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Abstract

The contribution of vitamin A to immune health has been well established. However, recent
evidence indicates that its active metabolite, retinoic acid (RA), has the ability to promote
both tolerogenic and inflammatory responses. While the outcome of RA-mediated immunity
is dependent upon the immunological status of the tissue, the contribution of specific innate
signals influencing this response have yet to be delineated. Here, we found that treatment
with RA can dampen inflammation during intestinal injury. Importantly, we report a novel
and unexpected requirement for TLR2 in RA-mediated suppression. Our data demonstrate
that RA treatment enhances TLR2-dependent IL-10 production from T cells and this, in turn,
potentiates T regulatory cell (Treg) generation without the need for activation of antigen pre-
senting cells. These data also suggest that combinatorial therapy using RA and TLR2 li-
gands may be advantageous in the design of therapies to treat autoimmune or
inflammatory disease.

Introduction

The general concept that Vitamin A (VA) contributes to immunity dates as far back as Hippoc-
rates [1], and recent advances have demonstrated specific roles for VA in many different types
of disease. For instance, VA deficiency (VAD) increases mortality during gastrointestinal, re-
spiratory and HIV infections [2-5] which can be reversed by VA supplementation [6-7]. De-
spite these observations the role of VA is still not well understood in the context of intestinal
inflammation even though more than 15% of children with inflammatory bowel disease (IBD)
have low serum levels of VA at the time of diagnosis [8].

VA mediates its metabolic and immune effects via conversion to its active metabolite, RA,
via retinaldehyde dehydrogenase (RALDH) enzymes [9-11]. In the last decade, many studies
have provided insight into the nature of RA-mediated responses, especially its role in innate
and adaptive immunity within the gut associated lymphoid tissues (GALT). Most notably, RA
promotes T cell trafficking to the GALT via a4p7 and CCR9 expression [12-14] and contrib-
utes to the polarization of Foxp3™ Tgrg by RALDH-expressing CD103" GALT DC [15-20].
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These effects are dependent on TGF- mediated T cell expression of retinoic acid receptor
(RAR) and repression of the IL-6R, respectively [21-23]. Corroborating these in vitro findings,
the generation of induced Trgg (iTrgg) in response to ingested antigens is abrogated in VAD
mice [24].

iTgrpg and IL-17-producing CD4 helper T cells (Tg17) have a reciprocal relationship
[19, 25, 26], leading one to expect an inhibitory effect of RA on Ty17 differentiation and main-
tenance. A number of studies have shown that direct activation of RA on T cells can suppress
Tyl7 differentiation through the inhibition of IL-6R and IL-23R [13,19,23]. However, antigen-
presenting cells activated via MyD88-dependent innate signals and treated with RA have been
shown to potentiate Ty 17 differentiation [27]. These data suggest that RA, in concert with mi-
crobial-driven signals, may help to promote Ty17 cell differentiation further suggesting that
RA may have a dual nature imparting it with the ability to both promote and inhibit iTrgg gen-
eration via the regulation Ty17 cells [28].

Pathogens crossing the epithelial barrier during infection or exposure of the tissue to com-
mensal bacteria during injury can provide the microbial signals needed to impact RA-mediated
immunity. While tissue-derived homeostatic factors may promote the expression of RALDH
in CD103" DC in order to potentiate iTrgg cell numbers [29,30,31], inflammation and expo-
sure to microbes may have an opposite effect. This has been observed in models of experimen-
tal colitis in which the expression of RALDH in CD103" DC is reduced resulting in fewer
iTreg and worse inflammation [32]. In an IL-15-enriched microenvironment, RA was shown
to increase the production of IL-12 and IL-23 by gut CD103" DC, diminishing their capacity to
promote iTrgg and restrain Ty1 and Tyy17 responses to dietary gluten [33]. These data align
with clinical reports linking pharmacological retinoid therapy to the development of IBD in a
subset of patients and point to RA as a potential instigator of inflammation in the appropriate
milieu [24,34].

