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Abstract

H-Y antigens are a group of minor histocompatibility antigens encoded on the Y-chromosome 

with homologous H-X antigens on the X-chromosome. The disparate regions of the H-Y antigens 

are highly immunogenic and play an important role in understanding human alloimmunity. In this 

review, we investigate the history of H-Y antigen discovery along with their critical contributions 

in transplantation and pregnancy. In hematopoietic cell transplantation, male recipients with 

female donors who become seropositive for B-cell responses as H-Y antibodies following 

transplantation have increased rates of chronic graft-versus-host disease and decreased rates of 

relapse. Conversely, female patients who receive male kidney allografts are more likely than other 

gender combinations to develop H-Y antibodies and reject their allografts. Finally, in the setting of 

pregnancy, mothers who initially gave birth to boys are more likely to have subsequent pregnancy 

complications, including miscarriages, in association with H-Y antibody development. H-Y 

antigens continue to serve as a model for alloimmunity in new clinical scenarios. Our development 

of more sensitive antibody detection and next-generation DNA sequencing promises to further 

advance our understanding and better predict the clinical consequences of alloimmunity.
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Introduction

Human alloimmunity has significant consequences in a variety of transplantation settings. 

For human leukocyte antigen (HLA)-matched transplants, minor histocompatibility antigens 

(mHAs) are important targets for alloimmunity. mHAs are peptides which, when presented 

in HLA class I and class II proteins, are able to elicit an adaptive immune response [1]. H-Y 

antigens are a class of well-characterized mHAs encoded on the Y-chromosome. H-Y 

proteins tend to be highly expressed throughout the body and show a great degree of 

similarity to the homologous H-X proteins located on the X-chromosome, but with distinct 
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regions of disparity which are generally immunogenic [2]. H-Y antigens provide an 

important model for alloimmunity because they serve as significant immunogenic targets 

with clinical consequences in either the donor graft or the recipient in sex-mismatched 

transplantation.

In hematopoietic cell transplantation (HCT), for example, grafts from female donors to male 

recipients (F → M) lead to increased rates of graft-versus-host disease (GVHD), a common 

complication of HCT which affects the skin, GI tract, liver and other organs. In sex-

mismatched transplantation, GVHD is associated with alloimmunity, which occurs when 

naïve donor lymphocytes target mHAs such as H-Y antigens on normal host tissues in order 

to produce a combined humoral and cellular responses leading to significant morbidity and 

mortality [3–5].

Conversely, in kidney transplantation, kidney grafts from male donors to female recipients 

(M → F) experience increased rates of graft rejection [6]. The rationale behind this increase 

in graft rejection is that the recipient's lymphocytes develop an alloimmune response against 

the H-Y antigens present on the donor graft [7]. Finally, pregnant women with male fetuses 

may develop alloimmune response against these H-Y antigens. This is particularly important 

in the context of secondary recurrent miscarriage (SRM), defined as having three or more 

recurrent miscarriages after a successful birth [8].

In this review, we aim to explore the historical discovery of H-Y antigens as T- and B-cell 

alloimmune targets. We elucidate the clinical impact of H-Y alloimmunity in sex-

mismatched HCT, organ transplantation and pregnancy.

H-Y alloimmunity in hematopoietic cell transplantation (HCT)

The first biological model of sex-mismatched transplantation tested skin graft rejection in 

mice. In the 1950s, Eichwald et al. first described that skin grafts from male donors to 

female recipients (M → F) had the highest rate of skin graft rejection among all gender 

combinations [9–12]. Eichwald et al. predicted that the female mice became sensitized to 

antigens encoded on the Y-chromosome, thus leading to graft rejection [12]. Further studies 

by Billingham showed that this effect could be prevented by tolerizing the females with 

injections of male donor cells into newborn females [13, 14]. These studies were the first to 

identify the importance of sex-mismatched transplants and led to the coining of the term “H-

Y factor.”

Clinical studies of patients following HCT have found that F → M patients are between 1.5 

and 4 times as likely to develop chronic graft-versus-host disease (cGVHD) in comparison 

to male recipients with male donors (M → M) [15–20]. Additionally, further studies have 

shown that male patients who receive allografts from female donors with high parity (more 

than two pregnancies) are more likely to develop cGVHD than male patients who receive 

allografts from nulliparous female donors (Table 1) [21].

