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Abstract

Bone mineral density (BMD) measurements from Dual-energy X-ray Absorptiometry (DXA) 

alone cannot account for all factors associated with the risk of hip fractures. For example, the 

inhomogeneity of bone mineral density in the hip region also contributes to bone strength. In the 

stochastic assessment of bone inhomogeneity, the BMD map in the hip region is considered as a 

random field and stochastic predictors can be calculated by fitting a theoretical model onto the 

experimental variogram of the BMD map. The objective of this study was to compare the ability 

of bone mineral density and stochastic assessment of inhomogeneous distribution of bone mineral 

density in predicting hip fractures for postmenopausal women. DXA scans in the hip region were 

obtained from postmenopausal women with hip fractures (N=47, Age: 71.3±11.4 years) and 

without hip fractures (N=45, Age: 66.7±11.4 years). Comparison of BMD measurements and 

stochastic predictors in assessing bone fragility was based on the area under the receiver operating 

characteristic curves (AUC) from logistic regression analyses. Although stochastic predictors 

offered higher accuracy (AUC=0.675) in predicting the risk of hip fractures than BMD 

measurements (AUC=0.625), such difference was not statistically significant (p=0.548). 

Nevertheless, the combination of stochastic predictors and BMD measurements had significantly 

(p=0.039) higher prediction accuracy (AUC=0.748) than BMD measurements alone. This study 

demonstrates that stochastic assessment of bone mineral distribution from DXA scans can serve as 
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a valuable tool in enhancing the prediction of hip fractures for postmenopausal women in addition 

to BMD measurements.
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Introduction

The bone mineral density (BMD), measured from dual-energy X-ray absorptiometry (DXA), 

has become the gold standard for the diagnosis of osteoporosis and the assessment of 

fracture risk (WHO, 2003). However, BMD alone is not sufficient to account for all spectra 

of fracture risks. The overlap of BMD has been observed for subjects with hip fractures and 

without hip fractures (Hui et al., 1988; Kanis et al., 2005; Kanis et al., 2007). Therefore, 

bone quality measures, including architecture, turnover, damage accumulation and 

mineralization, have been proposed as additional features in predicting bone fractures (NIH, 

2000). New techniques, such as fractal texture analysis (Majumdar et al., 1993; Benhamou 

et al., 1994; Buckland-Wright et al., 1994; Majumdar et al., 2000; Pothuaud et al., 2000; 

Chappard et al., 2001; Messent et al., 2005; Apostol et al., 2006; Lespessailles et al., 2008; 

Le Corroller et al., 2012), topological analysis (Boehm et al., 2007; Boehm et al., 2008), hip 

structure analysis (Beck, 2003; Beck, 2007), finite element analysis (Langton et al., 2009), 

and trabecular bone score based on the experimental variogram (Pothuaud et al., 2008; 

Pothuaud et al., 2009; Hans et al., 2011; Winzenrieth et al., 2013), have been introduced to 

enhance the prediction of bone fractures from DXA images by providing additional 

information of bone quality.

Fractal analysis of texture in two-dimensional images is a useful imaging technique that has 

been successfully applied to high-resolution radiography images to extract the hidden 

geometric and microstructure parameters of trabecular bone in both clinical studies and in 

vitro studies (Majumdar et al., 1993; Benhamou et al., 1994; Buckland-Wright et al., 1994; 

Majumdar et al., 2000; Pothuaud et al., 2000; Chappard et al., 2001; Messent et al., 2005; 

Apostol et al., 2006; Lespessailles et al., 2008; Le Corroller et al., 2012).

Topological analysis is another example of image processing tools that have been applied to 

two-dimensional DXA images (Boehm et al., 2007). An in vitro study of 100 hip specimens 

demonstrated that the topology-based parameter from DXA images had a strong correlation 

with the failure strength of the specimens (Boehm et al., 2008).