TLR2 is a member of the Toll-like receptor (TLR) family of pattern recognition receptors,
and detects tri- [35] and di-acylated [36] bacterial lipoproteins by forming heterodimers with
TLR1 or TLRG, respectively. TLR2 signaling in splenic DC induces RALDH activity [30] and
IL-10 [37], imparting them with gut-specific imprinting and iTrgg-promoting functions. In
contrast, others have demonstrated preservation of RALDH activity in MyD88-deficient DC
[38] and promotion of T17 cells [27] and RALDH [32] during microbial stimulation. Studies
examining the relationship between TLR2 and RA have focused on the DC, despite reports
that TLR2 is expressed on Trgg [39] and may influence Trgg expansion and function [40-42].
Here we show that exogenous RA can suppress inflammation during intestinal injury and that
this ability is lost in a TLR2-deficient environment. Further, we show that RA potentiates
TLR2-induced IL-10 production directly from T cells and promotes iTrgg differentiation.
These findings further demonstrate the ability of RA to act as an adjuvant to promote signals
from the local tissue microenvironment and suggest a potential benefit of combining TLR2 li-
gands and RA to suppress inflammatory disease and promote tolerance.

Materials and Methods

Mice

This study was performed in strict accordance and compliance with the recommendations in
the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, the
Animal Welfare Act and U.S. Government Principles for The Utilization and Care of Verte-

brate Animals Used in Testing Research and Training. All studies were approved and in accor-
dance with the Institutional Biosafety Committee (IBC) and the Institutional Care and Use
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Committee (IACUC) of the University of Southern California. Mice were housed in specific
pathogen free (SPF) conditions.

C57Bl/6 (WT) mice were purchased from The Jackson Laboratory (Bar Harbor, ME) and
TLR2KO mice on a B6 background were bred in-house. Male mice aged 6-8 weeks were used
for all experiments and the numbers of mice used for each experimental group are listed in the
figure legends.

Induction of colitis

2.5% (weight/volume) dextran sodium sulfate (DSS; molecular weight 36,000-50,000; lot
NM4241; MP Biomedicals; Santa Ana, CA) was added to drinking water for 7 days, followed
by a 7-day period of recovery with untreated drinking water.

Clinical and histological evaluation of colitis

Body weight, presence of occult or gross blood per rectum (scoring: 0, no blood; 1, occult blood
positive; 2, visible blood in fecal pellet; 4, blood at anus) were determined daily. Colonic speci-
mens were opened longitudinally and made into “Swiss-roll” preparations. Hematoxylin and
eosin staining was performed on 5pm paraffin-embedded sections. Slides were viewed with a
Leica DM 750 microscope with PLAN 10x/0.22 and PLAN 40x/0.65 objectives. Histologic se-
verity was assessed using a scoring system developed at The Jackson Laboratory [42]. All slides
were evaluated in a blinded manner by independently two gastroenterologist/pathologists.

Oral tolerance induction

WT and TLR2KO mice were orally gavaged as previously described [33]. Fecal occult blood
tests (Hemoccult Sensa II; Beckman Coulter; Brea, CA) were performed daily and upon con-
version from negative to positive, 1 uM of RA dissolved in 100 pl of corn oil (Sigma-Aldrich;
St. Louis, MO) was administered to each mouse via oral gavage with an 18 gauge round-tipped
needle (Kent Scientific Corp; Torrington, CT) for the duration of the experiment. Controls re-
ceived the same volume of DMSO diluted in 100 pl of vehicle (corn oil). In some experiments
the mice received 100 pl of sterile PBS containing 100 pg of ovalbumin or PBS alone every
other day for a total of five feedings. Mice were euthanized two days after the last feeding. In
some experiments 1x10° syngeneic ovalbumin-specific T cells from RAG-OT2-Tg mice were
transferred to naive TLR2KO mice prior to antigen feeding via retro-orbital injection [33].

Protein extraction from tissues and cecal lysates

Total protein was extracted from whole colon specimens by flash freezing with liquid nitrogen
and manually homogenizing with a mortar and pestle. For cecal lysates, total contents were
placed in 500 pl sterile PBS and mixed with 500 ul 0.1 mm glass beads and mechanically ho-
mogenized for 3-4 minutes using a Bead Beater (BioSpec). After beads and debris settle to the
bottom of the tube, the supernatant is removed. Protein concentrations of supernatants were
determined via Bradford assay per manufacturer’s protocol (Bio-Rad; Hercules, CA) and ho-
mogenates were diluted to a concentration of 1 mg/mL with sterile PBS (Sigma-Aldrich).

