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Abstract

Reactive Oxygen Species (ROS), produced during various electron transfer reactions in vivo are 

generally considered to be deleterious to cells1. In the mammalian haematopoietic system, 

haematopoietic stem cells (HSCs) contain low ROS levels, but unexpectedly, the common 

myeloid progenitors (CMPs), produce significantly elevated levels of ROS2. The functional 

significance of this difference in ROS level in the two progenitor types remains unresolved2,3. 

Here, we show that Drosophila multipotent haematopoietic progenitors which are largely akin to 

the mammalian myeloid progenitors4 display elevated levels of ROS under in vivo physiological 

conditions, which is downregulated upon differentiation. Scavenging the ROS from these 

haematopoietic progenitors using in vivo genetic tools, retards their differentiation into mature 

blood cells. Conversely, increasing the haematopoietic progenitor ROS beyond their basal level 

triggers precocious differentiation into all three mature blood cell types found in Drosophila, 

through a signaling pathway that involves JNK and FoxO activation as well as Polycomb 

downregulation. We conclude that the developmentally regulated, moderately high ROS level in 

the progenitor population sensitizes them to differentiation, and establishes a signaling role for 

ROS in the regulation of haematopoietic cell fate. Our results lead to a model that could be 

extended to reveal a probable signaling role for ROS in the differentiation of CMPs in mammalian 

haematopoietic development and oxidative stress response.
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The Drosophila lymph gland is a specialized haematopoietic organ which produces three 

blood cell types – plasmatocytes, crystal cells and lamellocytes – with functions reminiscent 

of the vertebrate myeloid lineage5,6. During the first and early second larval instars, the 

lymph gland is comprised essentially of only the progenitor population (Fig. 1a, lower 

panel). However, by late third instar, multipotent stem-like progenitor cells become 

restricted to the medial region of the primary lymph gland lobe, in an area referred to as the 

Medullary Zone (MZ); while a peripheral zone, referred to as the Cortical Zone (CZ) 

contains differentiated blood cells. By late third instar, the progenitors within the MZ are 

essentially quiescent, while the mature, differentiated population in the CZ proliferates 

extensively5. The Posterior Signaling Center (PSC), is a group of about 30 cells (Fig. 1a, 

upper panel), that secretes multiple signaling molecules7–9 and serves as a stem cell niche 

regulating the balance between cells that maintain "stemness" and those that differentiate8,9.

Although several studies have identified factors that regulate the differentiation and 

maintenance of Drosophila blood cells and the stem-like progenitor population that 

generates them8–11, intrinsic factors within the stem-like progenitors are less explored, and 

forms the central theme of this investigation. We observed that by the third instar, the 

progenitor population in the normal wild-type lymph gland MZ contain significantly 

elevated ROS levels when compared to their neighboring differentiated progeny that express 

mature blood cell markers in the CZ (Fig. 1b–e). ROS is not elevated during the earlier 

larval instars but rises as the progenitor cells become quiescent and subside as they 

differentiate (Fig. 1b–e). This first suggested to us that the rise in ROS primes the relatively 

quiescent stem-like progenitor cells for differentiation. We reduced ROS by expressing 

antioxidant scavenger proteins GTPx-112 (Fig. 1f,g) or Catalase (Supplementary Fig. 1), 

specifically in the progenitor cell compartment using the GAL4/UAS system13, and found 

that suppressing elevated ROS levels in haematopoietic progenitors significantly retards 

their differentiation into plasmatocytes (Fig. 1f,g and supplementary Fig. 1). As a corollary, 

mutating the gene encoding the antioxidant scavenger protein Superoxide Dismutase 

(sod2)1 led to a significant increase in differentiated cells and decrease in progenitors (Fig. 

1h).

ROS levels in cells can be increased by the genetic disruption of complex I proteins of the 

mitochondrial electron transport chain14,15, such as ND75 and ND42 (Supplementary Fig. 

