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Abstract

PI(4,5)P2 participates directly in priming and possibly fusion steps of Ca2+-triggered vesicle 

exocytosis. High concentration nanodomains of PI(4,5)P2 reside on the plasma membrane of 

neuroendocrine cells. A subset of vesicles that co-localize with PI(4,5)P2 domains appear to 

undergo preferential exocytosis in stimulated cells. PI(4,5)P2 directly regulates vesicle exocytosis 

by recruiting and activating PI(4,5)P2-binding proteins that regulate SNARE protein function 

including CAPS, Munc13-1/2, synaptotagmin-1, and other C2 domain-containing proteins. These 

PI(4,5)P2 effector proteins are coincidence detectors that engage in multiple interactions at vesicle 

exocytic sites. The SNARE protein syntaxin-1 also binds to PI(4,5)P2, which promotes clustering, 

but an activating role for PI(4,5)P2 in syntaxin-1 function remains to be fully characterized. 

Similar principles underlie polarized constitutive vesicle fusion mediated in part by the PI(4,5)P2-

binding subunits of the exocyst complex (Sec3, Exo70). Overall, focal vesicle exocytosis occurs at 

sites landmarked by PI(4,5)P2, which serves to recruit and/or activate multifunctional PI(4,5)P2-

binding proteins.
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1. Introduction

Early studies showed that Ca2+-triggered vesicle exocytosis in permeable neuroendocrine 

cells requires MgATP for a priming step that precedes Ca2+-triggered fusion [1, 2]. The 

MgATP-dependent priming step involves phosphoinositides [3] and requires cytosolic 

factors (phosphatidylinositol transfer protein and phosphatidylinositol(4)phosphate 5-kinase, 

PI(4)P 5-kinase)[4, 5], which indicates that PI(4)P* phosphorylation to PI(4,5)P2 is essential 

for maintaining regulated exocytosis. This was further shown with a high affinity PI(4,5)P2-

binding pleckstrin homology domain (PH) from PLCδ1 [6] and by the enzyme-catalyzed 

hydrolysis of PI(4,5)P2 [5, 7, 8], which inhibit evoked vesicle exocytosis in neuroendocrine 
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cells. Evoked exocytosis was also shown to be inhibited by the small HIV-1 Tat protein, 

which directly enters cells and binds PI(4,5)P2 with ~20-fold greater affinity than the PLCδ1 

PH domain [9, 10]. Similarly, a mouse knockout for PI(4)P 5-kinase Iγ caused a reduction in 

the priming of neuronal dense-core vesicles [11]. Conversely, increased synthesis of 

PI(4,5)P2 by PI(4)P 5-kinase activation increases sustained rates of evoked secretion [8, 12]. 

Phospholipase C-catalyzed inhibition of exocytosis in permeable cells [5] suggested there 

was no major role for PI(3,4,5)P3 (but see below), which was reinforced by the lack of 

inhibition of ATP-dependent priming by LY294002, a PI 3-kinase inhibitor, [13]; however, 

inhibition of evoked exocytosis by LY294002 was reported in other studies [14] but this 

compound also inhibits type III PI 4-kinases [15]. Electrophysiological studies of evoked 

vesicle exocytosis in neuroendocrine cells showed that PI(4,5)P2 is required for the 

generation of a primed pool of ready-releasable vesicles as well as for sustained secretion, 

which represents priming of recruited vesicles [8, 16]. These studies strongly indicate an 

essential role for PI(4,5)P2 in priming reactions for vesicle exocytosis but they do not 

exclude additional roles for PI(4,5)P2 at later steps following priming (e.g., fusion). 

Moreover, this work did not elucidate the precise roles for PI(4,5)P2, which has been the 

major focus of more recent research.

PI(4,5)P2 as a signaling molecule is abundant in the inner leaflet of the plasma membrane (2 

mol%) but much sparser in intracellular membrane compartments. The intact 

phosphoinositide PI(4,5)P2 plays a critical role in most if not all cellular events associated 

with the plasma membrane including regulated vesicle exocytosis [17], constitutive vesicle 

exocytosis [18], endocytosis [19], F-actin assembly [20], cell adhesion [21], phagocytosis 

[22], viral budding [23], enzyme activation [24], ion channel regulation [25] and cytokinesis 

[26]. PI(4,5)P2 serves as a marker for plasma membrane identity and establishes a landmark 

for plasma membrane-associated cellular events [27]. The landmark role for PI(4,5)P2 is 

interpreted through the interactions of PI(4,5)P2 with proteins that are involved in each of 

the above cellular processes. Protein binding to PI(4,5)P2 occurs either through structured 

domains that have basic charge regions such as PH or C2 domains, or through contiguous or 

non-contiguous basic charge clusters on proteins [28–30]. PI(4,5)P2-binding proteins are the 

effectors for the biological roles of PI(4,5)P2 where PI(4,5)P2 either functions as a co-factor 

to activate membrane proteins or to recruit proteins to the plasma membrane for function. 

PI(4,5)P2 effector proteins are commonly multi-domain coincidence detectors that exhibit 

interactions with PI(4,5)P2 and with other membrane constituents. Membrane-binding 

energies sum from multiple low affinity interactions to drive high affinity membrane 

binding. Especially for Ca2+-dependent membrane binding, there is a marked mutual 

synergy among interaction partners. For vesicle fusion at the plasma membrane, there are 

now several examples of PI(4,5)P2-binding proteins that interact with SNARE proteins to 

promote their assembly for membrane fusion. Multivalent protein-lipid and protein-protein 

*Abbreviations used: PI, phosphosphatidylinositol; PI(4)P, phosphatidylinositol 4-monophosphate; PI(4,5)P2, phosphatidylinositol 
4,5-bisphosphate; PLC, phospholipase C; PKC, protein kinase C; TIRF, total internal reflectance fluorescence; PALM, photoactivated 
localization microscopy; STORM/dSTORM, stochastic optical reconstruction microscopy/direct; STED, stimulated emission 
depletion microscopy; FWHM, full width half maximum; MARCKS, myristoylated alanine-rich C kinase substrate; CAPS (aka 
CADPS), Ca2+-dependent activator protein for secretion; Munc13, mammalian Unc13 protein; SNARE, soluble N-ethylmaleimide-
sensitive factor attachment protein receptor; VAMP-2 (aka synaptobrevin-2), vesicle-associated membrane protein-2; GRP1, general 
receptor of phosphoinositides.
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interactions result in higher affinity binding to the plasma membrane and provide orientation 

of the recruited protein relative to membrane sites landmarked by PI(4,5)P2.

