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Abstract

Maintenance of the mitochondrial proteome is performed primarily by chaperones, which fold and 

assemble proteins, and by proteases, which degrade excess damaged proteins. Upon various types 

of mitochondrial stress, triggered genetically or pharmacologically, dysfunction of the proteome is 

sensed and communicated to the nucleus, where an extensive transcriptional program, aimed to 

repair the damage, is activated. This feedback loop, termed the mitochondrial unfolded protein 

response (UPRmt), synchronizes the activity of the mitochondrial and nuclear genomes and as 

such ensures the quality of the mitochondrial proteome. Here we review the recent advances in the 

UPRmt field and discuss its induction, signaling, communication with the other mitochondrial and 

major cellular regulatory pathways and its potential implications on health and lifespan.
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Introduction

Mitochondria supply cells with ATP, the cellular energy currency, and are essential for 

many other aspects of cellular homeostasis, thereby influencing not only cellular 

metabolism, but also organismal health and lifespan [1,2]. Inborn mitochondrial defects 

result in severe multisystem diseases and mitochondrial dysfunction also underlies several 

common metabolic and neurodegenerative diseases [3,4]. Mitochondrial unfolded protein 

response (UPRmt) is an emerging adaptive stress response pathway, which ensures optimal 

quality and function of the mitochondrial proteome. UPRmt internally surveys mitochondrial 

proteostasis and responds to stress signals by activating an intricate mitochondrial protein 

quality control (PQC) network [5-7]. Here we review the recent literature on mechanisms 

that trigger UPRmt activation, its signaling pathways, crosstalk with other mitochondrial 

quality control systems and interactions with the wider network of cellular responses.
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Activation of UPRmt

Mitochondria are evolutionarily derived from proteobacteria that evolved in symbiosis 

within eukaryotic cells [8]. Mitochondria contain multiple copies of the circular 

mitochondrial DNA (mtDNA), a vestige of the proteobacterial genome, which encodes 13 

protein constituents of the multiprotein complexes of the electron transport chain (ETC). 

The remainder of the mitochondrial proteome (~1500 proteins) is transcribed from the 

nuclear DNA (nDNA). After translation in the cytoplasm, these nuclear encoded proteins are 

imported, folded and assembled within the mitochondria [9,10]. Four out of five ETC 

complexes contain proteins encoded in both genomes, requiring a robust synchrony between 

the mitochondrial and nuclear genome to warrant optimal mitochondrial function [11].

Proteostasis in the mitochondria is ensured by an elaborate protein quality control (PQC) 

network, composed of two main functional groups of proteins, chaperones and proteases 

[12,13]. Chaperones mtHsp70, Hsp60 and Hsp10 fold and assemble proteins that are 

imported into the mitochondria and refold damaged mitochondrial proteins. Excess proteins 

that are unassisted by chaperones are digested by ATP-dependent PQC proteases, specific 

for each mitochondrial compartment: the ClpXP and Lon proteases in the matrix, the i-AAA 

(Yme1L1) and m-AAA proteases (Afg3l2 and Spg7), acting in the intermembrane space 

(IMS) and matrix, respectively. Upon mitochondrial proteotoxic stress, these PQC 

chaperones and proteases are induced as a result of a retrograde mitochondria-to-nucleus 

signaling termed UPRmt. Using mitochondrial chaperones and proteases as UPRmt 

biomarkers, this PQC pathway has now been established in worms, flies, mammalian cell 

cultures and mice. Various conditions have been shown to trigger the UPRmt, most of which 

interfere with the mitochondrial proteostasis either by disturbing the PQC system or by 

increasing the load of damaged, unfolded or unassembled proteins (table 1).

