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Abstract

Cell division in bacteria requires the construction of two new polar caps for the daughter cells. To 

constrict the cell membrane and build these new surface layers, bacteria employ a multiprotein 

machine called the divisome. Over the years, most of the essential division proteins have been 

identified and localized to the ring-like divisome apparatus. The challenge now is to determine the 

molecular function of these factors, how they cooperate to bring about the dramatic transformation 

of the mother cell envelope, and what coordinates their activity with other major cell cycle events. 

In this review, we discuss recent progress in these areas with an emphasis on results from the 

model organisms Escherichia coli and Bacillus subtilis.

Introduction

The bacterial cell cycle culminates with the onset of cell division. The process initiates with 

the polymerization of the tubulin-like FtsZ protein into a ring structure (the Z-ring) just 

underneath the cytoplasmic membrane [1,2**]. Following Z-ring assembly, numerous 

essential and non-essential division proteins are recruited to midcell to form the mature 

division apparatus called the divisome or the septal ring [3]. Over the years, most, if not all, 

of the core proteins required for divisome activity have likely been identified [3,4]. A great 

deal has also been learned about the regulators that control Z-ring positioning to ensure that 

division takes place at the appropriate location. Despite this progress, major questions 

remain unanswered. Not all of the factors controlling Z-ring formation are known, including 

those that coordinate its assembly with the replication and segregation of the chromosome. 

Also, the precise functions of many core division proteins remain to be determined. Finally, 

although the steps of divisome assembly have been well characterized, the factors 

controlling the switch from an assembly phase to active cell constriction remain largely 

mysterious. This review focuses on recent work that has shed light on these outstanding 

questions. For a more in-depth overview of cell division, the reader is referred to several 

excellent reviews [3–6].
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Connecting Z-ring formation to the chromosome

In the model bacteria Escherichia coli and Bacillus subtilis, the regulation of Z-ring 

placement is mediated by two negative regulators: the Min system and the nucleoid [7–11] 

(Figure 1). The output of the Min system is the FtsZ antagonist MinC, which together with 

its partner protein MinD, interferes with Z-ring formation [12–17*]. In E. coli the MinCD 

complex oscillates from pole-to-pole [13,14,18], whereas in B. subtils it is targeted to both 

cell poles [19]. However, the end result is the same in both cases; polar Z-ring formation is 

inhibited, and midcell Z-ring assembly is favored.

The phenomenon of nucleoid occlusion reflects the negative effect of the chromosome on 

division [9,10]. Division inhibitors that associate with the nucleoid to mediate nucleoid 

occlusion were identified several years ago: Noc in B. subtilis and SlmA in E. coli [20,21]. 

The target of Noc regulation remains unknown. SlmA, on the other hand, directly 

antagonizes FtsZ assembly [22,23*,24,25*,26,27**]. Irrespective of their precise molecular 

target, Noc and SlmA share a surprising number of features considering that they belong to 

different protein families. Both proteins bind to distinct, yet specific, DNA sequences that 

are broadly distributed around the origin proximal two-thirds of their respective 

chromosomes, but absent near the replication terminus (Ter region) [22,24,28]. Coupled 

with the known dynamics of chromosome regions during the replication cycle, this binding 

site distribution is thought to be one of the possible mechanisms for coordinating 

chromosome replication and segregation with division [22,24,28] (Figure 1). Mutants 

defective for the nucleoid occlusion proteins also share the property of being synthetically 

lethal with Min system inactivation [20,21]. Cells lacking both systems fail to divide in rich 

medium and form long filamentous cells [20,21]. Interestingly, Z-ring formation is not 

completely random in these cells. Robust structures were still primarily observed between 

segregated nucleoids in the cell filaments. It was thus suggested that additional positional 

queues exist to guide Z-ring formation and position it relative to the chromosome [20,21].

A breakthrough in this area was recently reported by Bailey and co-workers [29**]. Their 

quantitative study of cell division positioning in Min− SlmA− E. coli cells grown in minimal 

medium, a condition previously shown to suppress the synthetic lethal phenotype [21], 

revealed that ΔslmA ΔminC cells divided more accurately at midcell than a singe ΔminC 

mutant [29**]. Surprisingly, they also observed a dramatic drop in the number of polar 

(minicell) divisions displayed by the ΔslmA ΔminC mutant relative to cells lacking MinC 

alone, which showed the classic minicell phenotype [29**]. These findings t hus suggested 

that a new positional marker at midcell becomes a dominant feature guiding Z-ring assembly 

when SlmA is inactivated in ΔminC cells. Further investigation implicated the chromosomal 

terminus organization protein MatP [30,31*] as the potential marker [29**]. This possibility 

was intriguing because MatP interacts with the ZapB protein, which together with ZapA 

associates with FtsZ and helps to coalesce the Z-ring structure [32**–35*]. Espeli and co-

workers [32**] showed that this network of interactions is important for “anchoring” the Ter 

chromosomal domain to midcell after it localizes to this region during replication. Bailey 

and colleagues show that in ΔslmA ΔminC cells these interactions can also stimulate Z-ring 

formation at midcell [29**]. It currently remains to be determined whether the Ter region 

provides an important guide for Z-ring positioning in wild-type cells or if the connection 
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between the Z-ring and the Ter domain simply functions to maintain and/or stabilize the 

midcell localization of these macromolecular structures. In either case, these two reports 

[29**,32**] highlight the potential for distinct domains in the chromosome and their 

associated binding proteins to function as landmarks for the proper organization of cellular 

processes.