Recent work has characterized the unique distribution of PI(4,5)P2 in the inner leaflet of the 

plasma membrane in neuroendocrine cells that contributes to establishing sites for vesicle 

exocytosis. Increasingly, the PI(4,5)P2 effector proteins involved in vesicle exocytosis have 

been characterized for their recruitment to or activation at sites of exocytosis. TIRF (total 

internal reflectance fluorescence) and super-resolution microscopies have played an 

increasing role in establishing the lipid and protein distribution at sites of exocytosis. A 

number of recent reviews have summarized the proteins and lipids involved in vesicle 

exocytosis [31–40].

2. PI(4,5)P2 localizes to sites of vesicle exocytosis

While a role for PI(4,5)P2 in vesicle exocytosis has been established, it is important to 

determine whether regulation by PI(4,5)P2 is local or distant, and whether PI(4,5)P2 

localizes to sites of exocytosis. Early studies [3, 5] indicated that PI(4,5)P2 hydrolysis to 

diffusible products did not mediate the essential role of PI(4,5)P2 in vesicle exocytosis 

suggesting that regulation was local. Current technology is limited for localizing and 

perturbing PI(4,5)P2 although this is improving [41–43]. Several studies revealed a 

heterogeneous distribution of PI(4,5)P2 in the plasma membrane of neuroendocrine and 

other cells. Caroni and co-workers reported that immunoreactive clusters of PI(4,5)P2 were 

evident in fixed PC12 cells [44] using a PI(4,5)P2 antibody [45]. Because fixation does not 

immobilize lipids, it was possible that bivalent antibodies induce PI(4,5)P2 clustering, but a 

number of cellular conditions were found that alter the size of the clusters (e.g., MARCKS 

overexpression) suggesting the clusters were physiological. Several studies showed that 

diffraction-limited puncta of PI(4,5)P2 could be imaged on plasma membrane sheets derived 

from PC12 or chromaffin cells [8, 46, 47]. These PI(4,5)P2 puncta were similarly imaged 

either with PI(4,5)P2 antibody [8, 46] or with a GFP fusion of the PH domain of PLCδ1 [46, 

47]. Immuno-EM studies localized PI(4,5)P2 close to chromaffin granules [48]. In the 

studies of Aoyagi et al., ~20% of the dense-core vesicles on membrane sheets co-localized 

with PI(4,5)P2 with about half of these also co-localizing with syntaxin-1 [46]. In the studies 

of James et al., ~20% of the dense-core vesicles on membrane sheets co-localized with the 

priming factor CAPS/CADPS and with PI(4,5)P2 [47]. These studies indicate that PI(4,5)P2 

is distributed in microdomains on the plasma membrane of neuroendocrine cells. A subset of 

PI(4,5)P2 microdomains co-localize with vesicles and with proteins essential for vesicle 

exocytosis, which indicates that PI(4,5)P2 is present at sites of vesicle exocytosis (as well as 

elsewhere) and likely exerts local regulation.

In the studies of James et al., the PLCδ1-PH-GFP probe was calibrated on supported bilayer 

membranes to assess membrane PI(4,5)P2 concentrations [47]. PI(4,5)P2 was present in 

domains at ≥ 6 mol% although this was an underestimate limited by lack of knowledge of 

the actual size of the diffraction-limited domain. A subsequent study [49] estimated the size 

of PI(4,5)P2 domains using STED microscopy. The PI(4,5)P2 domains had an average 

diameter (FWHM) of 73 ± 42nm (s.d.) enabling the authors to calculate that PI(4,5)P2 

concentrations at the peak of the domain may reach ~82 mol%. This may also be an 
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underestimate based on possible crowding of the PLCδ1-PH domain interacting 1:1 with 

PI(4,5)P2 headgroups. Nonetheless, the nanodomains of PI(4,5)P2 imaged in this study [49] 

appear to consist of very high concentrations of PI(4,5)P2 approaching 100 mol%. A study 

utilizing dSTORM with directly-labeled monoclonal antibodies to PI(4,5)P2 in PC12 cells 

confirmed the small size of PI(4,5)P2 nanodomains (~65 nm). From the high signal-to-noise 

ratio of dSTORM, the authors concluded that the majority of plasma membrane inner leaflet 

PI(4,5)P2 was detected in nanodomain clusters [50].

As noted, PI(4,5)P2 domains co-localize with only a subset of docked vesicles (~20% in 

membrane sheets; but see below); however, these could represent a primed subset of 

vesicles. This was suggested by studies in which the co-localization of PI(4,5)P2 with 

vesicles was reduced by briefly evoking exocytosis with Ca2+ influx [46]. Whether evoked 

vesicle fusion occurs preferentially at PI(4,5)P2-rich plasma membrane sites was addressed 

in a recent study [51]. Kabachinski et al. used a lower affinity PI(4,5)P2-binding PH domain 

probe derived from PLCδ4 rather than PLCδ1 to image PI(4,5)P2 microdomains in live PC12 

cells by TIRF microscopy. As was the case for membrane lawn studies, there were a much 

larger number of PI(4,5)P2 microdomains than membrane-proximal vesicles, which is 

consistent with a role for PI(4,5)P2 in many membrane-linked events. However, ~50% of the 

dense-core vesicles in the TIRF field of live cells co-localized with the PLCδ4-PH-GFP 

probe. Ca2+-induced vesicle exocytosis was found to occur at membrane sites enriched for 