Both hip structural analysis and finite element analysis of X-ray images have attempted to 

directly extract stiffness and strength of bone from DXA scans. In hip structural analysis, 

bone strength is estimated by extracting the total surface area of bone in a cross-sectional 

slice, the cross-sectional moment of inertia, and the buckling ratio from DXA scan data 

(Beck, 2003; Beck, 2007). In the finite element analysis of X-ray images, a 3D proximal 

femur shape can be generated from 2D radiographic images and used to construct the 3D 

finite element models (Langton et al., 2009).
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In recent years, the Trabecular Bone Score (TBS) has gained the attention of researchers in 

the assessment of fracture risk (Bousson et al., 2012; Silva et al., 2014). TBS is a new 

parameter determined from the grayscale analysis of DXA images (Pothuaud et al., 2008). 

The value of TBS is calculated as the slope at the origin of the log-log representation of the 

experimental variogram of DXA images (Pothuaud et al., 2009; Hans et al., 2011; 

Winzenrieth et al., 2013). In ex vivo studies, TBS has been found to correlate with 

microarchitecture parameters of trabecular bone, such as bone volume fraction, mean bone 

thickness, degree of anisotropy and structure model index (SMI) (Pothuaud et al., 2008; 

Roux et al., 2013; Winzenrieth et al., 2013). TBS has also been used in numerous clinical 

studies (Pothuaud et al., 2009; Rabier et al., 2010; Winzenrieth et al., 2010; Hans et al., 

2011; Bousson et al., 2012; Leib et al., 2013; Leslie et al., 2014; Silva et al., 2014).

Among these enhanced techniques for DXA scans, TBS may have the most potential to be 

used for improving the prediction of bone fractures. However, there are several challenges to 

be addressed before the trabecular bone score can be extensively used in clinical situations. 

First, the physical meaning of TBS is still vague at this time. TBS evaluates the variations of 

grayscale values in DXA images through experimental variograms. The use of grayscale 

values does not characterize the exact distribution of bone mineral density, and grayscale 

values in DXA images may be easily changed by varying the brightness and the contrast of 

these images. Second, TBS only reflects the initial trend, rather than the global trend, of the 

experimental variogram since it is defined as the initial slope of log-log representation of the 

experimental variogram. A more appropriate model needs to be used to describe the 

variation of bone mineral distribution from DXA scans.

To this end, we proposed a novel stochastic approach based on random field theory (Dong et 

al., 2010; Dong et al., 2013) to extract the stochastic parameters from the inhomogeneous 

distribution of bone mineral density of DXA scans. The objectives of this study were: (1) to 

generate a map of bone mineral density in terms of gram per unit area from DXA scans 

using the raw data of dual-energy X-ray attenuation; (2) to create the experimental 

variogram of bone mineral density map and extract the stochastic parameters from 

theoretical models that represent the global trend of experimental variograms; (3) to apply 

this stochastic assessment of bone mineral distribution to the risk prediction of hip fractures 

for postmenopausal women.

Materials and Methods

Recruitment of human subjects

In this retrospective study, two groups of human subjects, i.e. patients with fracture and 

control, were examined from postmenopausal women over the age of 50 who had visited the 

Department of Radiology at UT Health Northeast. Among these subjects, the fracture group 

(N=47, Age: 71.3±11.4 years old) included subjects with a history of osteoporotic hip 

fractures whereas the control group (N=45, Age: 66.6±9.9 years old) consisted of subjects 

without osteoporotic fractures. In the fracture group, only the patients with a hip fracture in 

the left side and an intact hip in the right side were chosen for this study. Women with 

traumatic fractures, such as secondary to an automobile accident, were excluded. The 

approval of IRB from participating institutions was obtained for this study.
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DXA scan

Images of DXA scans were obtained from 92 postmenopausal women using a Hologic 

densitometer (QDR Discovery A, Bedford, MA) by a technologist certified by the 

International Society for Clinical Densitometry. Prior to scanning each day, an 

anthropometric Spine phantom supplied by the manufacturer was scanned to monitor 

scanner precision. For the fracture group, all fractures occurred at the left hip and the 

contralateral hip (i.e., right hip) was scanned. For the control group, the left hip was 

scanned. The subject was first positioned on the scanning table by the technologist such that 

the X-ray beam projection was from posterior to anterior direction. Next, the Hip mode was 

selected to scan the hip. Finally, the total hip BMD was reported with a unit of g/cm2, and a 

T-score value was also reported by the Hologic scanner.

