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Abstract

Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased 

over the last decade. Faster acquisitions and the development of advanced MRI sequences such as 

magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, 

functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of 

higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the 

developing brain. This article will provide an overview of the use and challenges associated with 

1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also 

summarize the advantages, clinical challenges and safety concerns specifically related to MRI in 

the fetus and newborn, including the implications of increased magnetic field strength, logistics 

related to transporting and monitoring of neonates during scanning, sedation considerations and a 

discussion of current technologies such as MRI-conditional neonatal incubators and dedicated 

small-foot print neonatal intensive care unit (NICU) scanners.

Introduction

The use of magnetic resonance imaging (MRI) in evaluation of the developing brain is well 

established. MRI has proven itself as a beneficial modality in the evaluation of fetal and 

neonatal neurological conditions due to its unsurpassed sensitivity and excellent tissue 
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contrast.(1-6) Fetal MRI, which was first introduced in the 1980’s, was not widely accepted 

until nearly a decade later due to long imaging times and limited availability. Even with long 

imaging times, MRI demonstrated improved anatomic detail, better sensitivity for white 

matter lesions and consistently detected abnormalities which were not identified on prenatal 

ultrasound, such as cortical malformations, heterotopias and posterior fossa abnormalities.

(6-11) (Fig 1) MRI has become an important adjunct to transcranial ultrasound in the 

evaluation of neonates, especially in preterm and very low birth weight infants. The 

development of faster imaging acquisitions has made imaging of the moving fetus and 

neonate more feasible.(12-16) MRI conditional neonatal incubators, specially designed 

neonatal head coils and dedicated neonatal intensive care (NICU) MRI magnets have 

increased the accessibility and feasibility of MRI in the neonatal population.(16-26) 

Advanced imaging techniques such as magnetic resonance spectroscopy (MRS), diffusion 

tensor imaging (DTI), perfusion imaging, functional magnetic resonance imaging (fMRI) 

and susceptibility weighted imaging (SWI), combined with higher clinically applicable static 

magnetic field strengths have provided new insights into brain development and increased 

sensitivity for a wider variety of pathology in the developing brain.(16,24,27-30)

Improvements and Implications of Increased Magnetic Field Strength (1.5T 

vs. 3T)

Effects of Increased Field Strength

The utilization of 3 Tesla (3T) static magnetic fields for clinical imaging in pediatrics has 

increased in recent years. Higher magnetic field strengths provide increased signal to noise 

which can be used to improve temporal and/or spatial resolution. However, 3T MRI also 

increases artifacts, such as susceptibility and chemical shift can be used in advanced 

imaging such as fMRI, SWI and MRS.(16,22,28,31-37)

Increased Signal to Noise Ratio—The signal to noise ratio (SNR) refers to the amount 

of useful information (signal) relative to the amount of signal degradation (noise), inherent 

in a given image acquisition. The SNR is theoretically linearly related to changes in 

magnetic field strength, resulting in twice the SNR at 3T compared to 1.5T field strengths, 

which is one of the advantages of 3T imaging.(28,35,36,38-41) Initially, the actual 

improvement in the SNR was only 1.7 to 1.8 times the SNR at 1.5T due to numerous factors 

including increased T1 relaxation time, increased chemical shift, receiver coil design, and 

increased field inhomogeneity.(31-33,39,42) However, with hardware improvements such as 

high density phased array receive coils and appropriate pulse sequence modification, SNR 

increases approach the theoretical value of 2.(43,44)

Variation in the SNR at higher magnetic field strengths is related to the performance and 

design of the radiofrequency (RF) coils. For example, in fetal imaging, a surface coil, placed 

over the mother’s anterior abdomen, can increase available signal and improve image 

quality.(33) Increases in the SNR can also be used to improve acquisition speed and/or 

spatial resolution in any imaging sequence, including magnetic resonance spectroscopy 

(MRS), diffusion weighted imaging (DWI), diffusion tensor imaging (DTI) and functional 

MRI (fMRI).(32,45) Phased array coils, which incorporate multiple coil elements to provide 
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a larger field of view (FOV) without losing signal, can be used for parallel image 

acquisition.(31,33,46-49) Parallel imaging decreases image acquisition time by under-

sampling the available data. A variety of reconstruction algorithms are then applied to the 

under-sampled data to fill in the missing information and produce the final image.(49-51) At 

both 1.5T and 3T field strengths, phased-array coils and parallel imaging techniques can be 

used to improve the image quality (32,33,52) and decrease acquisition time, which has 

proven useful in both fetal and neonatal evaluations.(33,46,47,49,52) The cost of parallel 

imaging, is a decrease in SNR which is uniquely adequately compensated for by increased 

signal availability at higher magnetic field strengths, making parallel imaging more practical 

at 3T.(32-34,37,46,49)

Improved Temporal and Spatial Resolution—Imaging at higher magnetic field 

strengths improves SNR which can be used to increase temporal and/or spatial resolution.