PI(4,5)P2 based on the PLCδ4-PH-GFP fluorescence. A PKC-C1-GFP probe detected no 

PI(4,5)P2 hydrolysis to DAG at sites of vesicle exocytosis under Ca2+ influx conditions 

optimal for exocytosis. Greater Ca2+ influx did generate DAG (see below). As anticipated 

for the lower affinity of the PLCδ4-PH domain for PI(4,5)P2 [15] as compared to a PLCδ1-

PH domain probe, the PLCδ4-PH domain probe exhibited reduced partitioning onto the 

plasma membrane and only partially inhibited vesicle exocytosis [51]. These studies indicate 

that vesicle exocytosis can occur at membrane sites highly enriched for PI(4,5)P2. It will be 

of interest to use super-resolution microscopy to determine whether PI(4,5)P2 nanodomains 

disperse or merge with the vesicle membrane at sites of fusion. Diffusion of PI(4,5)P2 onto 

the vesicle membrane during fusion, as shown to occur in Xenopus egg cortical granules 

[52], would promote re-organization of the actin cytoskeleton that could alter vesicle fusion 

modes or vesicle retrieval in endocytosis.

3. Basis for PI(4,5)P2 cluster formation

An important but unresolved question is the basis for PI(4,5)P2 micro/nanodomain 

formation. Early studies suggested that cellular PI(4,5)P2 co-purifies with cholesterol-rich, 

detergent-resistant membrane domains [44, 53] but other studies provided some evidence 

against this [46, 49]. Recent super-resolution microscopy studies provide support for the 

concept that PI(4,5)P2 clusters in the cytoplasmic leaflet align with cholesterol- and 

sphingomyelin(SM)-rich regions in the ectoplasmic leaflet at least at some plasma 

membrane sites. Kobayashi and co-workers expressed a fluorescent PLCδ1-PH domain 

probe to label the cytoplasmic leaflet, and used an SM-binding protein to label the 

ectoplasmic leaflet in PALM/dSTORM studies. They detected aligned PI(4,5)P2/SM 

clusters that were on average ~250 nm [26]. SM clustering appeared to be required for 
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PI(4,5)P2 domain formation [26]. These studies provide evidence that cytoplasmic leaflet 

PI(4,5)P2 domains may correspond in part to cholesterol/SM-rich raft domains.

Substantial experimental work suggests that PI(4,5)P2 in synthetic membranes can self-

associate in microdomains via H-bonding interactions especially when electrostatic 

repulsive interactions are neutralized with cations such as Ca2+ [54, 55]. PI(4,5)P2 clustering 

can also be achieved by electrostatic interactions between proteins with basic charge regions 

and highly anionic PI(4,5)P2 (−4 charge at pH 7.0) [56]. The charge cluster on MARCKS 

peptide (KKKKKRFSFKKSFKLSGFSFKKNKK) can sequester three PI(4,5)P2 molecules 

whereas the much larger PH domains bind one PI(4,5)P2 molecule. The overexpression of 

proteins with highly basic charge domains such as MARCKS or GAP43 was shown to 

increase the size of PI(4,5)P2 clusters [44]. These proteins are also acylated and may play a 

role in raft localization. PI(4,5)P2 also binds to the basic membrane-proximal domain of the 

SNARE protein syntaxin-1 (see below). However, not all PI(4,5)P2 microdomains localize 

with syntaxin-1 clusters [46, 49] indicating that PI(4,5)P2 interactions with syntaxin-1 in 

neuroendocrine cells cannot account for PI(4,5)P2 clustering. However, there are many other 

proteins involved in exocytosis that interact with PI(4,5)P2 (see below) and these could play 

a role in clustering. In addition, most intrinsic membrane proteins exhibit basic regions at 

the cytoplasmic face of their membrane-spanning domains [57]. Thus, PI(4,5)P2 clustering 

may be mediated by a variety of proteins to form PI(4,5)P2 microdomains that exhibit 

functions characteristic of the proteins involved. The association of proteins with SM and 

cholesterol could localize the PI(4,5)P2 into lipid raft domains [58].

PI(4)P 5-kinase, when overexpressed in cells or applied to membrane lawns, increases the 

intensity of PI(4,5)P2 microdomains, and the enzyme attains a punctate distribution on the 

membrane [8, 12, 46, 47]. This indicates that PI(4)P phosphorylation by PI(4)P 5-kinases 

provides a local source of PI(4,5)P2 for microdomain formation but little is understood about 

the PI(4)P substrate or enzyme targeting [59]. The membrane association of PI(4)P 5-

kinases is under active investigation [60, 61] but the basis for PI(4)P 5-kinase targeting to 

sites of exocytosis is currently unknown. PI(4)P 5-kinases interact with anionic 

phospholipids including PI(4)P and PI(4,5)P2, which could be the basis for recruitment [62]. 

ARF6 may also play a role in the recruitment and activation of PI(4)P 5-kinase at exocytic 

sites [12] as promoted by ARF nucleotide binding site opener (ARNO) [63]. Type Iγ 

isoforms of PI(4)P 5-kinase can interact with proteins that are themselves PI(4,5)P2 effectors 

[60]. The type Iγ isoform of PI(4)P 5-kinase is highly enriched in brain synapses and co-

localizes with proteins involved in synaptic vesicle exocytosis and endocytosis [64]. 