2). Unlike in wild type, where early second instar lymph glands are exclusively comprised 

of undifferentiated cells (Fig. 2a), mitochondrial complex I depletion triggers premature 

differentiation of the progenitor population (Fig. 2b). This defect is even more evident in the 

third instar (Compare Fig. 2c and 2d), where a complete depletion of the progenitors is seen 

as primary lobes are populated with differentiated plasmatocytes and crystal cells. The third 

differentiated cell type, lamellocyte, defined by the expression of the antigen L1, is rarely 

observed in the wild-type lymph gland (Supplementary Fig. 3) but is abundantly seen in the 

mutant (Fig. 2e). Finally, the secondary and tertiary lobes, largely undifferentiated in wild 
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type, also embark on a robust program of differentiation upon complex I depletion (Fig. 2d, 

e and Supplementary Fig. 4). Importantly, the phenotype resulting from ND75 disruption 

can be suppressed by the co-expression of the ROS scavenger protein GTPx-1 (Fig. 2f, g; 

compare with Fig. 2d, e) providing a causal link between increased ROS and the premature 

differentiation phenotype. Combining these results with those in figure 1, we conclude that 

the normally elevated ROS levels in the stem-like progenitors serves as an intrinsic factor 

that sensitizes them to differentiation into all three mature cell types. Any additional 

increase or decrease in the level of ROS away from the wild-type level enhances or 

suppresses differentiation respectively.

In unrelated systems, elevated ROS levels have been demonstrated to activate the JNK 

signal transduction pathway1,16,17. Consequently, we tested whether the mechanism by 

which the progenitors in the MZ differentiate when ROS levels increase could involve this 

pathway. puckered (puc), is a downstream target of JNK signaling and its expression has 

been used extensively to monitor JNK activity18. Although puc transcripts are detectable by 

RT-PCR (Supplementary Fig. 5), the puc-lacZ reporter is very weakly expressed in wild-

type (Fig. 3a). Upon disruption of ND75, however, a robust transcriptional upregulation of 

puc-lacZ expression can be seen (Fig. 3b), indicating that JNK signaling is induced in these 

cells in response to high ROS levels. The precocious progenitor cell differentiation caused 

by mitochondrial disruption is suppressed upon expressing a dominant negative version of 

Basket (Bsk), the sole Drosophila homologue of JNK (Fig. 3c, d; compare with Fig. 2d, e; 

also see Supplementary Fig. 5). This suppression was associated with a decrease in the level 

of expression (Supplementary Fig. 5) of the stress response gene encoding Phosphoenol 

pyruvate carboxykinase (PEPCK)19, and quantitatively, a 68% suppression of the ND75 

crystal cell phenotype was observed when JNK function was removed as well (Fig 3e). 

Although disrupting JNK signaling suppressed differentiation, ROS levels remain elevated 

in the mutant cells (Supplementary Fig. 2f) as would be expected from JNK functioning 

downstream of ROS.

In multiple systems and organisms, JNK function can be mediated by activation of FoxO as 

well as through repression of Polycomb activity17,20,21. FoxO activation can be monitored 

via expression of its downstream target thor, using thor-lacZ as a transcriptional read-out22–

24. thor-lacZ is undetectable in wild type lymph glands (Fig. 4a) although thor transcripts 

are detectable by RT-PCR (Supplementary Fig. 5), but the reporter is robustly induced when 

complex I is disrupted (Fig. 4b), suggesting that the complex I loss mediated increase in 

ROS activates FoxO. To monitor Polycomb derepression, we used a Polycomb reporter, 

which expresses lacZ when Polycomb proteins are downregulated. Although undetectable in 

wild-type lymph glands (Fig. 4c), disrupting ND75 leads to lacZ expression (Fig. 4d), 

suggesting that Polycomb activity is downregulated by the altered ROS and resulting JNK 

activation. Direct FoxO overexpression causes a remarkable advancement in differentiation 

to a time as early as the second instar (Fig. 4e), never seen in wild type (Fig. 2a). By early 

third instar, the entire primary and secondary lobes stained for plasmatocyte (Fig. 4f) and 

crystal cell (Fig. 4g) markers when FoxO is expressed in the progenitor population. Unlike 

with ROS increase, we did not find a significant increase in lamellocytes upon FoxO 

overexpression. However, downregulating the expression of two polycomb proteins, 
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Polyhomeotic Proximal (Php-x) and Enhancer of Polycomb (E(Pc)) that function 

downstream of JNK21 dramatically increased lamellocyte number (Fig. 4h) without 

affecting plasmatocytes and crystal cells (not shown). When FoxO and an RNAi against 