RNAi based downregulation of components of the mitochondrial protein handling 

machinery, such as the import proteins TIM-17 and TIM-23 [14,15], the inner membrane 

protein scaffold PHB-2 [16,17], the PQC protease SPG-7 [17,18] or the chaperone mtHsp70 

[19] all induce UPRmt in C. elegans or in mammals. Moreover, increasing the workload of 

PQC machinery by overexpression of aggregation-prone proteins, such as a mutant form of 

ornithine transcarbamylase (OTC-Δ and EndoG, also activates UPRmt in mammalian cells 

[19-21] and flies [22]. On a similar note, the treatment with the reactive oxygen species 

(ROS) generator paraquat, which increases the amount of damaged proteins, also induces 

UPRmt in C. elegans [17,23]. Additionally, pathogenic bacteria can induce UPRmt by 

production of toxins, which antagonize mitochondrial proteostasis [24,25].

Another way to induce UPRmt is by manipulating ETC assembly either by the 

downregulation or inhibition of single (or groups of) ETC components, which are encoded 

by either mtDNA or nDNA [26]. This results in a mismatch between mtDNA and nDNA 

encoded ETC subunits, creating orphaned unassembled subunits, which stay associated with 

chaperones; this phenomenon is termed mitonuclear protein imbalance [26]. Thus 

downregulation of ETC subunits by cco-1 (complex IV) RNAi [18,27], in isp-1 (complex 

III) or clk-1 (ubiquinone synthesis) mutant strains [27,28], or by using pharmacological ETC 

inhibitors, such as antimycin [23,24] and rotenone [23], activates UPRmt. Additionally, 
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downregulation of mitochondrial ribosomal proteins or treatment with the bacterial (also 

mitochondrial) translation inhibitors doxycycline or chloramphenicol [26], as well as 

mtDNA depletion induced by ethidium bromide [17] result in a mitonuclear protein 

imbalance and consequently induce UPRmt.

Similarly, the activation of mitochondrial biogenesis by resveratrol or rapamycin [26] also 

reduces the levels of mitochondrially encoded ETC subunits, triggering UPRmt. Boosting 

NAD+ levels by the NAD+ precursor, nicotinamide riboside (NR), or by inhibiting NAD+ 

consumption, as seen after treatment with PARP inhibitors [29], also enhances biogenesis, 

but the raise in NAD+ levels specifically increases the transcription and translation of 

mtDNA-encoded ETC subunits [30], creating also a mitonuclear imbalance, which triggers 

the UPRmt. In accordance with these findings related to mitochondrial biogenesis, UPRmt 

can be activated in worms, only if the perturbation in mitochondrial proteostasis takes place 

during L3/L4 transition [31], which coincides with a major burst in mitochondrial biogenesis 

[32], further emphasizing its role in the induction of UPRmt. The induction of UPRmt during 

biogenesis is in most cases mediated by actvation of sirtuins, protein deacylases, which are 

major regulators of metabolism and aging [33], namely Sirt1 in mouse or sir-2.1 in worms 

[29,30,34,35]. In addition to Sirt1, recently, Sirt7 and its downstream target transcription 

factor GABPβ1 were shown to control the expression of multiple mitochondrial ribosomal 

proteins, responsible for mitochondrial translation [36]. Although the potential role of Sirt7 

in UPRmt induction has not yet been examined, given its major impact on mitochondrial 

ribosomal proteins [26], Sirt7 might be pivotal for mitochondrial proteostasis, while its 

deficiency could induce UPRmt.

UPRmt signaling

The first trigger for UPRmt in C. elegans is the excess of damaged and unfolded proteins, 

which are digested by the CLPP-1 protease into small peptides [37], and then transported 

outside of the mitochondria by the transporter HAF-1 [38] (figure 1). The role of these 

peptides is unknown yet, but presumably they contribute to weaken mitochondrial import 

during stress, which on its turn is important for the nuclear translocation of the main UPRmt 

transcriptional regulator ATFS-1 [15]. ATFS-1 is able to shuttle between mitochondria and 

nucleus due to presence of a mitochondrial targeting sequence (MTS) and a nuclear 

localization sequence (NLS). In normal conditions, ATFS-1 is imported and degraded by the 

