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Abstract

Isothermal titration calorimetry experiments can provide significantly more detailed information 

about molecular interactions when combined in global analysis. For example, global analysis can 

improve the precision of binding affinity and enthalpy, and of possible linkage parameters, even 

for simple bimolecular interactions, and greatly facilitate the study of multi-site and multi-

component systems with competition or cooperativity. A pre-requisite for global analysis is the 

departure from the traditional binding model, including an ‘n’-value describing unphysical, non-

integral numbers of sites. Instead, concentration correction factors can be introduced to account 

for either errors in the concentration determination or for the presence of inactive fractions of 

material. SEDPHAT is a computer program that embeds these ideas and provides a graphical user 

interface for the seamless combination of biophysical experiments to be globally modeled with a 

large number of different binding models. It offers statistical tools for the rigorous determination 

of parameter errors, correlations, as well as advanced statistical functions for global ITC (gITC) 

and global multi-method analysis (GMMA). SEDPHAT will also take full advantage of error bars 

of individual titration data points determined with the unbiased integration software NITPIC. The 

present communication reviews principles and strategies of global analysis for ITC and its 

extension to GMMA in SEDPHAT. We will also introduce a new graphical tool for aiding 

experimental design by surveying the concentration space and generating simulated data sets, 

which can be subsequently statistically examined for their information content. This procedure can 

replace the ‘c’-value as an experimental design parameter, which ceases to be helpful for multi-

site systems and in the context of gITC.
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Introduction

Isothermal titration calorimetry (ITC) is a powerful, first-principles based technique to study 

molecular interactions label-free in solution with wide-spread applications in many scientific 

disciplines [1]. Unique among biophysical techniques, it observes directly the heat change 

ΔQ of a solution associated with a change of composition {Δci} during the titration of a 

macromolecular component in the cell with increasing amounts of its binding partner(s) 

[2,3]. The differences in heat between chemical equilibria along discrete steps of the titration 

are measured as the integral of the differential power applied to keep a sample and reference 

solution at the same temperature. As has been reviewed elsewhere in detail [2–6], the shape 

and midpoint of the resulting titration isotherm yields information on the association 

constant KA, and therefore the free energy of binding, as well as information on the binding 

stoichiometry. The amplitude of such titration isotherms contains information on the molar 

enthalpy changes ΔH of molecular complex formation, which in turn may be interpreted in 

the context of structural thermodynamics. For systems with multi-site binding, ITC can 

provide information on stoichiometry and cooperativity of molecular complexes [7–14].

Unfortunately, similar to most binding saturation curves, individual titration isotherms 

usually have relatively low intrinsic information content, due to the shallow concentration 

dependency of complex formation predicted by mass action law [15 (this volume)]. 

Furthermore, dependent on the interaction enthalpies, even for multi-site systems only a 

single transition may be observed. Thus, the number of binding parameters of an interacting 

system can quickly exceed what can be confidently determined from the given data. This 

can be true even for ‘simple’ bimolecular reactions with 1:1 stoichiometry, if constraints in 

the available concentration and amounts of material hinder the implementation of optimal 

experimental conditions, if limitations in the sensitivity of the calorimeter require 

application of suboptimal conditions (such as high ‘c-values’ for high-affinity systems 

leading to essentially stoichiometric binding), or if uncertainties in the experimental 

concentrations exist. The relatively low information content of many ITC isotherms also 

often causes models with different binding mechanisms to describe the data equally well. In 

this case, independent knowledge (or assumptions) of the number and composition of 

complexes formed, their symmetry, and possible site-interactions is required for the 

justification of a particular model.

Strategies have been developed recently in several laboratories to enhance the information 

content of ITC, for example, related to experimental design [16,17], the improvement of the 

precision of isotherm data through advanced integration of the differential power trace 

[18,19], or the exploitation of kinetic data in the injection shapes [20]. Global strategies 

combine multiple experiments in global analyses of ITC (gITC) [9,21–28] and in global 

multi-method analysis (GMMA), the combination of ITC data with data from 

complementary biophysical disciplines [29–32,82]. Beyond merely organizing separate 

complementary experiments into a hierarchical, multi-stage interpretation, global analysis 

takes full advantage of all possible constraints of the model and the full statistics of the data 

by simultaneously and directly fitting all experimental data with one explicit global model. 

Natural applications of gITC analysis are multi-site binding processes of homo- and hetero-
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oligomerizing macromolecules [9–11,13,14,15 (this volume),23,33–37], displacement 

experiments [22,38,39], and protonation-linked and other linked binding analyses varying 

temperature to determine heat capacity changes or buffer composition to determine salt or 

other co-factor linkage [24,26,28].

SEDPHAT is a computational platform for global analysis of data from various biophysical 

techniques, including gITC, which has been widely adopted in ITC applications [11–14,15 

(this volume),17,19,24,33–62]. Distinguishing aspects of SEDPHAT in comparison with 

other gITC platforms include the absence of data-specific or model-specific programming 

by the user, allowing for seamless combination of titration experiments in a graphical user 

interface, and offering many different pre-programmed multi-site models for two- and three-

component systems [9]. For fully exploiting the advantages of gITC, the concept of an 

empirical ‘n-value’ as a combined parameter for concentration errors and numbers of sites 

[2] must be abandoned. In contrast, SEDPHAT exclusively allows for integral numbers of 

binding sites, and introduces explicit parameters accounting for errors in active 

concentrations, which may be shared among different experiments in the same global 

analysis [9].