Consistent with the mouse models above, the rationale is that lymphocytes from the female 

donor graft recognize several mHAs found on the Y-chromosome as foreign and mount an 
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adaptive immune response against these targets. H-Y antigens present on normal host tissue 

are attacked leading to detrimental GVHD.

However, H-Y antigens present on malignant cells are also attacked, leading to a graft-

versus-leukemia (GVL) benefit, which explains why high H-Y alloimmunity is associated 

with both high levels of GVHD and low levels of relapse.

Discovery of H-Y antigens as T-cell targets

Considering that F → M patients were more likely to develop GVHD, scientists predicted 

that there were proteins encoded by genes on the Y-chromosome which triggered an 

immune response from the female-derived allograft. However, it was not until the 1970s 

when sex-mismatched models began to be applied to human HCT. In 1977, Goulmy et al. 

[22, 23] reported a case in which blood from an HLA-matched F → M patient who had 

experienced acute GVHD possessed HLA-A2-restricted cytotoxic T lymphocytes (CTLs) 

which only attacked male cells. Therefore, she demonstrated that GVHD occurred in sex-

mismatched HLA-matched patients and discovered HLA-restricted CTLs against an 

unidentified mHA presumed to be encoded on the Y-chromosome [24, 25]. Furthermore, she 

isolated T-cell clones specific to five autosomal mHAs and used these to score for the 

presence and absence of mHA expression in HCT patients and donors. Her first clinical 

application showed that GVHD associates with mHA disparity, meaning that the mHA is 

expressed in the recipient, but was absent in the donor. Therefore, naïve donor T 

lymphocytes would react to mHA expression following HCT. As such, Goulmy was the first 

to demonstrate mHA alloimmunity in humans in association with GVHD [26, 27]. In 1995, 

the first H-Y antigen was biochemically identified from the protein lysine (K)-specific 

demethylase 5D (SMCY) [28]. The identification of this H-Y peptide sequence facilitated 

subsequent soluble presentation of the mHA in HLA, called tetramers. These fluorescently 

conjugated tetramers stain mHA-specific T cells, thereby quantifying them and facilitating 

their isolation. Clinical studies utilizing tetramers showed H-Y-specific CTLs develop 

following sex-mismatched transplantation in association with GVHD [29].

In the late 1990s, the completion of the human genome project provided the complete Y-

chromosome sequence and identified nine mHA candidate genes that Page postulated may 

play a role in graft rejection, paving the way for the molecular characterization of H-Y 

antigens [30–32]. Thus far, six of these H-Y candidate genes have been shown to encode T-

cell-detected antigens and six encode B-cell antigens (Table 2) [5, 28, 33–46].

Detection of H-Y antibodies and H-Y-specific allogeneic B cells

While H-Y antigens were first described as T-cell-specific targets, humoral H-Y immune 

responses have developed as a clinically useful measurement of alloimmunity. In fact, H-Y 

antigens have been shown to elicit a coordinated B-cell and T-cell response [5, 47, 48]. The 

utility of H-Y antibodies was first established in sex-mismatched HCT.

Alloantibodies were first detected by Miklos et al. studying F → M HCT targeting H-Y 

antigen DEAD box helicase 3, Y-linked (DBY) using enzyme-linked immunosorbent assay 

(ELISA). His study of 150 patients using H-Y ELISA found that H-Y antibodies are ten 

Popli et al. Page 3

Immunol Res. Author manuscript; available in PMC 2015 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



times more frequent in F → M patients compared to M → M patients (50 % of F → M 

patients as opposed to only 5 % in M → M patients) [2].

Subsequently, clinical studies have shown that H-Y antibodies detected a year post-HCT 

associate with cGVHD development and long-term disease remission (Table 1) [49–51]. 

Characterizing 75 F → M patients, seropositivity against any of five H-Y antigens was 

significantly associated with cGVHD development (OR 56.5, p < 0.0001). Furthermore, 

none of the H-Y seropositive patients relapsed compared to 48 % relapse in H-Y 

seronegative patients [46].