Interactions between PI(4)P 5-kinase Iγ and talin and AP2 stimulate PI(4,5)P2 synthesis for 

actin cytoskeletal regulation and endocytosis [65–68]. PI(4)P 5-kinase Iγ has also been 

shown to interact with Exo70, a PI(4,5)P2-binding subunit of the octomeric exocyst complex 

required for cell polarity and constitutive vesicle exocytosis [69]. A PI(4)P 5-kinase β 

isoform co-localized with PI(4,5)P2/SM raft domains possibly through associations with 

RhoA [26]. While it is clear that PI(4,5)P2 concentrations in microdomains can be 

modulated by kinases, phosphatases, and PLCs [8, 47, 51], additional studies are needed to 

identify turnover rates and the basis for enzyme access into high concentration clusters of 

PI(4,5)P2.
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4. Protein effectors of PI(4,5)P2 utilized in the secretory pathway

PI(4,5)P2 in membrane domains at high concentrations is expected to have a pronounced 

effect on membrane phase behavior, the occurrence of hydrophobic defects, and local 

membrane curvature [17, 54, 70]. However the impact of direct lipid effects on vesicle 

exocytosis has been difficult to assess. Most progress has been made in efforts to understand 

the role of PI(4,5)P2-binding effector proteins in exocytosis as discussed in the following 

sections (Figure 1).

4.1. PI(4,5)P2 interactions with SNARE proteins

Syntaxin-1 plays a central role in the regulated exocytosis of vesicles as a partner for 

SNAP-25 on the plasma membrane that assembles into a four helix bundle with VAMP-2 

(aka synaptobrevin-2) on the vesicle to mediate bilayer fusion (Figure 1). Evidence that 

syntaxin-1 interacts with PI(4,5)P2 (see below) prompted studies to determine whether 

PI(4,5)P2 regulates syntaxin-1 function in exocytosis. Syntaxin-1 as well as SNAP-25 are 

present in the plasma membrane mainly distributed in high copy number clusters in 

equilibrium with smaller pools of monomers [71–82]. Initial studies on PC12 cell membrane 

preparations suggested that there was some overlap between syntaxin-1 and SNAP-25 

clusters as well as some degree of colocalization (30–40%) of syntaxin-1 clusters with 

docked vesicles [71]. Ca2+-triggered dense-core vesicle exocytosis appeared to occur near 

syntaxin-1 clusters in these membrane preparations suggesting a role for syntaxin-1 clusters 

in vesicle docking and fusion [71].

Studies in synthetic bilayer membranes showed that PI(4,5)P2 reduces the mobility of 

syntaxin-1/SNAP-25 heterodimers possibly indicating a role for PI(4,5)P2 in SNARE 

protein clustering [83]. It was subsequently suggested that fusion-competent vesicles in 

PC12 cells localize preferentially to plasma membrane sites that contain either PI(4,5)P2 

domains or PI(4,5)P2 domains co-localized with syntaxin-1 clusters [46]. Studies in live 

PC12 cells revealed that a subset of docked vesicles are indeed present at PI(4,5)P2-enriched 

domains where exocytosis occurs without hydrolysis of PI(4,5)P2 under optimal Ca2+ influx 

conditions [51]. Other studies in PC12 cells showed that syntaxin-1 clusters are present at 

sites of vesicle docking but the syntaxin-1 clusters disappear with exocytosis [75]. PI(4,5)P2 

domains co-localize with detected syntaxin-1 clusters to only a very limited extent (5–30%), 

and co-localizing PI(4,5)P2 and syntaxin-1 clusters occupy only a small fraction of vesicle 

docking sites [46, 47, 49]. Such results could indicate that sites for vesicle exocytosis are 

highly specialized in consisting of PI(4,5)P2 domains and syntaxin-1 clusters. However, the 

strongest colocalization is with vesicles and PI(4,5)P2 domains (30–50%) rather than with 

syntaxin-1 clusters. Additional live cell studies monitoring PI(4,5)P2, syntaxin-1 and vesicle 

exocytosis are needed to assess this especially since there are reports that secretory vesicles 

localize to sites of low SNARE density [84]. The exact function of syntaxin-1 clusters in 

vesicle exocytosis is currently unclear [85].

Syntaxin-1 clusters consist of 50–90 copies of syntaxin-1 occupying 50–90 nm diameter 

regions of the plasma membrane [73, 75, 79]. Syntaxin-1 clusters may partially or fully 

overlap with SNAP-25 clusters with some indication for the presence of syntaxin-1/

SNAP-25 heterodimers as well as Munc18-1 [71, 74, 76, 82, 86]. Syntaxin-1 clusters may 
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exhibit a gradient of protein density with possible protein or phospholipid interactions and 

monomer exchange at the periphery of the cluster [79]. Clustering is largely maintained by 

homophilic interactions by the SNARE domain of syntaxin-1 [72] and interactions with 

cholesterol [49, 87, 88]. Recent studies indicate that PI(4,5)P2 and PI(3,4,5)P3 promote 

syntaxin-1 clustering [49, 81]. Syntaxin-1 interactions with phosphoinositides are mediated 

by electrostatic interactions with a membrane-proximal sequence of basic residues 

K260ARRKK265 [47, 89]. Giant unilamellar vesicles containing cholesterol and 1.5 mol% 

(but not 5 mol%) PI(4,5)P2 or 1.5 mol% PI(3,4,5)P3 formed large (micron-sized) clusters of 

syntaxin-1 but cluster formation was abrogated by mutation in the basic cluster (to 

KARRAA) [49, 81]. Importantly, treatment of PC12 cell membranes with the 5-phosphatase 

synaptojanin-1 eliminated syntaxin-1 clusters [49]. Because the coincidence of high 

concentration PI(4,5)P2 microdomains and syntaxin-1 clusters is low (see above), these 

results indicate that syntaxin-1 clusters are promoted by the moderate (1–2 mol%) 

concentrations of PI(4,5)P2 found in membrane regions between high concentration 

PI(4,5)P2 microdomains [47]. The high concentrations of PI(4,5)P2 found in the 

microdomains at sites of vesicle exocytosis would not be required for syntaxin-1 clustering 

but may be important for other functions (see below).