The present communication has two goals: First, it reviews several extensions of SEDPHAT 

for the analysis of ITC data included since the original introduction [9]. Among those are a 

method for the unbiased, high-precision integration of the differential power trace [18], 

implemented in the companion program NITPIC [18,19 (this volume)] that we have 

developed to interface with SEDPHAT and automatically provide total heat changes 

including error estimates separately for each injection. Another companion program, GUSSI 

(by Dr. Chad Brautigam), can be spawned by SEDPHAT for improved presentation and 

publication quality graphs of the results of ITC and gITC. Further, greater flexibility in the 

treatment of concentration errors was introduced by distinguishing between inactive 

fractions and pure concentration errors. To allow more convenient statistical characterization 

of the analysis of ITC isotherms, automated methods to explore the error surface of the fit 

using F-statistics [63] were added. They include automated determination of confidence 

intervals of binding parameters (propagated from the error bars of the individual injection 

heats), the computation of error surface projections, as well as the display of two-

dimensional error projections highlighting parameter correlations [30]. Finally, with the 

development of GMMA and the associated statistical tools in SEDPHAT, significant 

enhancement of ITC analyses became possible by incorporation of complementary data 

from orthogonal techniques [29–32]. A second goal of the present communication is to 

provide examples for gITC of single-site and multi-site interactions to demonstrate the 

potential of gITC. Since the design of experiments for multi-site systems is often non-trivial, 

we describe a new tool to simulate ITC and other types of data in SEDPHAT that will help 

to predict which experiments would be most useful to be combined in global analysis.

Methods

SEDPHAT Basic Principles and Resources

The input for SEDPHAT consists of tables of integrated heats and injection schedules, after 

peak integration of the raw thermograms. The peak integration can be accomplished in the 
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stand-alone software NITPIC, which creates or appends a pre-formed SEDPHAT 

configuration. Alternatively, the input data can be created manually by exporting integrated 

data tables from instrument-specific software. (Data from a two-part experiment where the 

syringe is reloaded in between can be ‘stiched’ together simply by combining data rows of 

the integrated heat tables.) From the table of integrated heats (saved as “.dat”-file), 

SEDPHAT automatically creates a unified data file (‘xp’-file) including all necessary 

ancillary parameters. Global analysis is achieved simply be loading more than one data set, 

each of the same kind or of different kinds, including different titration configurations or 

data collected by methods other than ITC. This may be achieved by drag-and-drop of ‘xp’-

files, by using the SEDPHAT loading menu functions, or by allowing NITPIC to extend an 

existing SEDPHAT configuration.

For a given interaction model and binding parameters, SEDPHAT calculates the populations 

of free and bound species on the basis of mass action law prior and after each injection, the 

finite differences between these equilibrium populations, and the associated changes in total 

heat content of the solution [9]. Differential equation based approaches [64–66] are not used 

due to the discrete nature of the injections. This affects the fit lines connecting the fitted 

values between each data point – in SEDPHAT these are linearly interpolated segments 

between the data points; this is a question solely of graphical representation without 

consequence for the data analysis and molecular binding parameters.

Independent of the interaction model, different approaches are available for the treatment of 

superimposed signals from heats of dilution (not including heats of pre-formed complexes, 

which are explicitly accounted for in the model): As default option, they are modeled as a 

constant baseline contribution to all isotherm points, to be refined in the fit. Alternatively, 

the baseline can be fixed, constrained to remain within a certain range of values (a new 

option added in SEDPHAT v.12.1) or eliminated and heats from a blank experiment with 

matching injections may be subtracted. (In addition, an option for a sloping baseline is 

available.)

To account for total concentration of components after each injection, values supplied from 

an instrument software, from NITPIC, or those calculated by SEDPHAT from the cell 

volume and injection schedule can be used, the latter assuming a full fixed-volume cell with 

either mixed or unmixed neck (which can accommodate different kinds of instruments, the 

default being the Microcal configuration). Any configuration of initial concentrations in cell 

and syringe may be used (and different ones in different experiments of the global analysis), 

accounting for pre-formed complexes that may be present in the syringe prior to injections.

Importantly, no non-integral binding sites are allowed. Rather, concentration errors can be 

treated explicitly for each component separately with concentration correction factors 

(which may be smaller or larger than 1.0), for example, corresponding to errors in the 

extinction coefficients if used for measuring concentrations. Alternatively, incompetent 

fractions (which are constrained to between 0 and 1) can be used to describe, for example, 

partially folded and therefore inactive fractions of proteins. In order to exploit existing 

constraints, these correction factors can optionally be shared between different selected 

experiments of the global analysis (e.g., concentration errors that originate from extinction 

Zhao et al. Page 4

Methods. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coefficient errors may be linked to be equal in different experiments). They can also be 

constrained by user-defined bounds. (For example, assigning errors arising in amino acid 

based extinction coefficients bounds of +/−20% may seem reasonable [67].)

For global analysis, from a set of global binding parameters, which comprise those 

governing chemical equilibria and macromolecular properties, in combination with local 

parameters (which apply only to individual data sets, such as an optional baseline offset) and 

shared local parameters, a prediction for the binding isotherm is generated, and compared 

with the data of each experiment. A weighted global χ2 of the fit is determined

(1)

(where E denotes the total number of experiments, Ne the total number of data points in 

experiment e, we a weight assigned to experiment e; ye,i and ▯e,i are data points and statistical 

errors of data acquisition, respectively, and fe,i represents the fitting function dependent on 

the experiment type, interaction model, and the global and local parameters pglob and ploc,e, 

respectively) [29], which in its dependence on all adjustable parameters constitutes the error 

surface to be minimized to find the globally best fit. For fitting, the simplex, the Marquardt-

Levenberg, and a simulated annealing approach are available.