Lon protease in the mitochondria, but upon mitochondrial stress ATFS-1 translocates into 

the nucleus [15]. Together with other transcriptional regulators UBL-5 [39] and DVE-1 [37], 

which also move into the nucleus in stress conditions, ATFS-1 then induces the transcription 

of UPRmt targets in the worm. Of note, the Ubl5 protein levels also correlate tightly with 

UPRmt effector chaperones and proteases in several tissues in the BXD mouse genetic 

reference population (GRP) and in humans, which indicates that presumably it is also 

involved in the initiation of the mammalian UPRmt [18]. Interestingly, ATFS-1 does not 

have an unambiguous sequence homolog in mammals, making it doubtful whether an 

ATFS-1 counterpart and its shuttling mechanism are conserved in mammalian UPRmt. 

ATFS-1 induces multiple genes with a pleiotropic outcome. It activates the transcription of 

mitochondrial chaperones and proteases, as well as that of detoxification enzymes to 

neutralize the generation of ROS, and of mitochondrial transporters, which presumably 
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correct the import deficit after the resolution of the perturbation [15] (figure 2). ATFS-1 also 

induces glycolytic genes, which indicates that there is a concomitant transient shift in 

cellular ATP production from mitochondrial oxidative phosphorylation to cytoplasmic 

glycolysis during mitochondrial stress [15]. Such a metabolic shift, while maintaining 

cellular energy supply, avoids overtaxation of mitochondrial energy harvesting in stress 

situations.

How mitochondrial stress in mammals is sensed and triggers UPRmt, and whether it involves 

the possible generation of peptides similarly as in C. elegans, is still unknown. In 

mammalian cells transfected with OTC-Δ, the UPRmt transcriptional response was shown to 

involve JNK2 phosphorylation, which triggers c-Jun to bind and activate the CHOP and C/

EBPβ promoters [20,40] (figure 1). c-Jun was shown to be also required for UPRmt 

induction in flies [41] and CHOP induction has been observed upon EndoG overexpression 

[21] or in complex IV deficient Surf−/− mice [42]. Consequently, UPRmt target gene 

expression is coordinated by a dimer of the transcription factors CHOP and C/EBPβ, which 

binds target promoters on a specific CHOP binding site flanked by two UPRmt response 

elements (MUREs) [43]. MUREs have been identified in the promoters of human 

mitochondrial PQC chaperones and proteases (HSP60, HSP10 and mtDnaJ, ClpP, YME1L1 

and PMPCB), as well as in the enzymes NDUFB2, endonuclease G and thioredoxin 2 [43]. 

A recent transcriptomics and proteomics analysis revealed that UPRmt effector proteins 

Hsp60, Hsp10, mtHsp70, ClpP, Lonp1 and Ubl5 form a tight coexpression network in mice 

GRPs and human populations, suggestive of their transcriptional control [18]. However, the 

fact that stronger correlations were observed on protein than on transcript level, indicates 

also importance of posttranslational mechanisms in UPRmt regulation [18].

Evidence for conservation of UPRmt pathway in mammals

Although the UPRmt has been intensively investigated in yeast [16], worms 

[15,17,27,37-39,44], flies [22,41], and mammalian cells [17,20,26,28,29,45], it is not yet 

defined when and where UPRmt occurs in intact mammals.