BMD maps extracted from DXA scans

The BMD map, expressed in terms of gram per cm2 at the total hip region was calculated 

using the raw data from DXA scans of Hologic densitometers (i.e., R files) consisting of the 

attenuation of X-ray beams at two distinct energies. Details of obtaining the BMD map from 

DXA scans are available in the literature (Blake et al., 1992; Blake and Fogelman, 1997; 

Blake et al., 1999) and are included in the Appendix.

The current method of extracting the bone map from DXA scans was validated by 

performing a linear regression analysis of the mean values of the BMD map in the hip 

region and the total hip BMD values in the same region of interest provided by the Hologic 

densitometer in the DXA reports. A total number of 92 subjects were used in the regression 

analysis. The Rsquared value of the linear regression was 0.97, indicating a significantly 

(p<0.001) linear relationship between the calculated BMD values from the BMD map and 

the total hip BMD values reported by the densitometer manufacturer (Figure 1).

Stochastic predictors from the experimental variogram of the BMD map

The spatial variation of the BMD map (Figure 2a) from DXA scans was characterized using 

an experimental variogram (Figure 2b). The concept of experimental variograms is briefly 

described here. A semi-variance, γ(h), is defined as the half of the expected squared 

differences of bone mineral density between any two locations with a lag distance of h.

(1)

where Z(x) is a function to describe the random field of bone mineral density; Both x and h 
are vectors; x is the spatial coordinates of the data location. Lag distance, h, represents the 

Euclidean distance and direction between any two locations within the hip region.

The experimental variogram is calculated as an average of semi-variance values at different 

locations that have the same value of lag distance (h).

(2)
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where m(h) is the number of data pairs for the observations with a lag distance of h.

A simple mathematical function, known as an authorized model, can be used to describe the 

underlying stochastic process of experimental variograms (Mcbratney and Webster, 1986). 

An exponential model was used to fit over the experimental variogram of the BMD map 

with the least square curve fitting (Dong et al., 2010; Dong et al., 2013). The ordinary least 

square estimation was implemented in MATLAB (MathWorks, Natick,MA) with the 

function “lsqcurvefit”. The stochastic predictors in the exponential model can be estimated 

by minimizing the residual sum of squares for semi-variance.

The semi-variance (γ) with an exponential model can be represented by the following 

formula:

(3)

where γ(h) is the semi-variance of bone mineral density as a function of lag distance (h). L, 

correlation length, is a distance parameter defining the spatial extent of the model. 

Correlation length is an important parameter to describe the spatial variation of a random 

field. A large correlation length implies a smooth variation whereas a small correlation 

length corresponds to rapid changes in the property over the spatial domain. c, sill variance, 

is the a priori variance of the random field. The experimental variogram may reach its sill 

variance asymptotically. c0, nugget variance, is the positive intercept on the axis of semi-

variance. Any apparent nugget variance usually arises from errors of measurement and 

spatial variation within the shortest sampling interval (Webster and Oliver, 2001). The sum 

of sill variance and nugget variance is the converging value of variance when the lag 

distance approached infinity (i.e. the global variance in the BMD map), which gives rise to a 

measure of magnitude of spatial variation of BMD map.

In this study, we used the stochastic parameters at the global level to characterize the BMD 

map in the total hip region for both control and fracture groups of postmenopausal women.

Statistical analyses

Statistical analyses were performed with SPSS (IBM, Armonk, NY) with a significance 

level of p<0.05. Comparisons of BMD and stochastic predictors between control and 

fracture group were conducted using Student’s t-tests. Logistic regression models were used 

to estimate the contribution of BMD and stochastic predictors on the risks of hip fracture 

(Vittinghoff, 2012). The outcome of logistic regression models was represented by a 

receiver operator characteristic curve (ROC). The area under the ROC curve (AUC) 

indicated the accuracy of the logistic regression model (Vittinghoff, 2012). The comparison 

of ROC curves was based on Delong’s test using pROC: an open-source package for R 

specifically dedicated to ROC analysis (DeLong et al., 1988; Robin et al., 2011).
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Results

No significant differences in height (p=0.309), weight (p=0.522), or body mass index 

(p=0.783) were found between control and fracture groups (Table 1). However, significant 

(p=0.038) difference in age was observed between control and fracture groups (Table 1).