The error analysis can be carried out either with a Monte-Carlo approach, or, more 

rigorously, with F-statistics based contours of the error surface [63,68]. In this method, one, 

or for a cross-correlation map two, parameters are fixed and all remaining adjustable 

parameters are optimized to allow a statistical comparison of the best-fit obtained under 

these constraints with the overall best-fit. An automated function to create these error 

projections is available; however, for difficult error surfaces it may be necessary to verify 

each fitting step and proceed manually with a series of optimizations incrementing the 

parameter of interest. For global analyses, cross-validation approaches are implemented to 

examine the information content of different data sets, as described in [29].

SEDPHAT v. 12.1 can be freely downloaded from sedfitsedphat.nibib.nih.gov/software, and 

an extensive web-based help system is available at analyticalultracentrifugation.com/

sedphat. The companion programs NITPIC and GUSSI by Chad Brautigam – the latter used 

in the present work for all ITC graphs – can be downloaded freely from http://

biophysics.swmed.edu/MBR/software.html. An email listserv-based user group is at https://

list.nih.gov/cgi-bin/wa.exe?A0=SEDPHAT-L, and workshops on biophysical methods for 

protein interactions with a strong component of ITC analysis in SEDPHAT are held 

regularly at the National Institutes of Health, Bethesda, MD, and international locations 

(sedfitsedphat.nibib.nih.gov/workshop).

Simulation Tools

A recurring observation for multi-site binding processes is the difficulty in intuitively 

predicting the populations of the different complexes as a function of loading 

concentrations, which is required for the effective experimental design. To facilitate this 

process, mass action law calculator functions and species population plots were already 
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previously implemented in SEDPHAT. To enhance experimental planning, we have now 

introduced functions to simulate experimental data from different biophysical methods and 

to graphically depict their information content [30]. We have adapted these tools to account 

for the particular experimental setup of an ITC titration, to allow a comprehensive survey of 

experimental conditions, binding isotherms, and calorimetric signal contributions: Cell and 

syringe concentrations can be selected from within a graphical representation of the binding 

isotherm as a function of total concentrations of all components {c,tot}. The visualization 

displays color-coded values of the isotherms of various selected quantities. For two-

component systems, these quantities are depicted on a grid of log-spaced total 

concentrations of the two components plotted in the abscissa and ordinate, respectively (Fig. 

1A). For three-component systems (with components referred to as ‘A’, ‘B’, and ‘C’), the 

isotherm of interest is a three-dimensional volume, which is plotted along a stack of two-

dimensional cross-sections that can be navigated with a slider or arrow keys. The cross-

sections can be cut through the volume along constant ctot,C, or diagonally with constant 

molar ratio of ctot,C/ctot,A, ctot,C/ctot,B, or ctot,B/ctot,A.

The quantities that can be displayed in this concentration space include: the fractional 

population of each component in the free or any of the bound states; the differential changes 

in total heat content dQ/dctot in the cell along a titration; and the fractional contributions to 

dQ/dctot due to changes in any particular complex concentration. Due to the differential 

nature of the titration with increasing concentrations of one of the components, the surface 

of dQ/dc will assume different shapes dependent on the orientation of the titration, which 

can be switched by the user to simulate different experimental configurations (e.g., A into B 

and B into A for two-component experiments, and C into a mixture of A and B, or a pre-

mixed solution of A and C injected in C, or many other permutation for three-component 

experiments).

In contrast to the species population and the heat content of the solution in the cell, which 

are state functions and can therefore be depicted unequivocally in the concentration space, 

any contributions from heats of dilution of preformed complexes in the syringe are trajectory 

dependent, since they are dependent on the total syringe concentrations. To address this for 

systems and experimental configurations where such pre-formed complexes can exist, an 

expected approximate syringe concentration can be specified upfront, which allows 

estimates for the heats of dilution from preformed complexes to be calculated. After 

selection of a suitable trajectory, the total syringe concentration for this trajectory may be 

selected to achieve a refined display of the total differential heats in concentration space. On 

the other hand, the added heat content from injection of pre-formed complexes are constant 

(for constant injection volumes) and lead to uniform offsets to the heat change throughout 

the entire isotherm. Therefore, they will not contribute to features in the isotherm display, 

and may usually be neglected in the exploration of experimental designs.

In the plots of titration isotherms in the concentration space, as illustrated in Fig. 1A and B, 

typically a diagonal transition can be discerned where saturation occurs, which increases in 

sharpness with higher concentrations of the component in the cell. This conforms well to the 

expectation of steeper saturation for conditions of higher c-value. The graphical 

representation, however, is more general and more informative than a single c-value, since it 

Zhao et al. Page 6

Methods. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can visualize more complex features of the binding isotherms of multi-site systems (such as 

the cooperative ligand-linked dimerization in Fig. 3 below). Due to the directionality of the 

injection and the quantity dQ/dctot, the plot will look different for different injection 

strategies (compare Fig. 1A showing dQ/dcA,tot and Fig. 1B showing dQ/dcB,tot). The 

isotherm plot can be cropped such as to omit regions that are experimentally not feasible, as 

determined from user-provided maximum stock concentrations of either component and 

given cell and syringe volumes. This will constrain the feasible region in different ways, 

dependent on the directionality of the titration experiment.