Several studies indicate that PI(4,5)P2 or PI(3,4,5)P3 interactions with syntaxin-1 

significantly affect syntaxin-1 function in membrane fusion. PI(4,5)P2 at 1–10 mol% 

inhibits SNARE-dependent liposome fusion in a manner similar to lysophosphatidylcholine, 

an inverted cone-shaped phospholipid that alters membrane curvature [47]. K264A, K265A 

and K252A, K253A mutations in syntaxin-1 markedly increased the inhibition, which led to 

the suggestion that syntaxin-1 sequesters PI(4,5)P2 to enable membrane curvature favorable 

for fusion [47]. A K260Q, K265L syntaxin-1 mutant was found to partially inhibit CAPS 

stimulation of fusion suggesting that CAPS interacts with syntaxin-1 near its PI(4,5)P2 

binding site [90]. In cellular studies, the replacement of wild-type syntaxin-1 with 

K260AAAKK or A260AAAAA mutants reduced evoked vesicle fusion consistent with an 

overall positive action in fusion for syntaxin interactions with acidic phospholipids [89]. 

Syntaxin-1 generally binds acidic phospholipids such as PA and PI(4,5)P2 so that the actual 

lipid bound in cells is difficult to determine [89]. Lam et al. [89] showed that PLD1 

overexpression compensated for the inhibitory effect of syntaxin-1 mutants in evoked 

exocytosis, which suggested that PA may regulate syntaxin-1. By contrast, PI(3,4,5)P3 

interactions with syntaxin-1 were inferred to be important for neurotransmitter secretion at 

the Drosophila neuromuscular junction by replacing syntaxin-1 with the KARRAA mutant, 

which reduced synaptic syntaxin-1 clustering and evoked transmitter release [81].

The membrane-proximal basic charge region of syntaxin-1 inserts deeply into the 

phospholipid headgroup layer [91]. Such interactions might alter the conformation of 

syntaxin-1 in the bilayer possibly opening its SNARE domain for self-interactions (for 

clustering) or for interactions with other SNARE proteins. Charge neutralization mutants in 

the juxtamembrane domain syntaxin-1 could affect its conformation and protein interactions. 

The current work indicates that PI(4,5)P2 and/or PI(3,4,5)P3 (or PA) regulates syntaxin-1, 

but it will be important to establish whether it is clustering or another property 

(conformation) of syntaxin-1 required for regulated exocytosis that is affected by acidic 
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phospholipids. This may be a highly-conserved property of syntaxins as indicated by the 

conservation of membrane-proximal charge clusters and the essential nature of the 

juxtamembrane domain of the yeast syntaxin proteins Sso1/2p [92].

4.2. PI(3,4,5)P3 as a regulator of synaptic vesicle exocytosis

As noted in the preceding section, studies at the Drosophila neuromuscular junction 

implicated PI(3,4,5)P2 as a regulator of syntaxin-1 and neurotransmitter release [81]. These 

studies, which used RNAi to PI 3-kinase to reduce pre-synaptic PI(3,4,5)P3 levels and a 

targeted GRP1 PH domain to block PI(3,4,5)P3 function, found that neurotransmitter release 

was moderately (~50%) reduced whereas endocytosis was not affected [81]. The results 

indicated that PI(3,4,5)P3 rather than PI(4,5)P2 plays an important regulatory role in 

synaptic vesicle exocytosis at Drosophila neuromuscular junctions. Studies are needed to 

determine if this result is specific to invertebrates or to synapses, and whether it extrapolates 

to regulated dense-core vesicle exocytosis in vertebrate neuroendocrine cells. Previous 

studies in vertebrate neuroendocrine cells had assessed a role for PI(3,4,5)P3 in evoked 

vesicle exocytosis using LY294002, a broad spectrum inhibitor of PI 3-kinase, resulting in 

no effect [13] or an inhibitory effect at high concentrations [14, 93]. More recent studies 

revealed that LY294002 as well as IC87114, an isoform-specific inhibitor of PI 3-kinaseδ, 

actually stimulated vesicle exocytosis because of a transient enhancement of PI(4,5)P2 levels 

[8, 40, 94]. While some of the previous studies perturbing PI(4,5)P2 in vertebrate 

neuroendocrine cells (e.g., 5-phosphatase overexpression) can be interpreted as also 

affecting PI(3,4,5)P3, other studies (inhibition by PLCδ1-PH domain and PLC 

overexpression) are more difficult to re-interpret as a role for PI(3,4,5)P3 unless functional 

pools of PI(3,4,5)P3 are in rapid exchange with PI(4,5)P2. High concentration ~100 nm 

domains of PI(3,4,5)P3 and ~60 nm domains of PI(4,5)P2 appear to be clearly segregated on 

the plasma membrane of PC12 cells [50]. Because PI(4,5)P2 domains have been shown to 

activate and recruit proteins in the regulation of dense-core vesicle exocytosis [46, 51], it 

will be of interest to localize PI(3,4,5)P3 and PI(4,5)P2 domains with exocytosis in both 

vertebrate neuroendocrine cells and synapses. Most PI(4,5)P2-binding effector proteins for 

regulated vesicle exocytosis utilize mainly electrostatic interactions with little selectivity 

that may exhibit higher affinity binding to PI(3,4,5)P3. A central role for PI(3,4,5)P3 in 

synaptic vesicle exocytosis could represent a synaptic specialization that increases the 

efficiency of synaptic transmission. It could also provide a means to independently regulate 

exocytosis and endocytosis in the synapse.

4.3. CAPS as an effector for PI(4,5)P2

CAPS (Calcium-dependent activator protein for secretion, aka CADPS) was originally 

identified as a required factor for Ca2+-triggered vesicle exocytosis that was essential for a 

priming step following PI(4)P phosphorylation [2, 95, 96]. It was named for the Ca2+-

dependent process it functions in but, in spite of very low affinity Ca2+ binding [97], does 

not have a known Ca2+-dependent activity. CAPS does interact with phosphoinositides and 

its role as a regulator of vesicle exocytosis is PI(4,5)P2-dependent (Figure 1). The central PH 

domain in CAPS interacts with PI(4,5)P2 and to a lesser extent with PI(4)P [7, 47, 98, 99]. 