The bone mineral density of postmenopausal women in the fracture group was significantly 

(p=0.042) lower than that of the control group (Table 2). Consequently, the T-score in the 

fracture group was significantly (p=0.040) less than the T-score in the control group (Table 

2). On the other hand, no significant differences in the bone mineral content (p=0.182) and 

the bone area (p=0.894) of the total hip region were observed between control and fracture 

groups (Table 2).

Among stochastic predictors, correlation length was significantly higher (p=0.024) in the 

control group than in the fracture group whereas no significant differences of sill variance 

(p=0.452) and nugget variance (p=0.852) were observed between control and fracture 

groups (Table 3).

Logistic regression models were used to examine the relationship between the risk of hip 

fractures and BMD and stochastic predictors (correlation length, sill variance and nugget 

variance) for postmenopausal women (Table 4). When the BMD alone was used as the 

predictor variable, significant (p=0.047) relationship between the fracture risk and BMD 

measurements was observed. When only stochastic predictors were used as predictor 

variables, the risk of hip fractures had significant relationships with the correlation length 

(p=0.009), but not the sill variance (p=0.908) and the nugget variance (p=0.083). When a 

combination of BMD measurements and stochastic predictors was used, the sill variance 

(p=0.147) was the only predictor variable without significant relationship with the risk of 

hip fractures (Table 4).

The accuracy of logistic regression models was characterized by the area under receiver 

operating characteristic (ROC) curves (Figure 3 and Table 5). The area under the ROC curve 

for the logistic regression model with only BMD measurements (AUC=0.625) was smaller 

than that with only stochastic predictors (AUC=0.675). However, this difference was not 

statistically significant (p=0.548). The logistic regression model with a combination of 

BMD and stochastic predictors had the greatest area under curve (AUC=0.748) with a lower 

bound of 0.647 and an upper bound of 0.849 at the 95% confidence level (Figure 3 and 

Table 5). The AUC of the logistic model with a combination of BMD and stochastic 

predictors was significantly (p=0.039) greater than the AUC of logistic model with only the 

BMD measurements. This indicated that a combination of BMD measurements and 

stochastic predictors enhanced the prediction of the risk of hip fractures, compared to the 

BMD measurement alone.

Discussion

We described a procedure to extract stochastic predictors from the bone mineral distribution 

of DXA scans. Such a procedure was applied to postmenopausal women with hip fractures 
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and without hip fractures. The combination of BMD and stochastic predictors had stronger 

prediction power than the BMD alone.

Measurements of BMD for postmenopausal women in control and fracture groups were in 

agreement with existing literature. For example, previous studies (Boehm et al., 2007; 

Whitmarsh et al., 2012) also reported that measurements of BMD and T-score in 

postmenopausal women with hip fractures were significantly lower than those in 

postmenopausal women with no fractures. Additionally, we calculated the area under the 

receiver operating characteristic curve (AUC) for the contribution of BMD to hip fractures 

(AUC=0.625, Figure 3 and Table 5,). This value was within the range reported from other 

studies in which the AUC for BMD varied from 0.58 (Boehm et al., 2007) to 0.719 

(Whitmarsh et al., 2012).

Similar to the stochastic technique of this study, TBS was also obtained from experimental 

variograms of DXA scans. In previous studies, TBS has been used for risk prediction of 

spine fractures, showing that the AUC for the prediction of vertebral fractures ranged from 

0.662 to 0.721 (Rabier et al., 2010). In addition, spine TBS has also been used to predict hip 

fractures with the AUC calculated as 0.680 (Leslie et al., 2014). The stochastic approach can 

be distinguished from the TBS method in the following aspects:

First, the original definition of TBS is based on the variation of the grayscale values of DXA 

images (Pothuaud et al., 2008; Pothuaud et al., 2009), rather than a property with direct 

physical meaning. The modified definition of TBS is based on a black-box algorithm using 

the variogram after its log-log transformation (Hans et al., 2011). However, it is not clear 

how the variogram is calculated when the TBS is redefined (Bousson et al., 2012). On the 

other hand, stochastic predictors are based on the variation of bone mineral density values 

from the BMD map of DXA scans. The value of bone mineral density at each location was 

obtained from the raw data of DXA scans (i.e., R files in Hologic densitometers) using the 

equations of mass attenuation for dual-energy X-ray absorptiometry (Stein, 1989; Blake et 

al., 1992) (see Appendix). The use of BMD maps may facilitate the comparison of results 

when multicenter studies are conducted to predict osteoporotic fractures.