For the generation of simulated titration data, upon dragging the mouse horizontally (for A 

into B titrations) or vertically (for B into A titrations), a particular experimental trajectory 

can be mapped into the isotherm plot (black line in Fig. 1A), with user-selected number of 

injections, which are used as the basis for simulating a titration data set that is subsequently 

automatically loaded into the SEDPHAT analysis configuration (Fig. 1C). This simulated 

data set will appropriately account for any path-dependent contributions, such as the 

continuous change of total solution volume, how it is expelled from a fixed volume 

calorimeter, any dilution of pre-formed complexes, etc., just as in the fitting models for 

experimental data. Analogously, any experimental data set can be displayed as a trajectory 

in the isotherm plot for context (by using the small button ‘s’ below the quadratic button in 

the upper right corner of each experiment indicating the experimental number in the 

SEDPHAT window, or by using the corresponding Display menu function).

A graphical difficulty arises from the fact that the concentration space is plotted 

logarithmically, whereas the titrations are approximately linear, as determined by 

consecutive addition of fixed injection volumes. To aid in the graphical selection of titration 

conditions, after a trajectory is specified, and before it is committed to a simulation, a small 

plot showing the corresponding titration isotherm will appear (insets in Fig. 1A and B). The 

trajectory can then be refined if desired. After creation of a new simulated data set, if the 

existing configuration already contains a data set, then the newly simulated data will be 

added alongside, as an extension into a global ITC analysis. This allows one to examine the 

statistical properties of the new extended analysis, and helps to judge whether or not such an 

experiment provides significant new information and is worth carrying out.

As a further aid to guide the selection of optimal experimental conditions, the given plot 

data can be saved as a reference to be subtracted from the isotherms calculated for modified 

conditions. For example, by displaying finite differences in the plot after a small change of 

the parameter of interest, this tool can highlight which region of the isotherm will be 

particularly informative on a certain parameter,. Essentially, this provides an approximation 

of the derivative d(dQ/dctot)/dK, where K can be any binding parameter of interest. This is 

shown in Fig. 4 below to illustrate the sensitivity isotherms of differential heat to the 

cooperativity parameter for a simulated ligand-induced dimerization system. Similarly, it is 

possible to compare the isotherms from different binding modes, such as single-site vs two-

site binding, and assess which concentration range would be expected to be most sensitive to 

an additional site.
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Overview of the Workflow for Data Simulation

Briefly, the sequence of user-driven actions for using the above simulation tool is as follows: 

First, the model needs to be selected to match the molecular interaction to be studied. 

Expected parameter values should be entered, including molecular weights, and unknown 

parameters to be refined in the analysis should be checked. Next, after selecting the function 

“ITC xp” in the “Generate” menu, basic ITC parameters (including cell volume) and 

expected noise can be entered, and the plots are generated. They can be visually inspected, 

and different quantities and different titration configurations can be selected using the on-

screen buttons. The plot can also be centered to a different concentration range. The 

concentration space can be cropped to the available mg/ml concentrations of the samples. 

Setting a plot as “reference”, changing one (or more) parameter incrementally using the 

“new parameters” button, followed by “difference” will allow finite difference plots to be 

created, to show changes induced by modified parameter values. A swipe with the mouse, 

keeping the right mouse button pressed, will create a putative trajectory, provide 

concentration information for cell and syringe, and display a small inset with the shape of 

the resulting titration. The trajectory can be redrawn until it shows the desired properties. 

Finally, the “exit and simulate” button will leave the simulation tool and add the newly 

created titration data to the existing SEDPHAT configuration. An execution of the “Fit” 

function will calculate the best-fit to the simulated data, including any other data sets that 

may already have existed in the SEDPHAT configuration and have not been deactivated. 

Finally, the “automated confidence interval search w. projection method” found in the 

“Statistics” menu will create the report of the confidence intervals of the parameters of 

interest.

Results and Discussion

General Global Analysis Strategies of ITC titrations: Fragments, Replicates, and 
Concentration Errors

In most cases there are multiple simple opportunities to combine data into a global analysis. 

As most biophysical methods, unless the system under study has already been very well 

characterized, ITC typically requires some amount of experimentation so as to iteratively 

adjust the experimental conditions, including binding partner concentrations in cell and 

syringe, and the number of injections. In this process, often multiple isotherm data sets that 

are sub-optimal for a standard analysis are inadvertently produced. However, barring any 

preparative problems, this data still reports faithfully on the molecular interaction of interest, 

and when combined into a gITC analysis, they can significantly enhance the results.

This is illustrated in the data of α-chymotrypsin being titrated with soybean trypsin 

inhibitor, which has two binding sites (Fig. 2) [29]. When the analysis is confined to the 

single well-formed titration shown in red, for example, the 68% confidence interval for the 

enthalpy change ΔHAB of the first site is 2.9 – 19.6 kcal/mol. However, when titrations that 

have either too high or too low ratio of syringe-to-cell concentration are added into a global 

analysis, the error interval shrinks considerably to 3.4 – 6.3 kcal/mol. Even better results are 

achieved after incorporating a replicate of the well-formed titration, and independent data 

(below and [29]).
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It is often possible to carry out one or more replicates of an experiment. Unfortunately, 

averaging best-fit KD-values from individual analyses of replicate experiments produces an 

ill-defined average, and taking their standard deviation as a measure of the uncertainty of 

KD can vastly underestimate the true error. By contrast, the combination of all replicates into 

one gITC analysis is rigorous and fully exploits the statistical advantage of the additional 

data points, and the small number of ITC dta points makes this approach particularly 

advantageous.