(31,33,35,53,54) With respect to temporal resolution, the increased SNR at higher magnetic 

field strengths shortens acquisition time without compromising image quality. Shorter 

acquisition times, make it possible to obtain additional imaging sequences, such as MRS, 

DTI and three-dimensional (3-D) images (32), which can improve diagnostic accuracy.

With regards to spatial resolution, increased SNR at 3T compared to 1.5T field strengths can 

be used to improve spatial resolution. The enhanced spatial resolution results in better 

visualization of small parts and decreased volume averaging, which are invaluable when 

evaluating the developing brain, especially in cases of subtle brain injury and/or 

malformations. The higher spatial resolution can also be used to evaluate other parts of the 

nervous system such as the brachial plexus following birth trauma, as well as the inner ear 

structures and the cranial nerves, although these applications are beyond the scope of this 

review.(32)

Changes in T1Relaxation—Longitudinal (T1) relaxation time is an inherent tissue 

property describing the rate of recovery of longitudinal magnetization as it returns to the 

equilibrium state after excitation by an RF pulse.(31) T1 relaxation times are increased at 

higher magnetic field strengths, resulting in a change in the T1 tissue contrast at a fixed 

repetition time (TR) compared to imaging at 1.5T.(32-35,37,55-57) TR refers to the interval 

between the applications of successive RF pulses to the same slice of tissue. Increasing the 

TR to compensate for the longer T1 relaxation time, results in increased acquisition time, 

which can lead to unwanted motion artifact in both fetal and neonatal imaging.(31,32,53) 

Individual tissue types are affected to varying degrees by increasing the magnetic field 

strength, resulting in negligible changes in the T1 relaxation of CSF and 42-62% increases 

in the T1 relaxation of white and gray matter respectively.(31,32,45,55,58) Despite its effect 

on the tissue contrast, longer T1 relaxation times can be used to improve MRA (34,59), 

post-contrast imaging (56,60) and arterial spin labeling (ASL) imaging.(61).

Changes in T2 Relaxation and T2* Effects—Transverse (T2) relaxation is another 

inherent tissue property describing the rate of decay of signal coherence due to spin-spin 

relaxation following the application of an RF pulse. T2* represents the effective T2 value of 

a tissue, which is the result of the intrinsic T2 value combined with the effects of local field 

inhomogeneity.(33) T2* effects are most pronounced whenever there are adjacent tissues or 
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structures with significant variations in magnetic field susceptibility, such as at tissue 

interfaces between air, bone and soft tissue, resulting in signal loss, heterogeneous fat 

saturation, and geometric distortion.(36)

The T2 relaxation time decreases by up to 10% when imaging at 3T versus 1.5T.

(35,55,57,58) The resulting change in T2 tissue contrast however, is not as apparent as the 

changes in T1 tissue contrast.(32,58) T2* decay, on the other hand, is considerably shorter at 

3T due to more pronounced local magnetic field inhomogeneities, which improve T2* 

contrast but also results in unwanted artifacts or increased diagnostic sensitivity, depending 

on the pulse sequence.(32,58) The presence of T2* effects is proportional to the magnetic 

field strength, resulting in rather substantial changes at 3T (62); and while the presence of 

variations in tissue T2* values can produce deleterious artifacts in an image, it can also be 

used to produce clinically relevant information in contrast enhanced perfusion imaging, 

fMRI and SWI.(31-33,35,54,63)

Increased Chemical Shift Artifacts—Chemical shift artifacts also increase at higher 

magnetic field strengths. The magnitude of the chemical shift artifacts double when the 

magnetic field strength is increased from 1.5T to 3T.(28,34,35,41,58,64) Chemical shift 

artifacts cause the spatial misregistration of fat and water on the image when they occur in a 

single voxel producing a dark band at one side of the fat-soft tissue interface and a whiter 

band on the opposite border of that same fat-soft tissue interface. (32)