Second, TBS describes only one aspect of experimental variograms whereas the stochastic 

predictors we proposed represent a comprehensive view of experimental variograms. 

Experimental variograms are mostly used in geostatistics (Mcbratney and Webster, 1986; 

Atkinson and Lloyd, 2007) and have recently been introduced in the field of bone mechanics 

(Pothuaud et al., 2008; Pothuaud et al., 2009; Dong et al., 2010; Dong et al., 2013). TBS is 

calculated as the slope at the origin of the log-log representation of experimental variograms 

(Pothuaud et al., 2008; Pothuaud et al., 2009; Hans et al., 2011; Winzenrieth et al., 2013). 

The initial trend of the experimental variogram may be described by the TBS. However, the 

final trend in the experiment variogram is not represented by the TBS. On the other hand, 

stochastic predictors are derived from a theoretical model of random fields that captures the 

global trend of the experimental variogram. In this study, correlation length, sill variance 

and nugget variance are obtained by fitting an exponential model of random fields into the 

experimental variogram (Figure 2b).
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This study has several limitations that should be mentioned. First, this is a retrospective 

case-control study by comparing patients known to have fractures with individuals known to 

be free of fractures. Although stochastic assessment of bone mineral distribution has shown 

to be very promising in predicting bone fragility, lack of baseline measurements for these 

patients is a disadvantage for this study. Therefore, a prospective study will be carried out in 

the future to examine patients with baseline measurements and subsequent follow-up. In 

addition, the retrospective analysis did not discriminate among the 5 common types of hip 

fracture (i.e, subcapital, basicervical, transcervical, intertrochanteric, and subtrochanteric). 

Many patients had those fractures diagnosed at other facilities, and all had them treated 

elsewhere, since UT Health Northeast did not have an orthopedic surgeon during the time 

frame in question.

The second limitation is that age may be a confounding variable because significant 

differences of age have been observed between the control group and the fracture group for 

postmenopausal women (Table 1). Therefore, we have examined the influence of age on the 

prediction of risk of hip fractures using logistic regression models (Table 6). With the 

introduction of age in the logistic regression models, the relationship between BMD and the 

risk of fracture was not statistically significant (p=0.086, Table 6), indicating that age may 

be a confounding variable for the prediction of risk of hip fractures using BMD 

measurements. The inclusion of age in the logistic regression models slightly increased the 

prediction accuracy for the logistic regression model with either BMD measurements 

(AUC=0.679, Table 6) or stochastic predictors (AUC=0.695, Table 6). However, the 

comparison of AUC from the ROC curves (DeLong et al., 1988; Robin et al., 2011) 

demonstrated that such changes were not statistically significant (p>=0.265). With the 

presence of age, there was no change for the AUC of the logistic regression model 

(AUC=0.748, Table 6) with the combination of BMD measurements and stochastic 

predictors.

Another limitation is that we have made assumptions that the BMD map at the hip region is 

a stationary and isotropic random field when extracting the stochastic predictors from the 

experimental variogram. By stationarity, we mean that the distribution of the random field 

has certain attributes that are the same everywhere (Stoyan et al., 1995). Specifically, 

second-order stationarity (i.e., weak stationarity) indicates the constancy of mean, variance, 

and covariance that depends only on lag distance and not on absolute positions (Webster and 

Oliver, 2001). The wavelet-based test of stationarity for locally stationary random fields is 

available in the R software package (Eckley et al., 2010; Nunes et al., 2014). By isotropy, 

we mean that the characteristics of the random field are invariant in all directions (Stoyan et 

al., 1995). Specifically, we can examine the isotropic assumption by generating the 

experimental variograms in every direction (Webster and Oliver, 2001). If the variation is 

anisotropic, we need to take into account such anisotropy by certain transformations 

(Webster and Oliver, 2001). The stationarity and anisotropy of the BMD map at the hip 

region as a random field need further investigation.