In comparison with side-by-side analysis of replicates, the combination of different 

experiments usually offers a chance to implement constraints that improve the determination 

of binding parameters. If the concentrations of the interacting molecules are determined with 

the same method, or originate from the same stock solution (for example, proteins from the 

same batch of preparation), then it is reasonable to assume that the concentration errors (or 

incompetent fractions, respectively) are identical in each experiment. This opportunity can 

be further exploited in gITC by thoughtfully planning the preparation of adequate stock 

solutions to allow carrying out the entire sequence of experiments with the same material. If 

such relationships between the samples cannot be established, then concentration errors have 

to be treated as separate unknowns for each experiment in gITC.

Variation of Experimental Conditions

The possibility to carry out multiple experiments naturally offers the potential to enhance the 

analysis through the variation of experimental conditions. It can be expected that the 

combination of data from different experimental conditions becomes increasingly important 

with increasing number of binding sites and increasing complexity of the system. This is due 

to the fact that the binding isotherm will generally exhibit more features, which must be 

sampled along different paths to allow the full characterization of the system.

For simple bimolecular single-site systems, the best ‘c-value’ (the ratio of cell concentration 

to KD) for optimal experiments has been much discussed [2,17,69–71]. As described out by 

Freiburger et al., it can be highly advantageous to analyze titrations obtained for multiple c-

values (i.e., at multiple cell concentrations) jointly in gITC. This can naturally be 

accomplished in SEDPHAT, for any of the implemented binding models. This can allow, for 

example, the combination of an experiment with very low c-value, not carrying much 

information on the enthalpy change, with an experiment at very high c-value, where the 

steep transition does not carry much information on the binding constant, into a joint gITC 

analysis producing well-determined parameters. Broecker et al. have pointed out that in the 

analysis of data sets with different cell concentrations, it must be considered that the relative 

experimental noise decreases with increasing concentration (due to the larger heats) [17]. 

When using NITPIC for integration of the raw thermograms, error bars of the heat changes 

for each injection will be passed on to SEDPHAT, such that the appropriate relative 

statistical weights of the different data sets are obtained.

Another highly useful variation of experimental condition is the orientation of the injection, 

which was described earlier [9]. This may not always be feasible, dependent on the available 

stock concentrations of the binding partners. (If a separate pre-concentration step is required 

to bring a protein to sufficiently high concentrations to be placed in the syringe, then it 
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should be noted that the concentration error parameter may be different after pre-

concentration due to losses or partial aggregation.)

As an example of a more complicated interaction, we consider a system of ligand-linked 

dimerization, where binding of a ligand B to a molecule A enhances the dimerization of A 

by 10fold, but without cooperativity between the sites for B on A. This includes three 

affinity constants: binding of B to the monomer of A (KAB), the dimerization of A in the 

absence of ligand (KAA), and the cooperativity factor which can be expressed equivalently 

as the relative change in the affinity for B of the dimer vs monomer of A, (i.e., KAA-B/KAB 

where KAA-B is the affinity of the A dimer for B), or the ratio dimerization constants of A in 

the liganded vs unliganded form (i.e., K(AB)−(AB)/KAA). In most SEDPHAT models, 

parameters are expressed in macroscopic units, and statistical factors present the default 

value of binding parameters. An overview of the population of different species, generated 

as an optional output of the simulation function in SEDPHAT, is shown in Fig. 3.

To simulate ITC data, data were generated first using the simulation tool along standard 

paths, both titrating A into B and B into A, as shown in the upper two quadrants of the 

SEDPHAT window in Fig. 4A. They have a ‘classical well-formed shape’ of a single 

transition; these titrations would have c-values of 7 and 5 if based on the binding constant of 

B to the monomer of A, or 70 and 50 if based on the binding to the dimer of A. However, it 

is clear that the concept of a c-value loses its meaning in the context of multiple sites and 

ceases to be helpful, whereas the graphical depiction of the isotherm used here can still serve 

as a guide for experimental design. If these two data sets are analyzed together, the 68% 

confidence interval for the cooperativity factor ranges from 6.9 to 292.

However, even the most cursory visual inspection of the two-dimensional isotherms will 

reveal fundamental differences in their shape in comparison to the simple 1:1 binding 

isotherms of Fig. 1 when titrating A into B, with additional features in the middle and lower 

concentration range of B. It is reasonable to assume these will need to be sampled with 

experimental titration trajectories for the binding parameters to be well determined. Since in 

our view the cooperativity parameter is the most interesting aspect of this interaction, we 

used the differentiation tool in the isotherm display to highlight regions where the binding 

isotherm changes most with a small change in the cooperativity factor (Fig. 5). The most 

informative region coincides with the ‘anomalies’ in the ~ 1 µM range of B and the ~ 0.1 

range of A (black region in the color scale of Fig. 5). Therefore, a third titration experiment 

was simulated to cover this region, predicted to exhibit a minimum in the measured heats 

(lower left quadrant of Fig. 4B). An additional unusual feature of the binding isotherm of the 

ligand-linked dimerization model is the drop in heat change at constant concentration of B 

and increasing concentrations of A. This was sampled through a fourth simulated titration 

experiment (lower right quadrant of Fig. 4B). The global analysis now led to a 68% 

confidence range of the cooperativity factor reduced to 5.4 – 22, corresponding to a ~2.3fold 

reduction of the uncertainty in ΔΔG. To some extent, merely the increase in the number of 

data points will lead to an improvement in the confidence intervals (see above). However, 

simple duplication of the first two ‘classical’ titration isotherms would have led to a 68% 

confidence interval for the cooperativity factor of 8.6 – 57.2, highlighting that a substantial 
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improvement arises here from the variation of the conditions, sampling the characteristic 

features of the binding isotherm.