Quantitative real-time RT-PCR

Quantitative real-time RT-PCR was performed using the iCycler iQ real-time PCR detection
system (Bio-Rad Laboratories) and a SYBR green amplification kit (PE Biosystems). Each PCR
reaction was performed and normalized using primers for GAPDH. AACT was calculated
using ACT values of naive WT or naive TLR2KO samples as the reference.
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In vitro assays

For CD4" T cell isolation, spleens were mechanically disrupted through a 70 pm cell strainer
(BD Biosciences; San Jose, CA). CD4" cells were isolated by positive immunoselection using
CD4 (L3T4) microbeads (Miltenyi Biotec; Bergisch Gladbach, DE). Purified CD4" T cells were
stained with anti-CD62L and anti-CD44 and sorted on a FacsAria II resulting in a 98% pure
population of naive T cells. The purified T cells were stimulated with 1 ug/mL plate-bound
anti-CD3e (eBioscience; San Diego, CA), 0.1 pg/mL TLR ligands, 10 ug/mL cecal lysate, and 2
ng/mL recombinant TGF- (R&D Systems; Minneapolis, MN), in the presence or absence of
10 nM RA. In some experiments 50 ug/ml anti-IL-10Ra antibody (clone 1B1.3a) or isotype rat
IgG1 (BD Biosciences) control was added to the wells.

For dendritic cell isolation, spleens were digested with 400 units/mL collagenase type IV
(Sigma-Aldrich). Cells were filtered, re-suspended in 22.5% Optiprep (Sigma-Aldrich), over-
laid with Hank’s Buffered Saline (HBS; Sigma-Aldrich) and centrifuged at 670g for 30 minutes.
Dendritic cells were sorted from the interphase using magnetic CD11c¢ Microbeads (Miltenyi
Biotec; Bergisch Gladbach, DE) and stimulated with 10 pg/mL cecal lysate and 2 ng/mL TGF-§
in the presence or absence of 10 nM RA.

Antibodies and flow cytometry

The following conjugated antibodies were purchased from eBioscience: CD4 (GK1.5), CD45.1
(A20), CD45.2 (104), IFN-y (XMG1.2), Foxp3 (FJK-16a), IL-10 (JES5-16E3) and isotype con-
trols. A fixation and permeabilization kit was used for intranuclear detection of Foxp3 followed
by an intracellular staining protocol for IL-10 (eBioscience). Flow cytometry analysis was per-
formed with a FACS Canto (BD Biosciences) and analyzed using Flow]Jo software.

Detection of cytokines by ELISA

Cell supernatants (50 pL per well) and tissue homogenates (50 pg per well) were evaluated for
IL-12p40 (BD Biosciences), IL-10, (BD Biosciences), TNF-o. (BD Biosciences), IFN-y (BD Bio-
sciences) and IL-17 (R&D).

Statistical analysis

Data are expressed as means + standard error of the mean (SEM) of 2 or more independent ex-
periments. Differences between means are evaluated using 2-tailed, unpaired Student’s t-tests
(GraphPad Prism version 6; San Diego, CA) where appropriate. p values of < 0.05 are
considered significant.

Results

RA-mediated repair against epithelial injury is dependent on
TLR2-signaling in vivo

Due to the prevalence of vitamin and micronutrient deficiencies in patients with IBD, enteral
repletion is often initiated at the time of diagnosis [8]. Given the potential for RA to promote
either regulatory [13,19,23] or inflammatory [24,33] immune responses depending on the sta-
tus of the tissue microenvironment, we assessed the effects of RA supplementation during
acute colitis and evaluated the role of TLR2 in modulating these effects. DSS was administered
to WT and TLR2 deficient mice to induce epithelial injury for seven days followed by a repair
phase in which the mice received regular drinking water. In order to mirror the clinical presen-
tation and course of individuals with IBD, we delayed enteral supplementation of RA until
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overt signs of colitis (i.e. loose stool and fecal occult blood) were noted. In line with prior stud-
ies demonstrating that the absence of TLR2 signaling exacerbates chemically-induced and
spontaneous colitis in mice, we found that TLR2KO mice lost more body weight than WT
counterparts during induction of colitis as well as during recovery [43,44] (Fig 1A, closed and
open circles). TLR2KO mice also had significantly worse fecal occult blood scores (Fig 1B,
closed and open circles), and worse histopathology (Fig 1C) compared to WT mice, with larger
areas of denuded, ulcerated epithelium (Fig 1D and 1E, white bars, closed and open circles)
and shorter colon lengths (Fig 1F), indicative of inflammation. WT mice treated with RA
showed significant improvement in fecal occult bleeding (Fig 1B, closed squares), histopatholo-
gy (Fig 1C, bottom left), less epithelial damage (Fig 1D and 1E, black bar and closed squares)
and significantly longer colons (Fig 1F). In contrast, RA supplementation had adverse effects in
TLR2KO mice, which demonstrated severe rectal bleeding (Fig 1B, open squares); worse histo-
pathology (Fig 1C and 1D, bottom right, black bars), and shorter colons (Fig 1F) compared to
both WT mice receiving RA and TLR2KO mice receiving vehicle control. Together these data
demonstrate that treatment with RA can protect against epithelial injury during acute colitis
however, in the absence of TLR2, treatment with RA exacerbates disease.