Finally, the influence of scanner resolution, scan mode and noise on the stochastic predictors 

from DXA scans needs to be investigated in the future study.
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Conclusion

This study demonstrates that stochastic assessment of bone mineral distribution from DXA 

scans combined with BMD measurements can serve as a valuable tool in enhancing the 

prediction of osteoporotic fractures for postmenopausal women. Clinically, this may become 

an economic prognostic tool to enable individuals and their doctors to make informed 

judgments about the actual risk of fracture and to allow for steps to be taken to reduce that 

risk.
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Appendix

It is noted that most of contents in this appendix have already been avaiable at various 

places scattered in the literature (Stein, 1989; Blake et al., 1992; Blake and Fogelman, 1997; 
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Blake et al., 1999). Nevertheless, they are presented here as one piece for the convienience 

of the readers who would like to generate the BMD map directly from the raw data of 

Hologic densitometers (i.e., R files).

1. A brief introduction to dual-energy X-ray absorptiometry (DXA)

A basic understanding of the interaction of X-ray photons and absorber materials is 

beneficial for us to learn about the principles of DXA. When an X-ray beam passes through 

an absorber material, the incident energy of X-ray photons is exponentially attenuated by 

photon interactions with absorber materials due to Compton scattering and photoelectric 

collision (Blake et al., 1999). The degree of attenuation is a function of the initial photon 

energy of the X-ray beam, the mass attenuation coefficient of the absorber material, and the 

mass per unit area of the absorber material. For a homogeneous absorber material like bone 

mineral, the transmitted intensity is related to the incident intensity according to the 

following formula:

(A.1)

where I is the transmitted X-ray beam intensity, I0 is the incident photon intensity, μ is the 

mass attenuation coefficient of bone mineral, and M is the mass per unit area (g/cm2) of 

bone mineral.

Although a single energy X-ray source is able to measure the areal density of a 

homogeneous absorber material, a dual-energy X-ray source is required to determine the 

area densities of an absorber with two components. For example, a human body consists of 

soft tissue and bone mineral. Two distinct X-ray energy beams can be used to measure bone 

mineral density by accounting for variations in the amount of overlaying soft tissue in 

human bodies. The aforementioned transmission equation A.1 can be extended to two 

transmission equations. One equation is for the low-energy beam and the other for the high-

energy beam.

(A.2)

(A.3)

where  and IL are the intensity of incident and transmitted low-energy photons,  and IH 

are the intensity of incident and transmitted high-energy photons,  and  are the mass 

attenuation coefficients of soft tissue at the low and high energies,  and  are the mass 

attenuation coefficients of bone mineral at the low and high energies, Ms and Mb are the area 

densities (g/cm2) of soft tissue and bone mineral.

By taking the logarithm function on both sides of the equations A.2 and A.3, we have the 

following equations:

(A.4)
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(A.5)

where JL and JH are the logarithmic transmission factors at the low and high energies 

(  and ).

If the values of the four attenuation coefficients are known, the area density of bone mineral 

(BMD) can be calculated by solving a simultaneous set of two linear equations A.4 and A.5. 

The following equation is the foundation for the determination of BMD in DXA.

(A.6)

2. Internal reference systems for Hologic densitometers

The assumption for the aforementioned equation A.6 is that the attenuation coefficients for 

soft tissue and bone mineral are known at low and high energies. However, it is not possible 

to give predetermined values of mass attenuation coefficients of soft tissue (  and ) 

since the composition of soft tissue varies from individual to individual. In addition, the 

values of mass attenuation coefficients of bone mineral (  and ) are affected by body 

thickness and composition due to beam hardening (Blake et al., 1992). Therefore, 

commercial densitometers from Hologic (Bedford, MA) have used an internal reference 

system that enables the accommodation of drift in the X-ray tube, differences in patient 

thickness and other system variations (Stein, 1989).