We previously demonstrated that mitonuclear protein imbalance, as seen upon reduced 

expression of Mrps and/or inhibition of mitochondrial translation, induces a robust UPRmt in 

the BXD mouse strains, which translated in a significant lifespan extension [26]. As further 

proof of concept that similar mechanisms could activate UPRmt across species, we recently 

showed that subtle variations in the expression of orthologs of two prototypical UPRmt 

components—i.e. cco-1, a nuclear encoded component of ETC complex IV [27] and the 

protease spg-7 [17]—whose loss-of-function trigger worm UPRmt, also induce a UPRmt 

signature in unchallenged mice from the BXD GRPs [18]. These robust correlations on a 

population levels are remarkable as they indicate that UPRmt is a physiological pathway, 

which is not only activated by robust genetic or pharmacological perturbations, but has a 

role in subtle homeostatic processes [18], that can impact on lifespan [26]. The tight 

correlation and regulation of the UPRmt was furthermore also conserved in several different 

human tissues, supporting the cross-species nature of UPRmt [18].

In addition to these data coming from holistic genetic approaches, recently also single gene 

perturbations in mice have been linked with UPRmt. A UPRmt signature was for instance 
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detected in muscles of mtDNA Deletor and Sco2KO/KI mice, models of inherited 

mitochondrial myopathies [34,35]. Phenotypic analysis of Surf1−/− mice, deficient in ETC 

complex IV, also revealed activation of the UPRmt markers Hsp60, ClpP, Lonp and Chop 

[42]. Furthermore, UPRmt can also be induced pharmacologically in mice [30]. Like in 

worms, treatment with PARP inhibitors triggers a robust UPRmt in mice as a consequence of 

a mitonuclear protein imbalance caused by the enhanced translation of the 13 mtDNA 

encoded ETC proteins [30]. These emerging data warrant further investigation of the 

eventual presence of UPRmt in other mice models and in human patient biopsies.

UPRmt-induced protective responses

Under stress, several lines of defense are activated by mitochondria. First, production and 

import of new mitochondrial proteins is temporarily blocked. Specific kinases, GCN-2 in the 

worm [44] and PKR in mammals [28], phosphorylate eIF2a, which leads to attenuation of 

global translation (figure 2). In C. elegans, reduction of mitochondrial import is important to 

initiate the UPRmt transcriptional response [15]. Furthermore, specific reduction in 

mitochondrial import occurs also in mammalian cells upon UPRmt, as the Yme1l1 protease 

selectively degrades the translocation pore component Tim17A [14]. The reduction of 

mitochondrial proteins and function during stress is consistent with the reallocation of ATP 

production to glycolysis in the cytoplasm [15].

In addition, several parallel protective responses are activated upon UPRmt. SIR-2.1 in 

worms and mammalian Sirt3 were shown to regulate UPRmt in part by deacetylating 

DAF-16 or its mammalian homolog Foxo3a, respectively, which then activates an 

antioxidant response [21,29] (figure 2). Another major oxidative stress response pathway, 

coordinated by Nrf2 (NFE2L2), was activated in complex IV deficient Surf1−/− mice [42]. 

Interestingly, the Nrf2 pathway is coordinated by c-Jun [46], which also regulates CHOP 

and C/EBPβ in the context of mammalian UPRmt, as discussed above. On a similar note, in 

C. elegans treated with antimycin or spg-7 RNAi to induce UPRmt, pathogen defense and 

drug detoxification are enhanced [24,25]. The activation of these protective pathways allows 

the worm to recognize and avoid pathogens, which target mitochondria, and can increase its 

resistance to a wider network of stressors. For instance, worms and mammalian cells with an 

active UPRmt are more resistant to ROS generator paraquat [14,29]. Additionally, worm 

gain-of-function mutants of ATFS-1 with constitutively activated UPRmt, are resistant to 

statin (inhibitors of HMG-CoA reductase) toxicity [47].

Recent findings suggest that mitochondrial remodeling, namely fission and fusion, as well 

selective removal of terminally defective mitochondria by mitophagy, take place under 

stress conditions. Both increased fusion [29] and fission [19,22,26] have been detected under 

UPRmt, which presumably depends on the type and strength of UPRmt inducer and requires 

further studies. Increased mitophagy has been observed in mammalian cells and flies 

overexpressing mutant forms of EndoG [21] or OTC-Δ [19,22,48], as well as upon RNAi 

inactivation of the ETC component ND75 [41]. In these systems mitophagy is potentially 

regulated by Foxo3a [21], AMPK [22] and secreted Insulin antagonizing peptide ImpL2, 

which non-autonomously repressed insulin signaling in distant tissues [41] (figure 2). 