RA mediated suppression of colonic cytokine production in vivo is
dependent on TLR2

To determine if RA supplementation affects inflammatory cytokine production, we examined
the levels of cytokines in the colonic mucosa at day 10. RA treatment suppressed IFN-y (Fig
2A) and TNF-o (data not shown) production in WT mice and exacerbated their production in
TLR2KO mice (Fig 2A). In contrast, RA treatment increased IL-10 production in the WT
mice, an effect that was not observed in the TLR2KO mice (Fig 2A), corroborating earlier ob-
servations that TLR2 directly promotes IL-10 responses [48]. RA had no effect on IL-17 pro-
duction in either condition (Fig 2A).

The colonic mucosa was analyzed for mRNA expression of T-helper associated transcrip-
tion factors at day 14. Complimenting the cytokine data described above, RA treatment exacer-
bated the expression of TBET in TLR2KO but not WT mice. Furthermore, although RA
increased FOXP3 expression in both conditions, its expression was significantly lower in
TLR2KO animals (Fig 2B). As seen with the cytokine analysis, RA treatment had no impact on
the Ty17-associated factor RORC. The increased IL-10 and FOXP3 levels lead us to speculate
that the protective effect of RA observed in WT mice may be due to the induction of anti-in-
flammatory responses via the induction of IL-10 and Foxp3™ T regulatory cells. Examination of
colonic LP cells 10 days after initial DSS treatment demonstrated an increase in the frequency
of CD4" T cells expressing Foxp3™ and IL-10 in WT mice treated with RA, an effect that was
not in TLR2KO mice (Fig 2C). Taken together, these data suggest that in vivo RA treatment af-
fects both cytokine production and T cell polarization in a manner dependent upon
TLR2 signaling.

The suppressive effect of RA and TLR2 is not mediated by dendritic cells

Both TLR2 and RA have been shown to have effects on DC as well as T cells [21,23,27,37]. In
order to further dissect the role of RA and TLR2 in regulating cytokine production, splenic DC
were purified from the spleens of WT and TLR2KO mice. To evaluate the specific effects medi-
ated by RA and TLR2 on DC in a gut environment [33] TGF-f and the TLR2/6-agonist Pam2-
Cysk4 (Pam2) were added to cultures containing RA. RA treatment suppressed Pam2
mediated IL-10 production by WT DC, and enhanced IL-12p40 production (Fig 3A). RA
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Fig 1. RA potentiates colonic injury and inflammation in the absence of TLR2 signaling. WT and TLR2KO mice were given 2.5% DSS for seven days
to induce colonic damage and then placed on normal drinking water for seven days to allow for tissue repair. Upon first presence of fecal occult blood
positivity for each, mice were supplemented with RA or vehicle control, which continued for the rest of the disease course. Weight loss (A) and fecal occult
blood (B) (n = 10—-14 mice per group) were monitored daily. (C) H&E staining of colonic sections of mice at day 14 (after 7 days of DSS followed by 7 days of
water). (D) Histology scoring of H&E-stained colonic slides (n = 4 mice per group). (E) The percent of surface area containing ulcerated/denuded epithelium
quantified using J Image software. (F) Colon lengths from mice at day 10 (n = 5—6 mice per group). *, p < 0.05, **, p < 0.01 using Students t-test.

doi:10.1371/journal.pone.0118875.9001

treatment had no effect on the production of these cytokines by WT DC in the absence of
Pam2, or in TLR2KO DC (data not shown).