In the above analysis of the data for the ligand-linked dimerization, the model allowed for 

up to 20% global concentration errors in both components A and B, as would be reasonable 

to allow for even relatively large errors in protein extinction coefficients [67]. (This can be 

conveniently implemented in SEDPHAT by choosing fixed concentration correction factors 

of 1.2 in all experiments, compensated by global incompetent fractions for both components 

to be refined in the fit within the constraints from 0.0 to 0.4.) It is well-known that a single-

experiment analysis of a single-site interaction does not allow refinement of concentration 

errors of both reactants simultaneously, since all binding parameters would be completely 

correlated with the unknown concentration factors. However, the global analysis of multi-

site interactions contains features that are independent of the concentration scale, including 

cooperativity factors that reflect the ratio of binding constants. (Similarly, proton linkage 

analysis in gITC can be carried out with unknown incompetent fractions of binding partners 

[24].) These can be extracted from gITC analysis if, for each component, the concentration 

errors can be constrained to be identical for all experiments. Other quantities that directly 

depend on the concentration scales, such as the binding constants KAB and KAA, would be 

completely indeterminate in this analysis and require fixing at least one of the concentration 

factors. Alternatively, applying constraints to the concentration error, here ±20% translates, 

for example, to a 68% confidence limit for KAB of 0.52 – 2.1 µM.

Multi-Component Systems

The characterization of multi-component systems is a natural application of gITC, as it 

usually requires multiple titration experiments. For example, the study of three-component 

interactions typically involves the combination of experiments with binary mixtures and 

with ternary mixtures. In comparison with a hierarchical analysis with apparent binding 

constants extracted from each single titration as intermediate steps, the global analysis can 

provide a model that is often more accurate and always more stringent. As discussed above, 

it allows rigorous statistical error propagation from error bars of individual injections of all 

titrations towards final parameter errors. Further, it allows implementing powerful 

constraints with regard to uncertainties in active concentration of reactants that are 

unavailable in individual analyses, and often prove essential.

Displacement experiments are a special case of three-component interaction, with the goal 

of extending the dynamic range of affinities between two reactants that can be studied by 

ITC [22,38,72–75, and 76 (this volume)]. Various configurations are possible, and all can 

be analyzed with the SEDPHAT model “A + B + C ←→ AB + C ←→ AC + B, competing 

B and C for A” with different titration orientations as appropriate for different experiments. 

For example, gITC of a simulated series consisting of titrations of a high-affinity ligand B 

into A, a titration of a low-affinity ligand C into A, and the titration of the high-affinity 

ligand B into a mixture of A and C with pre-formed weak complexes is shown in Fig. 6. 

Even for configurations where a single titration will exhibit two transitions and in principle 

allows a full analysis [38,72,76 (this volume)], it can be expected that such experiments 

would usually be based on prior knowledge and follow at least some initial experiments 

Zhao et al. Page 11

Methods. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



characterizing binary mixtures, which can be included into a gITC analysis [38]. For any 

given system with known or hypothesized binding parameters, SEDPHAT can display 

stacks of slices through the three-dimensional concentration space with color-temperature 

coded values for dQ/dctot (along a specified titration orientation) and its derivative with 

respect to a certain parameter of interest. This is illustrated in Fig. 7 for the case of a titration 

of a protein into a mixture of high- and low-affinity ligands, which creates the characteristic 

bi-phasic titration data. In this way, benefits and drawbacks of different designs for titration 

experiments, as well as the combination of multiple titrations, can be efficiently explored for 

a given system.

Global Multi-Method Analysis

A key feature of gITC in SEDPHAT is the possibility for including side-by-side data from 

different biophysical techniques in a global multi-method analysis (GMMA) [29]. This is 

illustrated in Fig. 8 for the data shown in Fig. 2 on the interaction of α-chymotrypsin with 

soybean trypsin inhibitor [29]. Remarkably, even though the data sets added stem from 

techniques that do not report on reaction enthalpies – surface plasmon resonance solution 

competition and sedimentation velocity analytical ultracentrifugation – their inclusion can 

improve the error estimate of the reaction enthalpies. For example, with the data shown in 

Fig. 8 the confidence interval of ΔHAB of the first site shrinks by 31%, as compared to the 

three ITC data sets alone, to a range of 3.2 – 4.8 kcal/mol. The mechanism by which this 

happens is the decrease of correlation between the two binding sites afforded by the 

additional data (Fig. 9), which in turn allows the experimentally observed enthalpies to be 

better decomposed into the contributions of the different sites.

Just like the simulation of ITC data, the simulation tool allows the creation of data sets for 

the other techniques, such that useful combination can be explored as part of the GMMA 

design [30]. The particular data format for the data from other techniques can be 

conveniently copied from the simulated data files, or be retrieved from the online help 

system of SEDPHAT.

Conclusions

In the present communication we have reviewed different opportunities for global analysis 

of ITC titrations, and highlighted the resulting improvement in the data analysis of single- 

and multi-site systems. gITC analysis can be carried out conveniently in SEDPHAT by 

simply loading multiple data sets, without requiring any data-dependent or model-dependent 

programming.