Whether mitophagy is upregulated in UPRmt inducing conditions in worms, has not been 
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directly investigated, but seems also likely, as autophagy genes are among the ATFS-1 

targets [49]. Interestingly, mitophagy and UPRmt might share the same initial mitochondrial 

damage detection steps, as in worms, synthesis of ceramide, a sphingolipid which marks 

domains of mitochondrial dysfunction and induces mitophagy by anchoring 

autophagolysosomes to these domains [50], was required for UPRmt activation [24]. 

Mitophagy is induced by PINK1, that accumulates on the depolarized outer mitochondrial 

membrane, and then recruits the E3 ubiquitin ligase Parkin, targeting mitochondria to 

autophagosomes [51]. Mitophagy induction might be altered in UPRmt conditions, as upon 

OTC-Δ expression in cells, PINK1 and Parkin accumulate on stressed, but not depolarized 

mitochondria [48]. This might be regulated at the level of PINK1 degradation in basal 

conditions, in which mitochondrial PQC proteases, namely Lonp1, seem to be also involved 

[52].

Both mitochondrial dynamics and mitophagy pathways contribute to reconstitution of 

cellular homeostasis in stress conditions, by redistribution and removal of the irreversibly 

damaged elements of mitochondrial network. Inability to induce sufficient levels of 

mitophagy, under strong mitochondrial stress and activation of UPRmt, induces apoptosis 

and has negative systemic effects on whole organism physiology [21,22].

UPRmt systemic effects on aging

Disruption of almost any subunit of the ETC paradoxically extends lifespan in yeast, worms, 

flies and mice [53-55]. The lifespan extension is associated with typical phenotypes, such as 

delayed development, small size and reduced fertility. Interference with ETC has hormetic 

effects on longevity, demonstrated by RNAi dilution experiments: moderate knockdown 

extends lifespan, while too low and too strong knockdowns either do not have an effect or 

reduce lifespan, respectively [56]. Moreover, there are specific spatio-temporal restrictions, 

as selective interference with ETC only in neurons and intestine during larval stages 

increases worm longevity [27,31]. UPRmt is almost invariably present [57], follows the 

same spatio-temporal specifications [27], and is required for lifespan extension in worms 

with ETC problems [26,27,44,58]. In flies, disruption of the complex I component ND75 in 

the muscle by low-levels of RNAi, for a defined time period in the adult stage, activated 

UPRmt and increased lifespan [41]. In line with this, the reduced expression of Mrps5, a 

mitochondrial ribosomal protein, which regulates the translation of mtDNA encoded ETC 

genes, induces a mitonuclear imbalance resulting in UPRmt, which correlates with increased 

lifespan in the BXD mouse GRP [26]. This effect on lifespan in the BXD strains was all the 

more striking as it was not linked to loss of gene function, but just due to a subtle variation 

in Mrps5 expression levels. The positive effects of UPRmt on lifespan are also exemplified 

in worms [59] and flies [41] with forced overexpression of UPRmt effector chaperones.

Despite this rather convincing evidence linking UPRmt activation and longevity obtained in 

several independent laboratories and across multiple species (worm, fly, mice), not all 

UPRmt inductions may be beneficial [22,60]. This is not too surprising given the hormetic 

nature of UPRmt, with a clear dose effect relationship and with well-defined spatio-temporal 

frames. If the level of mitochondrial stress is too high, the protective effects of UPRmt may 
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hence be insufficient to counteract the damage, making a beneficial adaptive response 

become maladaptive.