Challenges of Imaging the Brain at 3T and Possible Solutions

Altered T1 Contrast and Artifacts—At 3T, at the TR values typically utilized, the 

signal intensities of various tissues tend to become more uniform, resulting in less contrast 

between adjacent tissues on the final T1-weighted (T1W) image.(41,57) In order to optimize 

T1 tissue contrast and avoid homogenization of adjacent tissues, modifications need to be 

made to the standard imaging protocols and pulse sequences used at 1.5T.(31,32,59) 

Modifications include increasing the TR and the use of inversion recovery sequences. The 

utilization or non-utilization of parallel imaging can improve scan time and SNR, without 

significantly affecting the T1 tissue values or tissue specific signal intensities throughout the 

image.(32)

Increased susceptibility at 3T leads to image distortion at tissue interfaces and in regions of 

local field inhomogeneity.(32,35,42) Possible pulse sequence modifications to minimize, but 

not completely eliminate, the effect of susceptibility include changing the direction of the 

phase and frequency encoding gradients, removing the source of field inhomogeneity (e.g. 

metallic implants), decreasing voxel size, decreasing echo time (TE), increasing receiver 

bandwidth, using parallel imaging techniques, and shimming.(31-34,53)

Increased chemical shift artifacts at 3T produce areas of signal loss at the interface between 

fat and soft tissue. Modifications to compensate for increased chemical shift include 

increasing the readout or receiver bandwidth, altering (TE) and using fat saturation 

techniques. Increasing the bandwidth decreases the SNR with the tradeoff being the ability 

to acquire more slices per TR (e.g. echo planar imaging), which can shorten overall imaging 
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time. Fat saturation can be used without a significant decreases in the SNR although the 

accompanying decrease in slices per TR may increase total scan time.(32,58)

Field Inhomogeneities—The main magnetic field created by an MRI unit is designated 

B0. MR image generation depends on the application of a second magnetic field, called B1, 

in the form of a RF pulse, oriented at 90 degrees to B0. Variable application of the B1 RF 

pulse will excite protons in the desired image slice, and provide a variable amount of signal 

for image generation. Field inhomogeneities, from both the B0 and B1 magnetic fields, are 

harder to manage at higher field strengths, resulting in more artifacts at 3T.(33,35,58) The 

increased presence of these artifacts can pose a challenge in evaluation of the fetus, and is 

one reason fetal 3T imaging has not gained wide acceptance in clinical practice.(33,35) 

Modifications to decrease the effects of B0 field inhomogeneity, include the use of 

shimming to move the foci of field inhomogeneity out of the region of interest, and the 

application of dielectric pads to change the geometry of the maternal abdomen in the case of 

fetal imaging.(32,33,65,66) In addition, some of the newest MRI scanners incorporate 

special pulses, called adiabatic pulses, which are insensitive to the effect of B1-

inhomogeneity.(32,67)

Inhomogeneities in the B1 magnetic field result in regional signal reduction in the center of 

an imaged object, producing standing wave artifacts when a discrepancy exists between the 

object size and the radiofrequency wavelength. The presence of B1 field inhomogeneities 

leads to artifacts in an unpredictable manner, which is in part dependent on the patient’s 

body habitus and the size of the organ being imaged. This is of particular concern in fetal 

imaging as the size and body habitus of the pregnant female can adversely affect the image 

quality.(32,33)

Advanced Magnetic Resonance Imaging (MRI) Pulse Sequences: How Can We Exploit 3T?

Advanced MRI techniques and sequences, including magnetic resonance angiography 

(MRA), diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), diffusion tensor 

tractography (DTT), magnetic resonance spectroscopy (MRS), perfusion imaging, functional 

MRI (fMRI), 3-D imaging, and motion correction sequences (e.g. PROPELLER) can be 

applied in both fetal and neonatal MRI to answer specific clinical questions and provide a 

more comprehensive diagnostic evaluation in the appropriate clinical setting.