However, dependent on the assay, the CAPS PH domain also interacts with other highly-

charged inositides [47]. PH domain mutants of CAPS abrogated for PI(4,5)P2 binding fail to 
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function in regulated exocytosis in permeable [98] or intact cells [51] indicating that 

PI(4,5)P2 is an essential co-factor for activating CAPS via binding to its PH domain. 

Because of low affinity interactions, it is likely that CAPS is activated by PI(4,5)P2, the 

dominant phosphoinositide in the plasma membrane. CAPS was also characterized as a 

SNARE-binding protein that interacts with each of the three neuronal SNARE proteins, and 

with syntaxin-1 at its membrane-proximal, PI(4,5)P2-binding domain [90]. As a SNARE- 

and PI(4,5)P2-binding protein, CAPS was found to accelerate SNARE-dependent liposome 

fusion in a PI(4,5)P2-dependent manner [47, 100]. CAPS with PH domain mutations was 

strongly impaired in its activation of SNARE-dependent liposome fusion [47, 100].

Recent studies show that CAPS is distributed in the cytoplasm but is also bound to dense-

core vesicles in neuroendocrine cells [51, 98]. C-terminal truncations of CAPS fail to 

associate with vesicles and fail to rescue evoked exocytosis in cells depleted for CAPS, 

which indicates that CAPS likely functions from the vesicle, although it is unclear what 

mediates CAPS binding to dense-core vesicles. CAPS may promote SNARE complex 

assembly when vesicles are near the plasma membrane to enable CAPS interactions with 

PI(4,5)P2 domains in trans. Because the PH domain of CAPS binds PI(4,5)P2 with low 

affinity, close proximity of vesicles to high concentration domains of PI(4,5)P2 may be 

essential for CAPS activation [47]. Previous studies showed that PI(4,5)P2 binding to 

purified CAPS alters its protease sensitivity in vitro [99]. It will be important to determine 

the PI(4,5)P2-dependent molecular transitions in CAPS responsible for altered protease 

sensitivity and how they relate to CAPS protein activation for SNARE complex assembly. 

CAPS may function as a co-incidence detector to signal vesicle arrival at PI(4,5)P2 domains 

in proximity to plasma membrane SNARE proteins (Figure 1).

Recent studies showed that the hydrolysis of PI(4,5)P2 at Ca2+ levels that activate PLCη2 

attenuated CAPS function in evoked vesicle exocytosis [51]. This was interpreted to indicate 

that local PI(4,5)P2 concentrations in microdomains were reduced to below a threshold 

required for CAPS activation. By contrast, the DAG generated by PLCη2-catalyzed 

hydrolysis activated Munc13 [51]. These studies indicated that PLCη2 is a Ca2+-dependent 

regulator of vesicle exocytosis that can shift the function of PI(4,5)P2-dependent effectors.

4.4. Munc13-1/2 as effectors for PI(4,5)P2

Recent studies indicate that Munc13 proteins are effectors for PI(4,5)P2 in evoked vesicle 

exocytosis (Figure 1). Munc13-1 and ubMunc13-2 contain three distinct C2 domains but 

only one of these, the central or C2B domain, exhibits canonical Ca2+-binding sequences 

and Ca2+-dependent phospholipid binding [39]. The crystal structure of C2B revealed a 

short amphipathic alpha helix in loop 3 that was proposed to bind phospholipids [101]. 

Phospholipid binding studies showed that the C2B domain of Munc13-1 or ubMunc13-2 

exhibited Ca2+-dependent binding to PI(4)P and PI(4,5)P2. Asp to Asn mutations (DN) in 

the Ca2+-binding sites of C2B were shown to affect the properties of ubMunc13-2 in 

supporting evoked synaptic vesicle exocytosis [101]. DN mutations in ubMunc13-2 did not 

affect vesicle exocytosis in response to single action potentials, but markedly reduced 

synaptic facilitation in response to multiple action potentials. Synaptic facilitation results 

from accumulated synaptic Ca2+ in response to trains of action potentials. Previous studies 
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indicated that Munc13 activation at its C1 domain by DAG [102] and at a more N-terminal 

site by Ca2+-calmodulin [103] contribute to short-term synaptic plasticity. Thus, the Ca2+-

dependent activation at C2B represents a third mechanism for facilitation. If there was also 

increased PI(4)P and PI(4,5)P2 synthesis promoted by elevated Ca2+ [104, 105], this would 

further enable Munc13 binding to the plasma membrane via its C2B domain [101]. 

However, Munc13 proteins localize to the cytomatrix of the active zone [106, 107] and are 

not obviously translocated to the presynaptic membrane in response to Ca2+ elevations 

[108]. Ca2+-dependent PI(4,5)P2 binding by Munc13 may instead alter molecular 

interactions (e.g., SNARE complex assembly)[109] that promote synaptic vesicle 

exocytosis. A somewhat different mechanism involving the translocation of Munc13 to 

PI(4,5)P2 domains was recently described for neuroendocrine cells [51].