Although ELISA could effectively characterize H-Y antibody responses, more sensitive 

technologies have been developed. Protein microarray technology, for example, facilitates 

high-throughput, ultra-sensitive, multiplexed antibody detection which is considered to be 

more sensitive than ELISA [52, 53]. As an example of serologic utility, Fig. 1 shows H-Y 

microarray detected DBY antibodies in 136 F → M HCT patients measured prospectively 

over 3 years. In this study, 51 % of F → M patients are DBY seropositive at some point 

post-HCT (Fig. 1a). DBY antibody is absent 2 months post-HCT and detected in 19 % of F 

→ M patients at 3 months post-HCT and further develops in association with cGVHD onset 

(Fig. 1b) (Nakasone Unpublished Data).

Microarray technology has also led to the discovery of immune-dominant epitopes through 

the multiplexed testing of “tiled” overlapping peptides across multiple H-Y antigens. This 

led to the discovery of the 18 amino acid DBY-2 peptide as an immune-dominant epitope. 

Using fluorescence-activated cell sorting (FACS), this epitope was used to identify H-Y-

specific B cells. Identifying H-Y-specific B cells should provide earlier alloimmunity 

detection relative to H-Y antibodies. For example, a prospective analysis of DBY-2-specific 

B cells in a study of 28 F → M patients confirmed that allogeneic B cells preceded cGVHD 

development [54].

The identification of allogeneic B-cell responses in association with cGVHD supported the 

use of in vivo B-cell depletion for cGVHD prevention and treatment. In vivo B-cell 

depletion has been safely accomplished with rituximab, a humanized monoclonal antibody 

against B-surface antigen CD20. Clinical trials using rituximab have confirmed that B-cell 

depletion therapy is both effective cGVHD therapy and prophylaxis [55–59].

In the field of HCT, measured alloimmune response to H-Y antigens has been an important 

biomarker associated with significant clinical outcomes including cGVHD and disease 

relapse. While there are a variety of autosomal mHAs which have been shown to be targeted 

by lymphocytes, their low disparity rates limit their clinical usefulness [60, 61].

From T cells to antibodies and now B cells, the targets of H-Y alloimmunity have been 

molecularly identified allowing for their disease impact assessment (Table 3). Therefore, H-

Y antigens remain the most powerful model to better understand the effect of alloimmunity 

in HCT.
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Parity in HCT donors

Mothers with previous male births may become sensitized to the male fetus and develop H-

Y alloimmunity leading to subsequent miscarriages. Studies have shown the persistence of 

H-Y-specific T cells in parous female donors who had given birth to boys many years 

previously [62, 63]. For example, a study found H-Y-specific CTLs in 50 % of female 

donors with multiple male pregnancies [64]. These studies support the notion that 

multiparous females are likely to induce an alloimmune H-Y response with an impact on 

pregnancy and transplantation. Thus, female donors with high parity may put male 

recipients at higher risk of GVHD due to H-Y alloimmunity (Table 1).

Consistent with the H-Y hypothesis, studies have shown that F → M patients with 

multiparous female donors have a higher rate of cGVHD and a lower rate of relapse relative 

to nulliparous female donors [20, 21]. However, it is important to note that there is still a 

much larger difference in outcomes between F → M patients with nulliparous female donors 

and M → M patients than F → M patients with nulliparous female donors and F → M 

patients with multiparous female donors, thus suggesting that the large naïve repertoire due 

to gender disparity plays a larger role in GVHD development than H-Y sensitization from 

pregnancy. Ultimately, studies measuring H-Y antibodies and T cells found within 

multiparous female donors are necessary to characterize adoptive H-Y alloimmunity and its 

clinical impact.

H-Y alloimmunity in kidney transplantation

HLA-matched kidney transplants survive longer on average than mismatched ones [65]. 

Studies have shown that donor-specific antibodies (DSA) including anti-HLA antibodies 

associate with both acute and chronic kidney rejection [66–70]. When HLA-matched organs 

are transplanted, significant levels of kidney graft rejection still occur [71]. For example, in 

an analysis of the UNOS Renal Transplant Registry, Terasaki estimated that 38 % of the 

kidney failures in the transplant registry were due to non-HLA immunogenic factors [72, 

73]. This analysis supports the conclusion that kidney rejections in the presence of HLA-

matched donors most likely represented other immunologic factors, including mHAs. 

Furthermore, biopsies of kidneys undergoing rejection show high levels of C4d, a 

component of the complement cascade, thus implicating pathogenic B cells and antibodies 

in kidney graft rejection [74–76]. Not surprisingly, H-Y alloimmunity is believed to 

contribute to kidney graft rejection in HLA-matched, sex-mismatched patients.