Magnetic Resonance Angiography (MRA)—Magnetic resonance angiography (MRA) 

can provide non-contrast or contrast enhanced images of the cervical and intracranial 

vasculature. Longer T1 relaxation times, produced at higher magnetic field strengths, result 

in improved background suppression, creating larger signal differences between the blood 

vessels and adjacent tissue in both contrast and non-contrast enhanced time of flight 

acquisitions.(34,37,41,59) In contrast enhanced imaging, the signal difference between the 

intravascular contrast and the adjacent unenhanced tissue is further increased because the 

relaxivity of paramagnetic contrast agents (e.g. gadolinium) is only slightly lower at 3T 

compared to 1.5T.(40,59) The improved contrast resolution can be used to reduce the 

gadolinium dose without significantly degrading diagnostic information.(31,41,56,60) 

Unfortunately, evaluation of intravascular signal can be degraded at 3T in unenhanced MRA 
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due to the effects of increased susceptibility, which are further complicated by the 

accentuation of normal susceptibility and hypointensity in the vasculature related to 

deoxyhemoglobin.(33)

Diffusion Weighted Imaging (DWI), Diffusion Tensor Imaging (DTI) and 
Diffusion Tensor Tractography (DTT)—Increased signal at 3T makes it possible to 

image in a greater number of planes, use thinner slices and implement higher B-values, all of 

which contribute to better diffusion weighted images. B-values, in the setting of diffusion, 

refer to the sensitivity of a sequence to diffusion, and their selection determines the strength 

and duration of the diffusion gradients used for imaging.(68) The minimum detectable 

diffusion is determined by the maximum selectable B-value.(28,34,37,64,69) Increased 

magnetic susceptibility at higher field strengths, especially in echo planar imaging (EPI), 

may produce unwanted artifacts on diffusion weighted images at 3T, which can be partially 

compensated for, but not completely eliminated as previously discussed.(32,34,64) 

Diffusion weighted sequences are also very sensitive to motion, which can make the use of 

diffusion weighted imaging of the fetus and neonate difficult at times.(29,64)

Diffusion Weighted Imaging (DWI): The signal in diffusion weighted imaging (DWI) is 

based on the microscopic movement of water molecules in a tissue and can be used to 

calculate the apparent diffusion coefficient (ADC) of that tissue. The ADC value is a 

representation of the overall magnitude of diffusion within a tissue.(70) DWI is performed 

as a single-shot spin-echo echo-planar pulse sequence using pulsed diffusion gradients with 

variable B-values. The pulsed diffusion gradients provide quantitative information about the 

motion of water and tissue microstructure, making it possible to identify areas of focal injury 

and abnormal brain development.(16) Increased signal at 3T allows the selection of higher 

B-values, thinner slices, and the possibility of anisotropic mapping, which is discussed 

below.(28,34,37)

Diffusion Tensor Imaging (DTI): Diffusion tensor imaging (DTI) provides clinical 

information based on the diffusion properties of a tissue, and provides an effective way of 

characterizing normal and abnormal patterns of white matter development.(71-80) DTI does 

this by emphasizing directional information in the information acquired in DWI/ADC, 

allowing calculation of diffusion anisotropy, fractional anisotropy, and mean diffusivity. 

These calculations can provide insight into pathologic processes and microstructural 

abnormalities during development.(16,70,74-83) For example, diffusion anisotropy can be 

detected before myelination is complete, making it possible to use DTI to detect 

premyelinating elements.(16,72,76,77,84)

The qualitative parameters of mean diffusivity and fractional anisotropy are independent of 

patient head position, making them useful when imaging a fetus in multiple orientations.(32) 

The quantitative parameters obtained with DTI correspond to sequences of myelination in 

the developing brain, making it possible to determine if there is derangement in the normal 

patterns of myelination.(76,77,79,80,82,85-88) Directional information corresponding to 

white matter fiber tract orientation within collimated bundles can be displayed in two or 

three dimensions, illustrating the structural and functional connectivity of the maturing 

brain.(32,89-91) DTI is more sensitive, than DWI, to patient motion, which can be 
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challenging in neonatal and fetal imaging; however, at 3T field strengths shorter scan times 

and wider field coverage with adequate SNR may increase its feasibility.(6,32,73,75)

The need for detailed delineation of neuronal fiber tracts has led to the development of 

multi-band diffusion tensor imaging (MB-DTI), which may have utility in this application. 