Global analysis is the most stringent approach to test a model and to apply it to the 

interpretation of experimental data in their entirety. Unless there is a reason to consider 

experiments to be mutually inconsistent due to experimental imperfections (which may 

sometimes be revealed by unsatisfactory global analysis) the joint interpretation of all data 

sets is always statistically advantageous. This is often crucial, in particular for the multi-site 

systems. The gITC method is not only useful to improve the precision of binding 

parameters, but more fundamentally, can help to verify whether a certain binding model is 

appropriate for the given interacting system. gITC has a far greater power to discriminate 
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different binding models than individual analyses, a feature that is further enhanced in the 

extension to GMMA. For complex systems, often a superior starting point for determining 

the binding mechanism may be structural considerations, in combination with sedimentation 

velocity analytical ultracentrifugation and multi-signal sedimentation velocity [12,77], 

owing to its potential for hydrodynamic and spectral separation of the different species and 

their complexes.

For several reasons, it is highly desirable to combine gITC with the automated shape 

analysis of experimental thermograms in NITPIC, which provides error estimates for the 

heat changes of individual titration data points: First, this allows for experimental titration 

data to be properly weighted relative to each other in gITC. Second, due to the generally low 

number of data points, adventitious large uncertainties in heat changes from individual 

injections due to unusual baseline fluctuations can have an impact on the results of the ITC 

analysis, in particular if the injections in question are located in the transition region. Third, 

manual user-dependent interference in what is considered the experimental data should be 

avoided as much as possible to rule out bias, and this can be accomplished automatically and 

reliably with the peak shape analysis and truncated singular value decomposition algorithms 

in NITPIC [18]. First examples for the application of the NITPIC-SEDPHAT analysis 

strategy can be found in [35,38,48,53–62,66,78–80]. By letting the thermogram integration 

software NITPIC feed data into SEDPHAT, errors from the individual injections are 

honored and carried through to yield rigorous final parameter uncertainties in gITC.

Since ITC experiments are often costly in terms of time and material, it is of practical 

importance to design efficient and informative experiments by proper choice of the titration 

configuration and of concentrations in the cell and syringe. Historically, this was 

accomplished by considering a ‘c-value’, but this concept ceases to be very useful for multi-

site systems and in the context of global analysis. This presents the motivation for the 

introduction of simulation tools in the current paper. They include a graphical depiction of 

the differential heats in two- or three-dimensional concentration space, which can generate 

visual cues to regions in parameter space that are both feasible – given existing stock 

solutions – and information rich. This can be followed by a statistical analysis of the error 

surface with the automated confidence interval search for a certain parameter of interest.

In future work, it may be possible to improve the simulation tool by accounting for signal/

noise limitations directly in the isotherm display. Currently different noise levels have to be 

anticipated prior to the simulations for each data set. It would be desirable, however, to crop 

the display to regions that are not only feasible on the basis of available sample 

concentrations, but also exceed lower threshold of heat changes per titration step dependent 

on the instrument sensitivity. The goal would be to upfront exclude from consideration such 

designs that would provide only highly noisy titrations.

For more complex multi-site systems, it may not always be possible to identify satisfactory 

conditions and combinations of ITC data. For example, the accuracy or level of available 

reactant concentrations may be limiting, highlighting the potential importance of efforts to 

improve aspects of sample preparation prior to the ITC experiments. Similarly, in some 

cases it may be anticipated through the simulation that the combination with other 
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biophysical data in a global multi-method analysis (GMMA) will be crucial. Examples for 

such cases can be found in two-site and three-site systems [29,78]. In this way, the new 

simulation tools can be used to consider ITC in the broader experimental context.
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Highlights

• We review principles and opportunities for global analysis of ITC titrations

• SEDPHAT provides a seamless graphical user interface for global ITC analysis

• We present a new tool for the design of ITC experiments

• The global analysis can be extended to multi-method analysis
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Figure 1. 
Panel A: Screenshot of the SEDPHAT ITC visualization tool of the differential heats dQ/

dcA,tot for the titration of a component A into another component B (KD = 0.1 µM, ΔH = 

−10 kcal/mol), which are shown in the form of a two-dimensional heat map (large negative 

enthalpy changes in gray/purple/magenta/blue, and small heat changes in red to black). The 

screenshot was modified to enhance the axis labels. In the plot, the plane of total 

concentrations (ranging logarithmically from 0.01 to 100 µM in each dimension) is cropped 

to the region that reflect experimentally observable concentrations if the maximum stock 
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concentration of each component is 100 µM, provided a cell volume of 1400 µl and a total 

syringe volume of 300 µl. A left-to-right swipe with the mouse allows to delineate an 

experimental titration trajectory, indicated by the yellow circles connected by the black line, 

here reflecting 30 injections at 10 µl each of 45.6 µM A into the cell with initially 6.2 µM B 

– information that is provided after any trajectory is graphically entered. Additionally, the 

small inset shows the shape of heat changes of a putative experiment along this titration. The 

bank of buttons on the right allows depicting any fractional population of free or complex 

species in any component (light blue), as well as the fractional contribution of each species 

to the total heat changes (green). The bank of buttons on the left allows to switch the 

titration type, crop the display, pick another experimental trajectory, change binding 

parameters, switch to a differencing mode, and exit this display to simulate data for the 

trajectory shown. Panel B: Analogous isotherm for the same system for the injection of B 

into A, with an experimental trajectory of titrating 56.9 µM B into 5.7 µM A. Panel C: ITC 

data generated along the trajectories shown in Panel A and B.
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Figure 2. 
Titration experiments of α-chymotrypsin (CT) in 200 µl cell of an ITC200 MicroCal 

calorimeter (GE Healthcare) being titrated with 1.8 µl aliquots of soybean trypsin inhibitor 