To determine whether specific, endogenous signals within the microbiota or DC-modulators
produced by the epithelium can alter the response to RA in a TLR2 dependent manner, we treat-
ed splenic DC from WT and TLR2KO mice with lysates of their own cecal contents. RA exacer-
bated the production of IL-12p40 by both WT and TLR2KO DC stimulated with cecal lysates,
however there was no impact of RA on IL-10 in these conditions (Fig 3B). The intestinal micro-
environment differs greatly from peripheral tissues such as the spleen, to determine whether the
effects of TLR2 and RA would also occur in mucosal derived cells we sorted and stimulated
CD103"* DC from the colonic LP and spleen as previously described [33]. CD103" LP DC will
produce RA ex vivo [18, 20] and the addition a TLR2 agonist produced levels of IL-10 equal to
splenic CD103" DC plus TLR2 agonist and RA (Fig 3C) suggesting that the ability of TLR2 to in-
duce IL-10 is not tissue specific. Previous studies have also indicated that TLR2 signaling in
splenic DC induces RALDH which converting vitamin A to RA [30]. We evaluated the transcript
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doi:10.1371/journal.pone.0118875.g002

levels of aldhala2 in splenic and LP DC to determine whether TLR2KO mice had an intrinsic de-
fect in RA levels accounting for the phenotype we observed. However, we found similar levels of

aldhala2 regardless of TLR2 expression (Fig 3D). Overall, RA was unable to suppress ex vivo IL-

12p40 production by WT splenic DC stimulated with either a TLR2-specific agonist or commen-
sal lysate and had little effect on cytokine production by TLR2KO DC.

RA enhances TLR2-induced IL-10 production from CD4* T cells

Direct signaling via TLR2 on iTrgg has been shown to affect their expansion and function
[40, 41] and the role of RA in iTggg function has been clearly established [21,23,45]. We
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doi:10.1371/journal.pone.0118875.9003

questioned whether the ability of RA to promote iTggg responses could be influenced by TLR2
signaling, which may explain the marked difference in response to RA we observed in vivo. To
address this question, naive splenic CD4" T cells were stimulated polyclonally in the presence
of Pam2. Engagement of TLR2 by Pam?2 directly on T cells suppressed IFN-y and increased
IL-10 production in WT T cells. Interestingly, RA exacerbated both the IFN-y suppression and
IL-10 production (Fig 4A) suggesting an adjuvant effect of RA on TLR2-mediated T cell cyto-
kine production. There was no effect by either TLR2 activation or RA treatment on IL-17 pro-
duction (Fig 4A).

To determine whether RA could alter T cell responses in a TLR2-dependent manner in the
presence of endogenous microbial ligands, we stimulated WT and TLR2KO CD4 T cells in the
presence of cecal lysate, TGF- B as well as RA. Unlike the pure TLR2 agonist, Pam2, cecal lysate
increased IFN-y production by CD4 T cells, which is likely the result of the presence of alterna-
tive TLR-ligands in the culture (Fig 4B). Importantly, however, RA dramatically suppressed
IFN-v production by CD4 T cells in the presence of cecal lysate and this was not observed in
TLR2KO cells (Fig 4B). Cecal lysate also increased IL-10 production by WT CD4 T cells and
similar to the Pam?2 stimulated cells, RA enhanced this phenotype in a TLR2-dependent man-
ner (Fig 4B). IL-17 production was increased by cecal lysate in the presence of exogenous TGF-
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B, but this was not altered by either RA treatment or TLR2 deficiency. Because of the abun-
dance of potential TLR ligands in the cecal lysate and because a recent study has shown a rela-
tionship between yeast zymosan, TLR2/dectin-1 signaling and IL-10 in DC [49], we checked
to see if other TLR ligands induced IL-10 from T cells and if there was an adjuvant effect medi-
ated by RA. The TLRS5 ligand, flagellin, was the only TLR agonist screened that induced IL-10
from T cells, however RA had no effect on IL-10 levels (Fig 4C). Zymosan, which is a Dectin-1
and TLR2 agonist, was unable to induce IL-10 from purified, polyclonally stimulated T cells
(Fig 4C). These data illustrate that zymosan cannot induce IL-10 from polyclonally stimulated
T cells in vitro, and has no role in RA-mediated immune-regulation. Taken together, we con-
clude that in the presence of specific TLR2 ligands, RA suppresses IFN-y and enhances IL-10
production by CD4 T cells and this is dependent on CD4 T cell intrinsic TLR2 signaling.