Sex-mismatch kidney transplantation and kidney graft rejection

Although the mechanism for increased graft rejection is not fully understood, the H-Y model 

suggests that host lymphocytes from the female recognize several mHAs such as H-Y 

proteins on the male graft as foreign, thus leading to decreased engraftment and increased 

rates of kidney graft rejection. As opposed to F → M HCT in which a functional immune 

system from the female donor is transferred into the male recipient, M → F solid organ 

transplantation involves the transfer of an immune system target (the kidney graft) from the 

male host to the female recipient, which explains why M → F patients were found to have 

higher rates of kidney graft rejection.
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Unlike HCT where most studies agree that F → M transplants result in more cGVHD, the 

impact of sex mismatch in organ transplantation is less clear. While some studies have 

shown that M → F patients have increased rates of both acute and chronic graft failure [6], 

others have only shown significantly increased rates of acute graft failure [77–79] or no 

difference at all [80]. Although there are many risk factors responsible for kidney failure, 

these studies suggest that alloimmunity against mHAs such as H-Y antigens may be a major 

cause of rejection.

H-Y antibodies and acute kidney rejection

Some researchers have investigated H-Y antigens as a potential risk factor for the 

development of acute kidney failure post-transplant. In a study of 26 M → F kidney 

transplant patients, it was shown that 54 % of these patients developed H-Y antibodies, 

higher than any other gender combination (p < 0.001). Furthermore, 92 % of these M → F 

patients developed acute rejection compared to 21 % of those who were H-Y seronegative. 

The study also showed that those who developed H-Y antibodies were found to have higher 

amount of plasma cell infiltrates on renal biopsy, thus further implicating B-cell 

pathogenesis [7].

Similar to studies in kidney transplantation, sex mismatch in other solid organ 

transplantation has shown mixed clinical outcomes. However, there does tend to be an 

increased risk of graft rejection in cardiac transplantation in particular [81–84] and limited 

evidence for increases in chronic liver rejection in sex-mismatched patients [85].

H-Y alloimmunity in secondary recurrent miscarriage

Pregnancy is a natural phenomenon which has very interesting qualities in regard to 

immunology. Considering that a fetus is only half identical to the mother, it is reasonable to 

interpret pregnancy as a time when a haploidentical fetus resides in the mother's body [86, 

87]. Consequentially, pregnancy has become an intriguing field for the study of H-Y 

alloimmunity. In particular, H-Y alloimmunity has provided one potential explanation for 

secondary recurrent miscarriage (SRM).

SRM is defined as three or more recurrent miscarriages after a successful birth. It is 

important to contrast SRM from primary recurrent miscarriage (PRM), in which three or 

more miscarriages occur without a preceding successful birth. PRMs are believed to be 

caused primarily by chromosomal abnormalities along with problems with proper 

implantation of the embryo, while SRMs are more likely to be the result of immunological 

causes [8].

Interestingly, most SRM patients initially give birth to a boy prior to the recurrent 

miscarriages [88]. Furthermore, mothers who initially gave birth to boys are also more likely 

to experience infertility and future miscarriages [89]. In fact, studies have shown that the sex 

ratio [defined as the ratio of male/female (M/F) births] in SRM patients is shifted toward a 

significantly higher M/F sex ratio prior to SRM and then shifted to a lower M/F sex ratio for 

successful births subsequent to SRM [90]. For example, in a 20-year cohort study of 
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unexplained SRMs, the sex ratio for SRM was 1.49 previous to miscarriages and 0.76 in 

births subsequent to miscarriages [91].

The H-Y hypothesis suggests that, during pregnancy with a male fetus, the mother's immune 

system develops an alloimmune response against these H-Y antigens, which would harm 

future male fetuses and potentially contribute to future miscarriages [8, 92, 93].

H-Y antibodies, along with the presence of H-Y restricted HLA alleles, have been associated 

with the development of SRM along with other pregnancy complications [90, 94–96]. One 

study of 84 SRM patients found that H-Y-specific antibodies were present in a significantly 

higher percentage of SRM patients (46 %) compared to female controls (19 %). This study 

also found that H-Y seropositive patients only delivered boys 12 % of the time compared to 

44 % of the time in H-Y seronegative patients [97]. Thus, measured H-Y seropositivity may 

be preventing implantation or successful gestation of the male fetus.