Using outgrowing B. subtilis spores as a model, Rodrigues and Harry also recently observed 

precise midcell Z-ring formation in the absence of Min and nucleoid occlusion [36**]. This 

finding has led to the proposal that midcell is identified independently of these factors and 

that Min and Noc may primarily function to ensure the efficient utilization of this site. 

Although the identity of the factor(s) that determine(s) this positioning is not clear, several 

previous studies from the Harry laboratory implicate the early stages of chromosome 

replication in Z-ring formation and positioning [37–39]. Further support for a link between 

DNA replication and cell division in B. subtilis was also recently reported by Arjes and 

colleagues [40**]. They find that after several mass doublings following division inhibition, 

the resulting cell filaments are unable to initiate new rounds of replication. Intriguingly, 

Arjes and colleagues a lso find that cell division is inhibited after several generations 

following a block in the initiation of DNA replication [40**]. It therefore appears that, 

contrary to the widely held view in the field, there is an obligatory link between cell division 

and DNA replication, at least in B. subtilis. Although the mechanism of this coupling 

remains unclear, an exciting possibility is that the factors involved here [40**] are also 

responsible for the phenomena observed by Harry and co-workers [36**–39] connecting 

early stages of replication with Z-ring formation.

Controlling divisome activity

In E. coli, recruitment of essential divisome components to midcell proceeds via a mostly 

linear dependency pathway starting with the FtsZ-interacting proteins FtsA and ZipA that 

anchor the Z-ring to the membrane and ending with the bitopic membrane protein FtsN [41–

52]. Because it is the last divisome protein in the recruitment pathway, FtsN has long been 

though to play a role in the switch from divisome assembly to the constriction phase of 

division [53]. This idea was reinforced with the demonstration that FtsN joins the divisome 

in a self-enhancing process involving its small, membrane-proximal, essential domain 

(EFtsN) and its C-terminal, peptidoglycan (PG)-binding SPOR domain (SFtsN) [54,55]. 

Based on this observation, it was proposed that cell constriction is driven by a positive 

feedback loop in which EFtsN stimulates the synthesis and remodeling of cell wall material 

by other divisome components to create the recruitment signal for SFtsN, which brings 

more EFtsN to the division site to stimulate more cell wall synthesis, and so on [54] (Figure 

2).

In addition to binding FtsZ, FtsA was recently demonstrated to interact directly with the 

cytoplasmic N-terminus of FtsN (NFtsN) [56**]. This interaction was shown to be important 

for the initial localization of FtsN to the divisome [57*], suggesting that the FtsA-NFtsN 

interaction may be responsible for initiating the proposed positive feedback loop that 

promotes constriction (Figure 2). Clues as to how this process may work have come from 

the isolation and analysis of ftsA mutants in E. coli that bypass the normal requirement for 
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other essential division proteins [58–60]. The first “bypass mutant” identified was 

ftsA*(R286W) [59]. It was isolated as a suppressor that allowed cells to survive in the 

absence of the other membrane anchor of FtsZ, ZipA. Subsequent studies indicated that this 

allele and/or other alleles of ftsA were also able to bypass the essential functions of divisome 

proteins FtsK and FtsN, and also suppress the division defects of certain temperature-

sensitive ftsQ mutants [58,60,61]. Pichoff and co-workers [62**] recently found that the 

activity of FtsA bypass variants is likely related to defects in FtsA-FtsA interactions. They 

used a genetic screen to identify FtsA derivatives with a reduced ability to self-interact as 

assessed by in vivo assays. Strikingly, this collection of variants included the original FtsA* 

variant. They subsequently showed that all self-interaction defective variants of FtsA could 

function as ZipA bypass suppressors [62**]. Furthermore, in addition to bypassing the 

function of essential division proteins, many of the poorly self-interacting FtsA variants 

were also shown to promote early cell division [62**], suggesting that a reduction in FtsA-

FtsA interactions stimulates division. Importantly, the FtsA-NFtsN interaction described 

above involves the 1c domain of FtsA [53,56**]. Based on a structural analysis of FtsA 

polymers [63**], this interaction is likely to interfere with FtsA-FtsA interactions. Thus, 

when all of the genetic and biochemical studies are taken together, the results point to a 

competition between FtsA-FtsA and FtsA-NFtsN interactions in the control of constriction 

initiation with both EFtsN and monomeric FtsA stimulating the process [3,56**,57*,62**,

64*] (Figure 2). One possible scenario suggested previously [3,62**,64*] is that ZipA 

disrupts FtsA-FtsA interactions at the Z-ring to generate free FtsA interfaces for the 

recruitment of downstream divisome proteins like FtsN and the eventual activation of 

constriction. Thus, FtsA* variants with a reduced capacity to interact bypass ZipA function. 