In neuroendocrine PC12 and chromaffin cells, Munc13-1/2 proteins are cytosolic but 

function at plasma membrane sites of docked vesicles to regulate SNARE complex 

formation [102, 110]. Recent studies revealed that Ca2+ influx promotes the translocation of 

Munc13-1 to the plasma membrane in PC12 cells [51, 111]. The translocation of Munc13-1-

GFP into punctate domains on the plasma membrane was extremely rapid (<10s) in response 

to depolarization and Ca2+ influx [51, 111]. Neutralization of the Ca2+-binding sites of the 

C2B domain was found to inhibit evoked vesicle exocytosis and to prevent the Ca2+-

dependent translocation of Munc13-1, which indicated that PI(4,5)P2 binding by C2B may 

mediate translocation [51]. Consistent with this, overexpression of the high affinity 

PI(4,5)P2-binding PH domain of PLCδ1 blocked translocation of Munc13-1-GFP to 

microdomains [51]. Mutation in the C1 domain to compromise DAG binding had little 

effect on the initial Ca2+-induced translocation of Munc13-1 [51]. However, the 

overexpression of PLCη2, a Ca2+-activated PLC, enhanced and stabilized the translocation 

of Munc13-1 due to increased DAG generation at PI(4,5)P2 microdomains (G. Kabachinski, 

M. Yamaga, T. Martin, unpublished). The translocation of Munc13-1 was very similar to the 

activation mechanism for PKC with initial Ca2+-dependent interactions with PI(4,5)P2 

mediated by the C2 domain and subsequent membrane stabilization by DAG interactions 

with the C1 domain [112]. Interestingly, Ashery and co-workers found that Ca2+-dependent 

Munc13-1 translocation was markedly enhanced by or dependent upon the overexpression 

of Doc2b [111], which interacts with Munc13-1 [113]. The C2 domains of Doc2b also 

exhibit Ca2+-dependent interactions with PI(4,5)P2 [114] so Doc2b and Munc13-1 may be 

co-recruited to PI(4,5)P2 domains as a complex. Munc13-1 dissociated more slowly than 

Doc2b from the membrane upon Ca2+ level decreases consistent with a distinct mechanism 

for Munc13-1 stabilization at the membrane [111]. Munc13-1 is proposed to function at the 

membrane by promoting SNARE protein complex assembly by binding to syntaxin-1 [39, 

102, 109, 110]. Multiple ligands (PI(4,5)P2, syntaxin-1, Doc2b, RIM) for Munc13-1 

recruitment would provide a high density of interactions for coincidence detection at sites of 

vesicle exocytosis.

4.5. C2 domain proteins as effectors for PI(4,5)P2

C2 domain-containing proteins are enriched at membrane trafficking nodes. These include 

Munc13, CAPS, synaptotagmin, rabphilin, synaptotagmin-like proteins (e.g., Slp4a/

granuphilin), extended synaptotagmins, double C2 domain (DOC2) proteins, piccolo/
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aczonin, Rab11 FIP, ferlins, phospholipases, protein kinases, lipid kinases, and Rho GEF 

and GAP proteins [35, 115–118]. Synaptotagmin-1 has been extensively studied because of 

its role as a Ca2+-sensor for regulated vesicle exocytosis [32, 119]. As a vesicle-localized 

type I membrane protein, synaptotagmin-1 consists of an N-terminal luminal domain, a 

transmembrane region, a linker region, and two tandem (C2A and C2B) Ca2+-binding C2 

domains (Figure 1). Both C2 domains exhibit Ca2+-dependent interactions with 

phosphatidylserine but the C2B domain also interacts with PI(4,5)P2 via a lysine-rich 

polybasic domain within the concave surface of the β3-β4 region [36, 80, 118, 120-124]. 

PI(4,5)P2 binding to this basic patch enhances the Ca2+-sensitivity of synaptotagmin for 

membrane interactions [123, 125, 126]. Because PI(4,5)P2 is a dominant phospholipid in the 

cytoplasmic leaflet at vesicle exocytic sites [46, 47, 51], C2B interactions with PI(4,5)P2 

could mediate vectorial interactions between vesicle-tethered synaptotagmin-1 and plasma 

membrane sites for exocytosis [80, 121]. Mutations (K326A, K327A) in the polybasic site 

have been shown to impair synaptic vesicle exocytosis [127] and to impair SNARE-

dependent liposome fusion employing reconstituted synaptotagmin/VAMP2 donor 

liposomes with PI(4,5)P2/syntaxin-1/SNAP-25 acceptor liposomes [128].

At elevated Ca2+ levels, synaptotagmin-1 promotes close membrane apposition by bridging 

the membranes although the detailed mechanism for bridging remains uncertain [124, 129–

132]. Membrane bridging would promote proximity of vesicle and plasma membrane 

SNARE proteins for complex assembly for fusion. In addition, synaptotagmin-1 interacts 

directly with SNARE protein complexes potentially promoting C-terminal zippering of 

SNARE complexes [133–138]. Some studies indicate that the polybasic region in C2B 

mediates SNARE binding by synaptotagmin-1 [139, 140] but it appears that SNARE 

binding and PI(4,5)P2 associations can occur simultaneously [80, 114, 119]. Dual 

interactions of synaptotagmin-1 with PI(4,5)P2 and plasma membrane SNARE proteins is an 

example of coincidence detection at the plasma membrane. Synaptotagmin-1-mediated 

bridging of vesicle and plasma membrane would confer vectorial properties on vesicle 

fusion.

Affinity chromatography of chromaffin granule membrane extracts on biotinylated PI(4,5)P2 

bound to avidin-conjugated beads identified several PI(4,5)P2-binding proteins including 

synaptotagmin-1, synaptotagmin-7 and Slp4a/granuphilin, which are C2 domain-containing 

proteins [141]. There are a large number of diverse C2 domain proteins involved in the 

regulation of vesicle exocytosis. These are either soluble (e.g., DOC2, Munc13-1), tethered 

on vesicles through Rab interactions (e.g., Munc13-4, rabphilin, Slp4a/granuphilin) [35, 117, 

142], or vesicle transmembrane proteins (e.g., synaptotagmins-1, -7 and -9). These proteins 

possess polybasic regions in their C2 domains with several demonstrated to interact with 

PI(4,5)P2 as well as with SNARE proteins [114, 120, 143, 144]. It will be of considerable 

interest to determine whether these mechanistically similar proteins function collectively, 

redundantly, or antagonistically to regulate vesicle exocytosis.