E(Pc) are expressed together in the progenitor cell population, differentiation to all three cell 

types is evident (Fig. 4i, j). We conclude that FoxO activation and Polycomb 

downregulation act combinatorially downstream of JNK to trigger the full differentiation 

phenotype – an increase in plasmatocytes and crystal cells due to FoxO activation, and an 

increase in lamellocytes primarily due to Polycomb downregulation.

The analysis of ROS in the wild-type lymph gland highlights a previously unappreciated 

role for ROS as an intrinsic factor that regulates differentiation of multipotent 

haematopoietic progenitors in Drosophila. Any further increase in ROS beyond the 

developmentally regulated levels, due to oxidative stress, will cause the progenitors to 

differentiate into one of three myeloid cell types. Tothova et al.2 reported that the ROS 

levels in mammalian HSCs is low but that in the CMPs is relatively high. The Drosophila 

haematopietic progenitors give rise entirely to a myeloid lineage and therefore, are 

functionally more similar to CMPs than they are to HSCs. It is therefore a remarkable 

example of conservation to find that they too have high ROS levels. The genetic analysis 

makes it clear that the high ROS in Drosophila haematopoietic progenitors primes them 

towards differentiation. It will be interesting to determine, if such a mechanism operates in 

mammalian CMPs. In mice, as in flies, a function of FoxO is to activate antioxidant 

scavenger proteins. Consequently, deletion of FoxO elevates ROS levels in the mouse HSC 

and drives myeloid differentiation2. However, even in the mouse haematopoietic system, 

FoxO function is dose and context dependent, as ROS levels in CMPs are independent of 

FoxO2. Thus, while the basic logic of elevated ROS in myeloid progenitors is conserved 

between flies and mice, the exact function of FoxO in this context may have diverged.

Our past work14 and those of others1,25,26 has hinted that ROS can function as signaling 

molecules at physiologically moderate levels. This work supports and further extends this 

notion. While excessive ROS is damaging to cells, developmentally-regulated ROS 

production, can be beneficial. The finding that ROS levels are moderately high in normal 

Drosophila haematopoietic progenitors and mammalian CMPs raises the possibility that 

wanton overdose of antioxidant products may infact inhibit formation of cells participating 

in innate immune response.

Methods Summary

Lymph glands were stained as previously described5,8 using the following antibodies: 

mouse anti-P1 and L1 (Ando, I.), rat anti-ProPO (Müller, H.), rabbit anti-βgal (Cappell) and 

mouse anti -βgal (Promega). Cy3, Cy5 and FITC conjugated secondary antibodies were 

from Jackson Laboratory. ROS staining was conducted as previously described14,15. 

Images were captured using a BioRad Radiance 2000 confocal microscope with LaserSharp 

2000 acquisition software.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Reactive Oxygen Species Profile of third instar lymph glands
(a) Schematic diagrams of late third instar (upper panel) and early second instar (lower 

panel) lymph glands. The second instar lymph gland consists mostly of the progenitor 

population, which by late third instar, becomes restricted to the central domain of the 

primary lobe, referred to as the Medullary Zone (MZ). At least three differentiated cell types 

can be distinguished: plasmatocytes, crystal cells and lamellocytes. Lamellocytes are rarely 

found in wild-type lymph glands as they are only induced upon infection. All three 

differentiated cell types are largely restricted to the Cortical Zone (CZ). The third instar 
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lymph gland is comprised of several lobes; primary lobes are found in the most anterior 

region, and are followed posteriorly by two or more smaller lobes, referred to as secondary 

and tertiary lobes respectively.