Alternatively, or in addition to serving as a recruitment factor for other division proteins, the 

polymeric status of FtsA and its interaction with FtsN may also serve as a sensor or signal 

[56**,57*,65] used to monitor the status of divisome assembly and promote constriction 

only after the machinery is deemed stable enough to successfully complete division. In this 

case, FtsA may be progressively converted to a reduced polymeric form as the machine 

assembles, at first spontaneously, but then stimulated by the self-enhanced recruitment of 

FtsN. This conversion of FtsA would proceed until a threshold level of monomers or small 

oligomers is achieved, which, together with FtsN, would then somehow trigger a change in 

other components of the machinery to to stimulate ring closure. How this activation might 

occur is not clear, but recent results indicate that the FtsQLB subcomplex of the divisome is 

involved and may receive signals from both FtsA and FtsN in order to activate cell wall 

synthesis and remodeling at the division site to stimulate constriction [66*,67*].

In addition to its potential role in sensing divisome assembly, the direct connection of FtsA 

with FtsZ also puts it in position to play a key role in modulating Z-ring activity and/or 

dynamics during the division cycle. This possible function was highlighted by a recent study 

of FtsZ polymer dynamics on supported lipid bilayers [68**] that showed dramatic changes 

in the FtsZ patterns formed depending on whether FtsZ was recruited to the membrane by 

FtsA or ZipA. Polymer bundles that associated with the membrane surface via an interaction 

with ZipA were found to form relatively stable patterns [68**]. Polymers brought to the 

membrane by FtsA, on the other hand, formed rapidly rotating swirls [68**]. These dynamic 

patterns were shown to result from the ability of FtsA to destabilize the FtsZ polymer 
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network [68**]. This observation connects with in vivo results indicating that the FtsA/FtsZ 

ratio is important for proper division and that too much FtsA can inhibit Z-ring formation 

[69,70]. Thus, FtsA may, at least initially, promote the formation of a more dynamic, less 

stable pattern of FtsZ polymers at midcell. An attractive possibility is that changes in FtsA 

polymerization status brought about through the recruitment of downstream divisome 

proteins like FtsN may change the effect of FtsA on FtsZ polymer dynamics such that it now 

stabilizes the Z-ring pattern at midcell and promotes constriction (Figure 2). In support of 

this possibility, the self-interaction defective FtsA(R286W) derivative has been shown alter 

the Z-ring to reduce its sensitivity to negative-regulators [59]. However, this variant of FtsA 

was not found to alter the FtsZ swirl patterns formed in the supported lipid bilayer 

experiments [68**], suggesting that factors in addition to changes in FtsA self-association 

status are likely needed to more faithfully reconstitute FtsZ pattern formation at the 

membrane in vivo. Nevertheless, the possibility that FtsA polymer status controls Z-ring 

and/or divisome activity remains highly attractive and warrants further investigation.

Conclusions

Most of the straightforward aspects of divisome assembly, such as determining what 

proteins localize to the structure and when they get there, have been extensively 

characterized over the last two decades. We now face questions that are much more difficult 

to solve. What are all of these proteins doing at the division site? How do they work together 

to transform the cell envelope? What couples their activity to other major cellular processes 

like DNA replication? As described in this review and the highlighted references, progress 

in these areas is being made thanks to multidisciplinary efforts that encompass everything 

from genetic analysis and in vivo imaging to biochemical reconstitutions and structural 

biology. We look forward to seeing how the mechanistic picture of bacterial cell division 

evolves as we continue to apply these and other emerging technologies to understand this 

fundamental process.
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Highlights

- The chromosome-binding protein MatP plays a role in division site 

positioning

- DNA replication and cell division are obligatorily coupled in Bacillus subtilis

- FtsA-FtsA interactions play a critical role in divisome maturation and 

activation
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Figure 1. Determinants of division site positioning in E. coli
Shown is an illustration summarizing the results of Bailey et al. 2014 [29**] showing that 

MatP and the Ter macrodomain of the chromosome can serve as a determinant of division 

site positioning in addition to Min and SlmA. Green triangles indicate possible division sites 

with their size reflecting preference for a particular site. See text for details.
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Figure 2. Potential role of FtsA-FtsN interactions in triggering cell constriction
Shown is a diagram depicting potential events occurring at a maturing divisome focusing on 

the FtsA-FtsN interaction. As described in the text, a growing number of studies suggest the 

attractive possibility that FtsA serves as a “sensor” of divisome assembly. As late 

components of the divisome like FtsN are recruited to the structure, they promote the 

formation of a reduced polymeric form of FtsA. Once a threshold level of this altered FtsA 

form accumulates at midcell, it may trigger changes in FtsZ polymer dynamics to initiate 

contraction of the ring in conjunction with the activation of divisome components associated 

with cell wall synthesis by both FtsA and FtsN. These activities of FtsA and its partner FtsN 

may coordinate transitions in the Z-ring pattern with cell wall remodeling processes on the 

other side of the membrane. Although not shown, it has also been proposed that ZipA may 

promote the formation of FtsA monomers to stimulate the recruitment of downstream 

divisome proteins like FtsN [3,62,64]. See text for details.
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