RA and TLR2 synergize to promote the generation of Foxp3™ T cells in
an IL-10, T cell intrinsic manner

To investigate the synergy of TLR2 and RA in IL-10 production by CD4 T cells, we analyzed in-
tracellular expression of IL-10 and Foxp3 in polyclonally stimulated WT and TLR2KO CD4" T
cells treated with Pam2, RA and/or TGF-. In the presence of Pam2, RA treatment caused a ro-
bust increase in IL-10" CD4 T cells, which were Foxp3™ and this was not observed in the ab-
sence of Pam2 or in TLR2KO CD4 T cells (Fig 5A). Furthermore, in the presence of only
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Fig 5. TLR2 and RA act in concert to potentiate iTgeg generation via IL-10 production. Foxp3 and IL-10 expression by WT and TLR2KO T cells
stimulated with Pam2CysK4 (A) or cecal lysate (B) in the presence or absence RA, TGF-3 or RA/TGF-B. Data are representative plots from three
independent experiments for (A) and mean and frequency of Foxp3*IL-10* and IL-10*CD4* T cells from WT (white bars) and TLR2KO (gray bars) treated
with cecal lysate (n = 5-7 mice) for (B). (C) Frequency of Foxp3 and IL-10 expression in WT T cells cultured with Pam2Cysk4, RA and TGF- and treated with
anti-IL-10Ra antibody or isotype control. Data are representative FACS plots from six independent experiments shown in the bar graphs. (D) Cytokine
production from re-stimulated in vitro MLN cells of WT and TLR2KO mice fed OVA. Data are the mean + SEM of two independent experiments with three
mice per group. *, p < 0.05, **,p < 0.01.

doi:10.1371/journal.pone.0118875.g005

Pam?2, RA treatment caused a robust increase in non-IL-10 producing Foxp3* CD4" T cells
and this same Pam2-mediated increase was also observed after Foxp3* CD4" T cells were en-
hanced with exogenous TGEF-f (Fig 5A). Importantly, the effect of Pam2 and RA to increase
Foxp3* CD4" T cells was not observed when TLR2KO cells were used (Fig 5A, bottom panels).
Similar data was also obtained with T cells stimulated with cecal lysates instead of Pam2 alone

and summarized in Fig 5B.
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We hypothesized that the synergy of TLR2 and RA in increasing IL-10 production was itself
driving subsequent Foxp3™ and IL-10" CD4 T cell expansion in these cultures. To test this we
added IL-10Ro: blocking antibodies to CD4" T cell cultures stimulated with Pam2, TGF- and
RA. Anti-IL-10Ra blockade significantly ablated both IL-10" and Foxp3™ CD4" T cell produc-
tion, showing that the effect of Pam?2 and RA to promote regulatory T cell responses is IL-10
dependent (Fig 5C).

Endogenous TLR2 signals promote oral tolerance via T cells

The importance of RA in the induction of oral tolerance via generation of iTggg is well estab-
lished [21-23]. However, the function of endogenous microbial signals in the context of food-
derived metabolic signals in this process is not well understood. Based on the above observa-
tion that TLR2 signaling on CD4 T cells synergizes with RA to promote the generation of
iTRrgg in vitro, we hypothesized that the absence of TLR2 may impair tolerance against orally
administered proteins. To test whether RA and TLR2 work in vivo to enhance iTggg numbers,
WT or TLR2KO mice were fed OV A with or without concomitant RA supplementation. Two
days after the last feeding, mesenteric lymph node (MLN) cells were re-stimulated in vitro to
assess antigen-specific immune polarization. As expected, RA enhanced the normal tolerogenic
response to fed OVA in WT mice by significantly increasing IL-10 and suppressing IFN-y and
IL-2 (Fig 5D, data not shown) in a TLR2 dependent manner. This was further demonstrated by
the elevated pro-inflammatory IFN-y from TLR2KO and the inability of these mice to produce
IL-10 (Fig 5D). To asses whether the phenotype observed is due to intrinsic TLR2 signaling on
T cells we transferred naive OVA-specific CD4 OT2 T cells from WT mice to WT and
TLR2KO mice. When these mice were fed OVA to induce tolerance, we found a reduction in
IFN-v and an induction of IL-10, similar to WT tolerized controls (Fig 5D). These data confirm
that TLR2 signaling on T cells is required for oral tolerance and enhancement thereof by RA.