The internal reference system includes a rotating filter wheel that is synchronized with the 

main power supply of densitometers. There are three sectors in the filter wheel containing an 

open air gap, a soft tissue equivalent material made of epoxy resin, and a bone mineral 

equivalent material made of hydroxyapatite. The bone equivalent material has a BMD value 

of 1.0 g/cm2. There are high- and low-energy cycles in each sector. Therefore, each location 

in the DXA scan contains six transmission measurements that record the X-ray attenuation 

signals at the high and low energies through the air, bone and soft tissue sectors.

An important feature of the internal reference system is its ability to calculate the mass 

attenuation coefficients of soft tissue and bone mineral on every scan line and provide 

continuous calibration of the densitometer. It is important for this calibration to pass through 

at least some portions of the patient having only flesh adjacent to the spine.

3. Calculate the BMD value at each pixel from DXA scans

3.1 Calculation of mass attenuation coefficients of soft tissue and bone mineral

The raw data from DXA scans of Hologic densitometers (i.e., R files) consist of the 

attenuation of X-ray beams at two distinct energies. In each DXA scan file, each pixel 

consists of six transmission measurements through the patient’s body made through the air, 
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soft tissue, and bone sectors of the reference wheel at high and low x-ray energies, 

respectively.

First, the mass attenuation coefficients of soft tissue and bone mineral are calculated from 

the six logarithmic transmission factors for air, soft tissue and bone sectors in the reference 

wheel. Let  be the low-energy logarithmic transmission factors for the air, soft 

tissue and bone sectors, and let  be the corresponding high energy factors.

Measurements through the air sector give the attenuation through the patient’s body

(A.7)

(A.8)

Measurements through the bone sector give the following equations

(A.9)

(A.10)

where MCB denotes the area density of the bone mineral equivalent filter,  and  are 

the mass attenuation coefficients of bone mineral equivalent filter at the low and high 

energies.

Measurements through the soft tissue sector give the following equations

(A.11)

(A.12)

where MCS denotes the area density of the soft tissue equivalent filter,  and  are the 

mass attenuation coefficients of soft tissue equivalent filter at the low and high energies.

The increases in attenuation when the bone sector of the reference wheel rotates into the X-

ray beam are governed by

(A.13)

(A.14)

Similarly, the changes in attenuation when the soft tissue sector of the calibration wheel 

rotates into the X-ray beam can be calculated by
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(A.15)

(A.16)

Therefore, the effective values of the four attenuation coefficients in Equation A.6 are 

obtained by assuming that the attenuation coefficients of soft tissue and bone mineral are 

equal to that of soft tissue equivalent and bone mineral equivalent in the reference wheel.

(A.17)

(A.18)

(A.19)

(A.20)

3.2 Calculation of the BMD value at each pixel with no beam hardening

After replacing the attenuation coefficients in equation A.6 with the aforementioned 

equations A.17–20, we have the following formula:

(A.21)

We can simplify the aforementioned equation A.21 by using

(A.22)

where k is the ratio of the attenuation coefficient of soft tissue for the low energy beam to 

that of the high energy beam. The average k value is normally available in DXA reports for 

Hologic densitometers.

(A.23)

(A.24)
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where the average value of d0 is also available in the DXA report from Hologic 

densitometers. Therefore, we obtain

(A.25)

The Equation A.25 is the formula to calculate the bone mineral density at each pixel when 

there is no beam hardening.

3.3 Correction of the BMD value due to beam hardening

Due to the effects of beam hardening through soft tissue, the value of Q in equation A.25 is 

not zero for beam paths that pass through only the soft tissue (Blake et al., 1992). Therefore, 

the value of Mb for each pixel given by Equation A.25 does not equal to the actual BMD 

value at that point.

We have made two major changes to address the issue of beam hardening. First, we compute 

the values of k and d0 at each scan line by taking their average values only at the region of 

soft tissue for each scan line (Blake et al., 1999). The reason is that a large amount of 28 

fluctuations are present at the values of k and d0 in the bone pixels due to quantum noise and 

beam hardening.

Second, the Q values at the bone pixels are corrected by a baseline value Qs equal to the 

average value at the region of soft tissue for each scan line (Blake et al., 1999). 