(SBTI) [29]. With 20 µM CT in the cell and 83.7 µM SBTI in the syringe (red), a well-

formed transition is observed. By contrast, with 22.7 µM CT in the cell (allowing locally for 

a concentration error) and 68.4 µM SBTI in the syringe no saturation is achieved, whereas 

with 3 µM CT in the cell and 83.7 µM SBTI in the syringe saturation is achieved too 

quickly. It is advantageous to include all experiments into a gITC analysis (solid lines), 

rather than solely analyzing the single well-formed data set, as reflected in the narrower 

confidence intervals of the binding parameters. For example, the confidence interval for 

ΔHAB of the first site is 2.9 – 19.6 kcal/mol based on the red trace alone, and 3.4 – 6.3 

kcal/mol for the joint analysis of all traces (see text).
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Figure 3. 
Relative species populations of complexes, weighted by the respective heat content, for a 

ligand-linked dimerization system where A exhibits weak self-association (KD = 10 µM, 

ΔHAA = −10 kcal/mol), and has a binding site for B (KD = 1 µM, ΔHAA = −5 kcal/mol) 

which cooperatively induces 10fold stronger self-association in A when liganded (ΔHAAB − 

ΔHAB = −2 kcal/mol). Shown are partial screenshots of the SEDPHAT display generated in 

the simulation function after pressing the species display buttons.

Zhao et al. Page 23

Methods. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Different titration data sets created in SEDPHAT for the ligand-linked dimerization system 

of Fig. 3. Shown are screenshots of the SEDPHAT display of four loaded ITC titration 

experiments, represented in different quadrants, showing titration data points with best-fit 

lines in the customary plot as a function of molar ratio (Panel A), and in the context of the 

isotherms of differential heats (Panel B). All experiments simulate injections of A into B, 

except that in the upper right quadrant which is for injection of B into A. Concentrations 

were 7.1 µM B in the cell and 49.8 µM A in the syringe (upper left quadrant), 5.3 µM A in 
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the cell and 55.6 µM B in the syringe (upper right quadrant), 1.4 µM B in the cell and 5.7 

µM A in the syringe (lower left quadrant), and 2.5 µM B in the cell and 135.1 µM A in the 

syringe (lower right quadrant).
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Figure 5. 
Differences of dQ/dcA,tot from two isotherms titrating A into B as shown in Fig. 4B, upon a 

small change in the cooperativity parameter. This indicates regions in the parameter space 

that will depend most on this parameter, i.e., are most informative for its precise quantitative 

determination. In the present case, the largest changes occur for conditions where cA,tot ≈ 

0.1 µM and cB,tot ≈ 1 µM, as indicated in black.
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Figure 6. 
GUSSI plot of the gITC analysis in SEDPHAT of a simulated displacement experiment, 

titrating 300 µM of a high-affinity ligand (KAB = 1 nM) into 20 µM protein (purple), 355 

µM of a low-affinity ligand (KAC = 1 µM) into 34 µM protein (blue), and the titration of 250 

µM of the high-affinity ligand into a mixture of 20 µM protein with low-affinity ligand in 

10fold molar excess (parameters after [81]). The inset shows the 1-dimensional error 

contour projection for the high-affinity binding constant as generated by an SEDPHAT 

statistics function, highlighting confidence levels at 1 (purple) and two (red) standard 

deviations, which leads to a 68% confidence interval of 0.57 – 1.4 nM.
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Figure 7. 
Panel A: Graphical depiction of the differential binding isotherm in the three-dimensional 

concentration space for a titration of a protein A (abscissa) into a mixture of a high-affinity 

B (KD = 1 nM, ΔH = −10 kcal/mol) and a low-affinity ligand C (KD = 100 nM, ΔH = −6 

kcal/mol), showing the section at molar ratio of C/A = 1.359 (ordinate). SEDPHAT allows 

the user to scroll through different sections of the volume, and create simulated experimental 

titration trajectories (black dotted line, and small inset). Planes at constant molar ratio C/B in 

the cell exhibit the typical bi-phasic transition at high concentrations. Panel B: 
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Differentiation of the isotherm in A with respect to the high-affinity binding constant. Red 

and blue areas highlight areas with largest sensitivity toward changes in KAB. The isotherm 

can also be explored by scrolling through different slices in this differential form. In both 

panels, the connected black dots depict, in different context, the trajectory of the same 

isotherm, simulated experimental data of which are shown in the inset of panel A.
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Figure 8. 
Screenshot of the global multi-method analysis of the interaction of α-chymotrypsin (CT) 

with soybean trypsin inhibitor (SBTI), extending the data shown in Fig. 2 (shown here in the 

top row) by a surface plasmon resonance experiment in solution competition configuration 

(lower left), and sedimentation velocity experiment in a dilution series yielding an isotherm 

of signal-weighted average sedimentation coefficients of the interacting system (lower 

middle) and of the reaction boundary (lower right) [29].
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Figure 9. 
Parameter correlations between the two binding sites K1 and K2 of SBTI for CT for different 

experiments:(A) SPR alone (as shown in bottom left of Fig. 8); (B) a single well-formed 

ITC experiment (replicate of that shown in top left panel of Fig. 8); (C) a dilution series in 

SV (lower middle and lower right in Fig. 8); (D) GMMA jointly of the same data sets. Two-

dimensional projections of the parameter error surface are generated as color-temperature 

map by the SEDPHAT statistics function, highlighting the one and two standard deviation 

contour (red and magenta lines). (Reproduced from Fig. 8 of [29].)
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