Conclusions and perspectives

First described ~20 years ago, the UPRmt is now emerging as an important regulator of 

mitochondrial health, interacting with other mitochondrial quality control systems, such as 

the oxidative stress response, mitochondrial biogenesis and mitophagy. Although some 

specific UPRmt regulators and pathways have been described in invertebrates, our 

knowledge of the exact molecular machinery of the UPRmt is still evolving and incomplete. 

Further studies defining the UPRmt sensors, signal transduction pathways and effectors, 

particularly in mammals are hence required. Also how the UPRmt intersects with other 

cellular signaling pathways, such as those controlled by sirtuins, AMPK or insulin, requires 

further investigation. The fact that a UPRmt signal is present in unchallenged mouse and 

human populations across multiple tissues [18] is an important step towards ascertaining its 

importance in mammals. It furthermore suggests that this pathway not only has a role in 

stress defense but also in homeostasis, where UPRmt could synchronize mitochondrial and 

nuclear genomes at the proteome level. We hope that better understanding of UPRmt may 

one day help translate the benefits of the UPRmt into therapies for rare inherited and 

common age-related related diseases with mitochondrial dysfunction.
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Figure 1. Scheme depicting the transcriptional regulation of the UPRmt

Accumulating unfolded proteins, unassisted by chaperone Hsp60 in stressed mitochondria, 

are digested by the protease Clpp. The resulting peptides are transported through the double 

mitochondrial membrane into the cytosol. These peptides presumably stop mitochondrial 

import, which is also negatively affected by specific degradation of Tim17 component of the 

translocation pore by protease Yme1l1. As a result, C. elegans transcription factor ATFS-1, 

which in normal conditions is translocated to mitochondria and degraded by protease LonP, 

moves into the nucleus together with UBL-5 and DVE-1 to activate a reparative 

transcriptional program. In mammals, Jnk2 triggers c-Jun binding to AP1 sites, leading to 

the activation of Chop and Cebpβ transcription. Subsequently, Chop and Cebpβ dimers bind 

to CHOP sites flanked by MUREs and induce UPRmt target gene transcription. Proteins 

characterized in C. elegans are marked in green, fly and mammalian system proteins in red 

and proteins conserved in all the systems are noted in blue (mouse nomenclature is used).
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Figure 2. The pleiotropic effects of UPRmt

A scheme summarizing the principle UPRmt sensor/activator signals and the downstream 

interacting pathways, with their respective cellular effects. Proteins characterized in the fly 

and/or mammalian systems are marked in red and those studied in C. elegans in green.
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Table 1

UPRmt inducing manipulations

Genetic Pharmacological

protein damage aggregation prone OTC-Δ [20,22], EndoG [21] 
overexpression

ROS generator paraquat [23], toxins, 
produced by pathogenic bacteria [24,25]

interference with PQC knockdown of Hspa9 [19], hsp-60 [17], dnj-21 [17], spg-7 
[17]

interference with mitochondrial 
import and architecture

RNAi of tim-17, tim-23 (RNAi) [14,15], phb-2 [16,17] arsenic (III) [14]

mtDNA depletion RNAi of mtDNA helicase pif-1 [17], Deletor mice [34] ethidium bromide [17,45]

interference with mitochondrial 
translation

downregulation of various cytosolic and mitochondrial 
ribosomal proteins [17,26]

bacterial and mitochondrial translation 
inhibitors doxycycline and chloramphenicol 
[26]

loss of ETC subunits cco-1 RNAi [27], isp-1 (qm150) [44], clk-1 (qm30) [44] 
alleles, RNAi of ND75 [41], Surf1−/− mice [42]

ETC inhibitors antimycin [23,24], rotenone 
[23]

sirtuin activation and 
mitochondrial biogenesis

sir-2.1 overexpression [29] PARP inhibitors MRL45696 [30] and 
AZD2281 [29], NAD+ precursor NR [29], 
rapamycin [26]
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