(b) The progenitor population in the MZ show elevated ROS levels (red). The dotted 

outlines of lymph gland lobes in all panels are based on images acquired at high laser power.

(c) The expression of the MZ marker, dome-gal4, UAS-2xEYFP (green; genotype 

abbreviated on the panel as dome>GFP for clarity) overlaps with the ROS dye (red) in cells 

of the MZ (therefore yellow).

(d) As in panel (b), the progenitor population in the MZ show elevated ROS levels (red).

(e) hmlΔ-gal4, UAS-2xEGFP is restricted to cells in the CZ (green). Most of the cells that 

are marked by hmlΔ-gal4, UAS-2xEGFP are low in ROS (therefore green) when compared 

to cells in the MZ (red). A ring of hmlΔ-gal4, UAS-2xEGFP expressing cells can be seen 

along the edge of the MZ that are both GFP and ROS positive (therefore yellow). These 

appear to be cells in a state of transition between the stem-like and the differentiated cell 

fate.

(f) Unlike in previous panels, the red color here marks P1 expression in differentiated 

plasmatocytes in the CZ. By late third instar, the expression of dome-gal4, UAS-2xEYFP 

(green) is restricted to the MZ and the cells in the CZ (red) downregulate this marker.

(g) Overexpression of the antioxidant protein (GTPx-1) in the progenitor cell compartment 

(genotype: dome-gal4, UAS-2xEYFP; UAS-Gtpx1) results in a pronounced reduction in the 

number of cells that express the P1 marker (red). Some cells occupying the CZ region 

continue to express dome-gal4, UAS-2xEYFP while many others downregulate this marker 

without yet expressing the differentiation marker P1.

(h) In the hypomorphic (weak allele) sod2/sod2 homozygotes, in which the level of 

expression of a major ROS scavenger is reduced, P1 expression is expanded and can be 

found throughout the lymph gland (red), rather than being restricted to the CZ. This image is 

generated from the optical sections acquired from the central part of the gland.

Scale bars : 50µm.
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Figure 2. Increased ROS production triggers precocious differentiation of the multipotent 
progenitors
In all panels, the progenitor population expresses the MZ marker, dome-gal4, UAS-2xEYFP 

(green). In panels (d–g), the green channel has been omitted for clarity. The two genotypes 

used in these panels are control lymph glands (dome-gal4, UAS-2xEYFP), abbreviated as 

wild-type (WT), and experimental lymph glands which express a RNAi construct to ND75 

(dome-gal4, UAS-2xEYFP; UAS-RNAiND75), abbreviated as ND75RNAi. Scale bars :50µm.

(a) P1 is not expressed (note absence of red) in early second instar WT lymph glands.
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(b) P1 expression (red) is robustly induced in early second instar ND75RNAi lymph glands.

(c–e) Disruption of ND75 triggers precocious differentiation.

(c) In WT third instar lymph glands, plasmatocytes marked with P1 (red) and crystal cells 

with ProPO (gray) are restricted to the CZ. These differentiated cell types are rarely if ever 

found in secondary and tertiary lobes.

(d) In third instar ND75RNAi lymph glands, there is a dramatic increase in P1 (red) and 

ProPO (gray) expressing cells, throughout the primary, as well as in the secondary and 

tertiary lobes (tertiary lobes are shown in Supplementary Fig. 4).

(e) Lamellocytes, marked by L1 (red) are prominently seen in third instar ND75RNAi lymph 

glands. Crystal cells are shown in gray. Lamellocytes are rarely found in secondary lobes.

(f, g) Scavenging ROS suppresses differentiation associated with ND75 disruption. 

Overexpression of Gtpx-1 in ND75RNAi lymph glands (in f and g) potently suppresses 

differentiation into all three lineages as there is a decrease in P1 (red in f), ProPO (gray in g) 

and L1 (red in g) expression. Compare (f, g) with (d, e). Controls for titration of GAL4 are 

shown in Supplementary Figure 6.
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Figure 3. Disrupting JNK signaling suppresses the ROS-dependent differentiation Phenotype
The progenitor population also expresses the MZ marker, dome-gal4, UAS-2xEYFP (green), 

in panels (a–d), but this has been omitted for clarity. Lymph glands that express a RNAi 

construct to ND75 (dome-gal4, UAS-2xEYFP; UAS-RNAiND75), are abbreviated as 

ND75RNAi. Scale bars: 50µm.