Consistent with the idea that H-Y antibodies might be responsible for SRM, intravenous 

immunoglobulin (IVIG) infusion, a treatment used normally to neutralize circulating 

antibodies, has been shown to increase the birth rate in SRM patients [98–100] while others 

have failed to show a significant difference [101]. Nevertheless, immunosuppressive 

therapies continue to be investigated in this patient population.

Many investigations aimed to understand why only some mothers with previous male births 

develop H-Y antibodies and others do not [93]. Clinical trials implicate both regulatory T 

cells and CTLs to be involved in developing tolerance to mHA [62, 64, 102–104]. Murine 

studies have shown that depletion of H-Y-specific regulatory T cells in pregnant mice 

resulted in rejection of male fetuses [104].

Future of H-Y alloimmunity

Although H-Y antigens were first discovered in the 1970s, ongoing studies continue to 

identify clinically important T-and B-cell epitopes. A contemporary challenge in 

understanding H-Y alloimmunity is determining the progression and coordination of T- and 

B-cell alloimmunity. These adaptive immune responses are now being directly measured 

using next-generation high-throughput sequencing of the B- and T-cell receptors.

The recent identification of immune-dominant B-cell epitopes now makes it possible to use 

FACS to sort H-Y antigen-specific B cells for functional studies. This is analogous to the 

use of mHA tetramers to isolate and characterize H-Y-specific T cells in the late 1990s. The 

combination of antigen-specific cell sorting and immune receptor high-throughput 

sequencing is going to allow us to detail the evolution of adaptive alloimmunity (Fig. 2).

With the advent of these new technologies, there is potential to advance our understanding 

of alloimmunity and improve our ability to predict alloimmune clinical phenomenon in 

transplantation and pregnancy, thus allowing for more effective immune modulation 

therapies. Furthermore, these same technologies hold the promise to help us understand 

more about the various other mHAs implicated in alloimmunity in both sex-matched and 

sex-mismatched transplantation.
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Since the study of murine skin graft rejection in the 1950s, H-Y antigens have provided an 

essential model for studying alloimmunity in a variety of clinical settings. As discussed in 

this review, our understanding of H-Y alloimmunity has progressed significantly from their 

initial discovery as T-cell-specific targets. Furthermore, H-Y alloimmunity has expanded 

beyond HCT to solid organ transplantation and pregnancy and will continue to be the 

driving model of clinical alloimmunity.
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Fig. 1. 
DBY seropositivity measured 3 months post-HCT predicts cGVHD development. a 
Heatmap representation of IgG specific for H-Y antigen DBY in 69 seropositive F → M 

patients. 67 seronegative patients are not shown. Overall, DBY seropositivity at 3 months 

was 19 and 51 % at any time point following HCT. Each row represents the results of a 

separate patient with the time of serum collection shown on the x-axis. The threshold for 

seropositivity was determined measuring 60 normal male donors. The heat reflects relative 

DBY antibody level relative to this threshold. Importantly, patient death is denoted by black, 

and missing samples are white. b The competing incidence of cGVHD development is 

greater in DBY seropositive patients than in DBY seronegative patients (p < 0.01)
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Fig. 2. 
Methods for studying H-Y humoral alloimmunity. a H-Y-specific alloantibodies are 

quantified by protein microarray. Their immune-dominant epitopes are identified using 

overlapping peptides from H-Y proteins. b These immune-dominant peptides facilitate the 

identification of H-Y-specific B cells by fluorescence-activated cell sorting (FACS). c The 

B-cell receptor-binding specificity can be further elucidated by high-throughput sequencing 

of the immunoglobulin chain which can be used to characterize both heavy- and light-chain 

repertoire. The evolution of the changes in immunoglobin clonotypes over time is 

represented by the phylogeny tree
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Table 1
Clinical findings in sex-mismatch hematopoietic cell transplantation (HCT)

Reference Significant results Conclusions

Carlens et al. [4]
n = 451
(75 F → M)

cGVHD developed in 61 % of F → M patients compared to 40 % in all others 
(RR 1.70, p = 0.006)

cGVHD increased in F → M 
patients

Kollman et al. [20]
n = 6,978
(1,543 F → M)

