanking index SNPs.23 For example, 

fine-mapping studies are particularly relevant among admixed populations such as African 

Americans, Hispanics/Latinos, and American Indians. For QT, fine mapping has been 

conducted in African Americans32 to refine the region of association surrounding several 

genes and identify novel NOS1AP and ATP1B1 SNPs specific to African Americans. The 

evidence of heterogeneity identified by our study further underscores the potential utility of 

fine-mapping studies in other populations, which could harness among-population 

differences in linkage disequilibrium to refine regions of association and identify additional 

SNPs influencing QT.

This study had several notable limitations. First, sample sizes in non-European American 

populations were modest, especially for Asian Americans, and thus produced less precise 

estimates. Nonetheless, few studies to date have examined associations between genetic 

variants and QT across five distinct racial/ethnic groups. Second, SNPs were selected in 

2010 and therefore did not reflect more recent publications.12 However, since SNP 

selection, only one new genetic locus (SLC8A1) has been identified for QT,12 ensuring that 

our results remain contemporary. Additionally, we did not account for potential 

comorbidities in our primary analysis, as was done in previous GWAS. However, our results 

were robust to the exclusion of participants with prevalent stroke and prevalent ischemic 

heart disease (eTable 9). Furthermore, variations in ECG machines, sampling rates (250 Hz 

vs. 500 Hz), and reading software between studies (eTable2) could have accounted for a 

portion of the heterogeneity observed among studies. A sensitivity analysis comparing 

results using two reading algorithms and sampling rates (Dalhousie at 250 Hz, Marquette 

12-SL at 500 Hz) among Women's Health Initiative participants showed little change in the 

effect estimates between the two methods and no change in the overall conclusions, 

indicating that differences in ECG methods likely had little effect on the results (eTable 10). 

Finally, we estimated effects of small magnitude that likely explained only a small fraction 

of the variation in QT. However, these results have potential clinical and regulatory 

relevance. The Food and Drug Administration's standard for regulating QT-prolonging 

pharmaceuticals is a change of QT interval of 5ms,40 a threshold that is easily met when 

considering combinations of SNPs. Furthermore, our results suggest that the 21 SNPs are 

likely tag SNPs, which are expected to have smaller effects when compared to the 

underlying causal SNP.

In conclusion, our findings suggest the presence of considerable heterogeneity among racial/

ethnic groups for previously identified QT index SNPs that may reflect several phenomena, 

including population-specific linkage disequilibrium patterns. More broadly, our results 

underscore the utility of examining heterogeneity by race/ethnicity in genetic association 

studies. Further characterization of these loci across multi-ethnic populations, including 

large-scale genotyping, is needed to provide additional insights into the genetic architecture 

of QT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Forest Plots of Risk Variants Effect Sizes (95% Confidence Interval) for a Race/Ethnicity-

Stratified Meta-Analysis of 32,474 Participants From Six Participating PAGE Studies.

Abbreviations: A, Asian; AA, African American; AI, American Indian; EA, European 

American; H, Hispanic; Phet, Two sided P-value for test of heterogeneity across populations;
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Figure 2. 
Linkage disequilibrium Plots (D′) from Haploview for Selected Risk Variants Across Four 

Global Populations.

All populations come from International HapMap III populations. Abbreviations: ASW, 

Samples of African American Ancestry; CEU, Samples of European Ancestry; CHB-JPT, 

Samples of Asian Ancestry; MEX, Samples of Hispanic Ancestry.
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Table 1
Descriptive Characteristics of PAGE Study Populations by Race/Ethnicity and Study

Study No.
Female

%
Age (years)a
Mean (SD)

QT Interval (ms)a
Mean (SD)

European Americans

Total 18,802 65 64 (3) 405 (15)

ARIC 10,926 53 54 (6) 399 (29)

CHS 2,508 64 72 (5) 413 (32)

EAGLE 1,291 60 63 (14) 409 (33)

WHI CT 4,077 100 63 (7) 402 (29)

African Americans

Total 6,132 69 62 (3) 403 (17)

ARIC 4,020 63 54 (6) 400 (33)

CHS 492 67 72 (6) 405 (34)

EAGLE 578 56 55 (12) 406 (33)

WHI CT 1,042 100 60 (7) 401 (34)

American Indians

Total 5,465 65 59 (5) 404 (18)

SHS 2,200 64 63 (8) 408 (33)

SHFS 3,086 64 42 (16) 408 (33)

WHI CT 179 100 59 (6) 398 (29)

Hispanics

Total 1,143 71 60 (6) 405 (21)

EAGLE 655 50 56 (12) 405 (30)

WHI CT 488 100 61 (7) 404 (30)

Asians

WHI CT 932 100 62 (7) 405 (33)

a
Overall mean calculated using inverse-variance weighted method

ARIC indicates Atherosclerosis Risk in Communities; CHS, Cardiovascular Health Study; EAGLE, Epidemiologic Architecture for Genes Linked 
to Environment study; WHI CT, Women's Health Initiative Clinical Trial; SHS, Strong Heart Study; SHFS, Strong Heart Family Study
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