(a, b) JNK signaling is activated upon ROS increase. puc-lacZ expression (red) in WT 

lymph glands (a) and ND75RNAi lymph glands (b). puc-lacZ, which is a transcriptional 

reporter of JNK signaling is dramatically elevated in ND75RNAi cells.
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(c, d) JNK signaling is required for triggering differentiation associated with ND75 

disruption.

Expressing a dominant negative construct of JNK in the precursor population ameliorates 

the effect of complex I disruption as the number of plasmatocytes (red in c) crystal cells 

(gray in c and d) and lamellocytes (red in d) are reduced virtually to WT levels. Compare 

(3c, d) with (2d, e)

(e) Suppression of the number of crystal cells formed in ND75RNAiUAS-DNbsk lymph 

glands relative to ND75RNAi lymph glands. Error bars are s.e.m and n = 10.
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Figure 4. FoxO activation and Polycomb downregulation phenocopy aspects of the ROS induced 
differentiation
In all panels, the progenitor cells express the MZ marker, dome-gal4, UAS-2xEYFP (green), 

omitted in some panels for clarity. Lymph glands from dome-gal4, UAS-2xEYFP larvae 

were used as wild-type controls (abbreviated WT). Lymph glands which express a RNAi 

construct to ND75 in the progenitor cells (dome-gal4, UAS-2xEYFP; UAS-RNAiND75), are 

abbreviated as ND75RNAi. Scale bars :40µm.
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(a, b) Disruption of ND75 leads to induction of the FoxO reporter, thor-lacZ. WT lymph 

glands (a) do not express thor-lacZ (absence of red). The asterisk in a, points to thor-lacZ 

expression in the ring gland, adjacent to the lymph gland which serves as an internal control. 

thor-lacZ expression is significantly induced in ND75RNAi lymph glands (b).

(c, d) Disruption of ND75 leads to expression of the polycomb reporter. The polycomb 

reporter (red) is not expressed in WT lymph glands (c), but is induced in ND75RNAi lymph 

glands (d).

(e–g) FoxO overexpression causes an increase in plasmatocytes and crystal cells, but has 

virtually no effect on lamellocytes.

(e) Overexpression of FoxO in the progenitor cells (dome-gal4, UAS-2xEYFP; UAS-foxo) 

causes their premature differentiation into plasmatocytes as shown for earlier than normal 

P1 staining (red) in a second instar lymph gland. Compare with Figure 2a.

(f) Progenitor cells expressing FoxO in the MZ of the third instar lymph gland also initiate 

extensive differentiation into plasmatocytes (red). In addition, there is ectopic differentiation 

in the secondary lobes (arrow, 2°).

(g) FoxO expression in the MZ results in an increase in the number of crystal cells (gray). 

However, only a few isolated L1-positive cells (red) are evident even in late third instar 

lymph glands. This image is acquired at twice the magnification of the other panels to 

highlight the few lamellocytes (red).

(h) RNAi-mediated downregulation of the expression of two polycomb proteins, Enhancer 

of polycomb, E(Pc) and polyhomeotic proximal (Ph-p), leads to a robust increase in 

lamellocytes, that stain for L1 (red).

(i, j) When FoxO and the RNAi construct to E(Pc) are expressed together in the MZ 

progenitors there is an increase in all three mature cell markers.

Co-expression of FoxO and an RNAi construct to E(Pc) trigger the full differentiation 

phenotype associated with complex I disruption as there is an increase in the number of 

plasmatocytes (red in i), crystal cells (gray in j) and lamellocytes (red in j).

Owusu-Ansah and Banerjee Page 14

Nature. Author manuscript; available in PMC 2015 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