Consequently, the value Q in equation A.25 is replaced by Q − Qs. We can also replace the 

area density MCB with the bone density value of the reference wheel, BMDref. Finally, we 

can obtain for the BMD value of each pixel in DXA scans:

(A.26)

4. A software package for calculating stochastic predictors from DXA 

scans

We have developed a software package to obtain the BMD map for DXA scans from 

Hologic densitometers and calculate the stochastic predictors. The software package is able 

to calculate the stochastic predictors for both hip and spine scans. For the hip scan, the 

software package can calculate the stochastic predictors for the total hip region as well as the 

sub regions including the femoral neck, trochanter and inter-trochanter. For the spine scan, 

the software package can report the stochastic predictors for the individual vertebra from L1 

to L4 as well as the whole lumbar spine. The choice of region of interest in the hip and spine 

is the same as indicated by the DXA reports from Hologic densitometers.

The software package is currently available for Windows, Mac and Linux operating 

systems. Although the software package is developed under the MATLAB environment, the 

acquisition of MATLAB (Mathworks, Natick, MA, USA) is not required to run the software 
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package. The software package will be available for research use upon the request of readers 

who are interested in the package.

One limitation of the software package is that it is specifically developed for Hologic 

scanners at this time. However, the software package may be extended to densitometers 

from other manufacturers such as GE Lunar in the future.
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Figure 1. 
Validation of BMD maps from raw data of DXA scans. For a cohort of 92 postmenopausal 

women, linear regression was performed between the BMD values reported in Hologic 

densitometers and the BMD values calculated as the average of the BMD map at the same 

total hip region from the raw data of DXA scans. Significant (p<0.001) linear relationship 

was observed between the reported and calculated BMD values with the R-squared value of 

0.97.
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Figure 2. 
Calculation of stochastic predictors from the BMD map. (a) A typical BMD map obtained 

from the raw data of DXA hip scans; (b) An experimental variogram of BMD distribution at 

the total hip region and an exponential fitting model of the experimental variogram. The 

stochastic predictors, correlation length (L), sill variance (c) and nugget variance (c0), were 

extracted from the exponential model.

Dong et al. Page 19

J Biomech. Author manuscript; available in PMC 2016 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The receiver operating characteristic (ROC) curves from logistic regression models for the 

prediction of hip fractures from the BMD measurements, stochastic predictors including 

correlation length (L), sill variance (c) and nugget variance (c0), and a combination of BMD 

measurements and stochastic predictors.
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Table 1

Comparisons of the age, height, weight and body mass index (BMI) between postmenopausal women with hip 

fractures (fracture group) and without hip fractures (control group) recruited in this study. Data were reported 

as mean ± standard deviation. The p-values were results from the comparisons using Student-t tests.

Age
(year)

Height
(inch)

Weight
(lb)

BMI
(kg/m2)

Control (N=45) 66.7±9.9 64.4±2.8 165±40.2 28.2±6.2

Fracture (N=47) 71.3±11.4 63.8±3.0 159±44.9 27.9±7.6

p-value 0.038* 0. 309 0.522 0.783

*
The p-value was significant.
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Table 2

Comparisons of bone mineral density (BMD), bone mineral content (BMC), area, and T-score in the total hip 

region reported from Hologic densitometers for both control and fracture groups. Data were reported as mean 

± standard deviation. The p-values were results of comparisons between control and fracture groups using 

Student-t tests.

BMD
(g/cm2)

BMC
(g)

Area
(cm2)

T-Score

Control (N=45) 0.802±0.124 26.4±4.81 33.0±4.30 −1.12±1.01

Fracture (N=47) 0.740±0.161 24.8±6.71 33.2±4.87 −1.69±1.33

p-value 0.042* 0.182 0.894 0.040*

*
The p-value was significant.
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Table 3

Comparison of stochastic predictors (correlation length, sill variance, and nugget variance) calculated from 

DXA scans between control and fracture groups. Data were reported as mean ± standard deviation. The p-

values were results of comparisons between control and fracture groups using Student-t tests.

Correlation
Length (mm)

Sill Variance
(g/cm2)2

Nugget Variance
(g/cm2)2

Control (N=45) 65.1±19.9 0.161±0.047 0.020±0.011

Fracture (N=47) 55.2±21.2 0.152±0.056 0.020±0.015

p-value 0.024* 0.427 0.852

*
The p-value was significant.
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