Registry study showing cGVHD in 54 % of patients with multiparous female 
donors versus 44 % in male donors
(HR 1.40, p < 0.0001)

Donor parity increases the risk of 
cGVHD

Randolph et al. [19]
n = 3,238
(858 F → M)

Increased cGVHD in F → M HCT
(RR 1.56, p < 0.0001)
Decreased relapse in F → M HCT
(RR 0.70, p < 0.0003) compared to M → M patients
CML-restricted analysis showed F → M benefit in relapse
(RR 0.68, p = 0.04)

Large study showing cGVHD risk is 
specific to F → M HCT
GVL benefit confirmed through the 
use of single-disease analysis (CML)

Loren et al. [21]
n = 2,626
(449 F → M)

Donor parity increases cGVHD
HR1.00 M → M
HR 1.44 Nulliparous F → M
HR 1.56 Parous F → M
Donor parity decreases relapse:
HR 1.00 M → M
HR 0.75 Parous F → M

Female donor sensitization by prior 
pregnancies leads to increased 
adoptive alloimmunity

cGVHD chronic graft-versus-host disease, F → M graft from female donor to male recipient, RR relative risk, HR hazard ratio, GVL graft-versus-
leukemia benefit, CML chronic myelogenous leukemia
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Table 2
Selection of H-Y antigens discovered as T-cell targets

H-Y antigen HLA restriction mHA sequence Reference

DDX3Y (DBY) DQB1*05 HIENFSDIDMGE Vogt [38]

B*2705 SRDSRGKPGY Rosinski [40]

DRB1*1501 SKGRYIPPHLR Porcheray [47]

USP9Y (DFFRY) A*0101 IVDCLTEMY Pierce [39]

Vogt [36]

KDM5D (SMCY) B*0702 SPSVDKARAEL Wang [28]

A*0201 FIDSYICQV Ofran [43]

RPS4Y DRB3*0301 VIKVNDTVQI Spierings [41]

B*5201 TIRYPDPVI Ivanov [44]

DRB1*07 TGKIINFIKFDTGNL Eljaafari [33]

TMSB4Y UTY A*3303 EVLLRPGLHFR Torikai [42]

B*60 RESEEESVSL Vogt [37]

B*8 LPHNHTDL Warren [34]

A*2402 YYNAFHWAI Mortensen [45]

mHA minor histocompatibility antigen
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Table 3
Significant studies regarding discovery of T-cell and B-cell response to H-Y antigens

Significant result Conclusion References

H-Y factor

 Skin graft rejection found only in M → F mice Hypothesized “H-Y” factor on Y-chromosome that led 
to female sensitization

Eichwald et al. [9]

T-cell response

 HLA-matched F → M patient who had experienced acute 
GVHD possessed HLA A2-restricted CTLs against unknown 
mHA

First demonstration of sex-mismatched CTL against 
unknown H-Y antigen

Goulmy et al. [22]

 Isolated and sequenced the first H-Y antigen from SMCY 
using CTL identification

Biochemical identification of first H-Y antigen Wang et al. [28]

 Quantification of HLA-A2-specific T cells in patient with 
GVHD using SMCY-restricted tetramers

Tetramer complex allowed visualization of H-Y-
specific CTL and showed association between H-Y-
specific CTL and GVHD

Mutis et al. [29]

B-cell response

 50 % of F → M patients found to be seropositive for the H-Y 
antigen DBY

F → M patients develop H-Y-specific antibodies post-
HCT

Miklos et al. [2]

 F → M patient with cGVHD found to have both CTL and 
antibodies specific for DBY

First demonstration of a coordinated B-cell and T-cell 
response against H-Y antigens in the context of 
cGVHD

Zorn et al. [5]

 H-Y seropositivity associated with increased cGVHD in a 
clinical study of 75 F → M patients.

H-Y antibodies in F → M patients demonstrate both 
increased cGVHD and decreased relapse

Miklos et al. [46]

 Quantification and isolation of H-Y-specific B cells using 
immune-dominant epitope DBY-2

DBY-2-specific B cells are detected in 50 % of F → 
M patients and nearly all develop cGVHD

Sahaf et al. [54]

M → F graft from male donor to female recipient, F → M graft from female donor to male recipient, GVHD graft-versus-host disease, mHA minor 
histocompatibility antigen, CTL cytotoxic T lymphocyte, HCT hematopoietic cell transplantation
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