Discussion

Numerous studies have delineated the role of RA in lymphocyte trafficking and differentiation
[10,14,16,46]. However, the innate signaling pathways that modulate these effects are not well
understood. There is evidence that RA promotes divergent immune responses depending on
the environmental milieu [24,33] and that TLR2 is involved in propagating these responses
[30]. Our findings illustrate a novel relationship between dietary metabolites and specific sig-
nals from the microbiome to generate tolerogenic responses. Importantly, we have shown that
RA is capable of inhibiting colonic disease and this is dependent upon TLR2 as seen by de-
creased pro-inflammatory cytokine production, better histology scores and less bleeding. It is
noteworthy that in the absence of TLR2 signaling, RA is altered from a tolerogenic adjuvant to
a promoter of hyper-inflammation, drawing a close tie between RA and TLR2 signaling. In the
context of DSS-induced tissue injury, our data illustrate a protective role for TLR2 signaling as
TLR2-deficient mice displayed shorter colons, more weight loss and worse histological features.
The addition of RA during DSS had a protective anti-inflammatory response associated with
an increase in Foxp3" and Foxp3™ IL-10" expressing cells in WT mice. The effects of RA were
lost in the TLR2KO mice and in fact worsened disease. These data lead us to propose a model
in which IL-10 is produced during DSS-induced injury via commensal activation of TLR2 on
mucosal T cells. The addition of RA increases IL-10 production by TLR2-stimulated T cells,
which favors an environment that promotes the generation of Foxp3™ Treg cells. These data
align with our previous work that suggests RA can act as an adjuvant to promote dominant re-
sponses in the mucosal tissue [33]. However, It is possible that RA may promote TLR2-induced
IL-10 through another one of its signaling mechanisms.
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These data illustrate that RA and TLR2 signal directly via the T cell to increase the produc-
tion of IL-10. Further, we demonstrate that the IL-10 produced by RA and TLR2 increases the
generation of Foxp3™ T cells. TLR2 has been shown to be expressed and impact the function of
differentiated, activated Trgg [40, 41]. In fact, human T cells have been shown to induce TLR2
upon activation and Pam3Cysk4 acts as a co-stimulatory molecule inducing IL-10, TNF-o,
IL-2 and IFN-y production [47]. Our data demonstrates an important role for RA in TLR2-me-
diated de novo generation of Foxp3" iTggc from naive T cells independent of TGF-B. However,
when TGF-B is added to the cultures the numbers of Foxp3™ T cells are increased even further
by the addition of TLR2 agonists. These data lead us to hypothesize that the absence of TLR2
signaling would negatively affect oral tolerance, as it appears to result in reduced numbers of
iTrgc against endogenous or commensal antigens. We found that TLR2-deficient mice have a
defect in the ability to be tolerized to oral antigen and RA administration promotes production
of inflammatory responses in these mice. However, tolerance was restored in TLR2KO animals
if they were given a population of TLR2-expressing, antigen-specific, naive T cells prior to oral
antigen and RA treatment.

In summary, our studies reveal that RA and TLR2 signaling synergize to promote tolerogenic
responses in a T cell-dependent manner to promote tolerogenic responses via the production of
IL-10 and ultimately the potentiation of iTrgg. This not only has implications during homeosta-
sis for the generation of tolerogenic responses against dietary antigens, but also during inflam-
mation as a way to temper the inflammatory responses and potentially reduce damage to the
tissue. Our observations indicate that enteral vitamin A supplementation or retinoid therapy at
the time of diagnosis or during disease relapse may be detrimental to patients with IBD. Our
findings also suggest that people with aberrant TLR2 signaling, which has been associated with
the single nucleotide polymorphism R753Q, may be predisposed to inflammatory or autoim-
mune conditions due to impaired induction of iTrgg, particularly in the setting of VAD [44]. Fi-
nally, given the potential of RA to transition from an essential to pathological mediator of
immune responses, further investigation of how vitamin A metabolism affects disease is war-
ranted and the molecular mechanism of TLR2 and RA interactions must be assessed.
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