4.6. Protein effectors of PI(4,5)P2 utilized in constitutive secretory pathways

Analysis of late Sec genes in the secretory pathway of Saccharomyces cerevisae revealed 

the exocyst, an octomeric complex of Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70 and 
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Exo84 subunits, which serves as a major hub for the actin-dependent, polarized exocytosis 

of post-Golgi vesicles at the bud site of yeasts [145, 146]. Homologous proteins are 

expressed in vertebrate cells [147] where the exocyst plays roles in polarized membrane 

growth and vesicle trafficking [148]. For example, exocyst is required for the insulin-

stimulated trafficking of glucose transporter Glut4 vesicles to the plasma membrane [149]. 

Exocyst is proposed to mediate vesicle localization and tethering to target membranes and to 

enable assembly of SNARE complexes for fusion. A large number of protein-protein and 

protein-lipid interactions have been identified for the subunits of this oligomeric complex 

including interactions with phosphoinositides, SNAREs and GTPases [148]. Live cell 

imaging studies suggest that a vesicle-associated subcomplex of 6 subunits associates with 

plasma membrane-associated Sec3 and Exo70 subunits to complete a tethering complex 

[150]. The Sec6 subunit of the complex regulates SNARE complex formation in association 

with a member of the Sec1/Munc18 family of SNARE regulators [151]. Exocyst is a multi-

protein effector for a vesicle Rab(Sec4) that communicates with PI(4,5)P2 and SNAREs at 

plasma membrane sites, and is functionally similar to multisubunit tethering complexes 

found at other membrane fusion sites [152, 153]. Several exocyst subunits (Sec15, Exo70, 

Exo84, Sec6) share structural similarity of tandem helical bundles also found in other 

tethering complexes (GARP, COG, Dsl1) [152, 154, 155] as well as in CAPS and Munc13 

proteins [33, 156] suggesting an ancestral relationship.

The plasma membrane-associated Sec3 and Exo70 subunits serve as landmarks for 

determining sites of vesicle docking and exocytosis at the plasma membrane [150]. Each of 

these exocyst subunits binds PI(4,5)P2 and small GTPases [157, 158]. Sec3 contains a novel 

PI(4,5)P2-binding PH domain that also interacts with Rho1 and Cdc42, which serves as a 

coincidence detector for plasma membrane associations [159, 160]. Exo70 utilizes a surface 

patch of basic residues at its C terminus to mediate interactions with PI(4,5)P2 [161]. Studies 

with a mutant yeast PI(4)P 5-kinase (Mss4) to deplete plasma membrane PI(4,5)P2 showed 

that polarized secretion was impaired [18, 162]. It should be noted that polarized secretion in 

yeast is highly dependent on the organization of the actin cytoskeleton where several 

PI(4,5)P2-binding proteins regulate Rho, Rac and Cdc42 function [18]. In mammalian cells, 

the exocytosis of post-Golgi vesicles at the plasma membrane was blocked by replacing 

endogenous Exo70 with a mutant lacking PI(4,5)P2 binding [161]. Recent studies also 

indicate that Exo70 functions to form PI(4,5)P2-dependent scaffolds that promote plasma 

membrane deformation for cell migration [163, 164]. Exocyst subunits appear to be 

important PI(4,5)P2 effectors in yeast and mammalian cells for polarity establishment and 

polarized vesicle exocytosis.

5. Summary

PI(4,5)P2 is a landmark for plasma membrane-associated cellular events. A substantial 

fraction of PI(4,5)P2 in neuroendocrine cells segregates into numerous high concentration 

~70 nm domains. Some of the PI(4,5)P2 domains localize with dense-core vesicles and with 

proteins essential for regulated vesicle exocytosis possibly representing preferential sites for 

vesicle exocytosis. CAPS on vesicles requires high concentrations of PI(4,5)P2 for its 

activation. Vesicle synaptotagmins utilize PI(4,5)P2 to orient to plasma membrane sites. 

Munc13 proteins undergo Ca2+-dependent recruitment to PI(4,5)P2 domains. These proteins 
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function as coincidence detectors by interacting with SNARE proteins to regulate membrane 

fusion. A key SNARE protein, syntaxin-1, also interacts acidic phospholipids including 

PI(4,5)P2 to enable its clustering. Similar principles are at work in constitutive vesicle fusion 

relying in part on PI(4,5)P2-binding by the exocyst complex for plasma membrane 

localization. Live cell studies employing super-resolution microscopy with better fluorescent 

probes for PI(4,5)P2 are needed to clarify spatial and temporal aspects of PI(4,5)P2 function 

in recruiting and activating proteins for vesicle exocytosis.
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Highlights

• PI(4,5)P2 is clustered into high concentration nanodomains on the plasma 

membrane.

• Vesicle exocytosis occurs at PI(4,5)P2-rich membrane domains.

• PI(4,5)P2 activates/recruits SNARE-binding proteins (CAPS, Munc13, 

synaptotagmin).

• PI(4,5)P2 regulates the SNARE protein syntaxin-1.

• PI(4,5)P2- and SNARE-binding exocyst complex mediates polarized vesicle 

exocytosis.
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Figure 1. 
Schematic of proposed roles for PI(4,5)P2 (black circles) in regulated vesicle exocytosis. 

Dense-core vesicles (DCV) are depicted in a linear scheme undergoing docking, priming 

and fusion. Three PI(4,5)P2- and SNARE-binding proteins are shown: CAPS (purple) as a 

DCV-bound protein that undergoes activation at PI(4,5)P2 domains via a central PH domain; 

Munc13-1 (or ubMunc13-2, red) as a cytosolic protein recruited to PI(4,5)P2 domains via a 

central C2 domain; and synaptotagmin-1 (brown) as a DCV protein directed to fusion sites 

by PI(4,5)P2 via its membrane-distal C2 domain. The SNARE proteins (syntaxin-1, red; 

SNAP-25, green; VAMP-2/synaptobrevin-2, blue) are shown progressively assembling into 

complexes with syntaxin-1 shown interacting with PI(4,5)P2.
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