Multiband acquisitions use multi-slice single-shot EPI pulses, which increase the number of 

slices obtained during a single acquisition and therefore significantly reduces the TR.(92,93) 

Unfortunately, multiband pulses have the potential to increase the power deposition in the 

patient, relative to the number of slices that are excited during each pulse, and in order to 

comply with specific absorption rate (SAR) limits (discussed below), sequence 

modifications such as increasing the TR or reducing the number of slices must be made.(94)

Diffusion Tensor Tractography: Diffusion tensor tractography (DTT) uses information 

obtained for DTI to map white matter tracts using the knowledge that water movement 

across fibers can be impeded by white matter elements.(95-97) Tractography can be used to 

evaluate selected neural pathways using two different fiber tracking algorithms 

(deterministic and probabilistic), which have advantages and disadvantages depending on 

the clinical situation. Data obtained in tractography produces a specific color and brightness 

for each voxel, which corresponds to the orientation and density of the fibers passing 

through that voxel.(16,91) 3-D representations of the tractography output can be generated, 

providing a global view of the brain’s interconnectivity.(96,97)

Magnetic Resonance Spectroscopy (MRS)—MRS provides a non-invasive way to 

evaluate the biochemistry of the brain (25,29,70,98) by generating a spectrum of metabolite 

peaks with different radiofrequencies resulting from proton (hydrogen) nuclei in different 

chemical environments.(16,99) The generation of an MRS spectrum takes advantage of 

intrinsic differences in chemical shift among the various chemicals in the body/brain.(34,41) 

The area under the curve of each peak is proportional to the number of contributing protons, 

and is increased at higher magnetic field strengths. The peaks of greatest clinical 

significance in MRS include N-acetyl-aspartate (NAA), creatine, choline, myoinositol, 

glutamate, glutamine, lipid and lactate.(16,98-100) Each peak aids in evaluation of a 

particular cell line or metabolic pathway within the brain. For example NAA is considered a 

marker for neurons and axons, choline-containing compounds are a marker for cell 

membranes and myelination, creatine is used as a marker for energy metabolism and lactate 

is used as a marker for anaerobic metabolism during hypoxic-ischemic injury.

(29,70,100-102) At 3T the amount the signal generated by each metabolite is increased, 

making the peaks larger and easier to select out from the background noise.(38,58,103-105) 

Metabolite peaks and the appearance of the spectrum vary with changes in the echo time 

(TE) and consideration must be given to the selection of the TE used in diagnostic 

examinations.

The use of variable TE values can illustrate changes in the MRS output to highlight different 

metabolic derangements. The greatest gain in SNR occurs with a short TE, making detection 

of metabolites with short T2 relaxation times, such as myoinositol, glutamate, glutamine and 

lipids easier.(16,105) Short TE MRS at 3T however, produces overlap between the lipid and 

lactate peaks and causes distortions of the baseline related to local electrical currents in the 
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patient. Intermediate TE values suffer from variable lactate inversion, which can complicate 

evaluation of hypoxic injury. Long TE values essentially eliminate any signal benefit gained 

at 3T and create a smooth baseline, which may obscure small metabolite peaks. As a result 

of the variations in the spectrum at each TE, clinically applicable spectra are usually 

obtained using two different TE values.(32,41,106) For example, short and long TE MRS 

can be used to detect NAA and lactate levels in cases of hypoxic injury.(16)

Increased chemical shift at higher magnetic field strengths can improve MRS by increasing 

metabolite resolution and the size of the individual metabolite peaks. The intrinsic increase 

in SNR at 3T can also decrease the amount of time needed to generate the equivalent MRS 

spectrum.(32,58,105) Long imaging times for each voxel and limitations of voxel size 

relative to the size of the fetal brain currently limit the use of MRS in the fetus; although the 

use of 3T magnets may decrease imaging time enough to make fetal MRS feasible, 

especially during the third trimester when the fetal head is engaged in the maternal pelvis.

(6,107-109) Increased signal and decreased acquisition time at 3T also make MRS more 

feasible in neonates who may not tolerate long scan times.(58) Newer parallel imaging 

techniques such as localized adiabatic selective refocusing (LASER),and other novel 

imaging sequences currently used in research applications hold promise for increasing the 

quality and feasibility of fetal MRS.(110) This is important as multiple investigations have 

demonstrated that MRS can have potentially substantial benefits in brain imaging, especially 

in cases of white matter injury.(22,24,26,111)

Another benefit of performing MRS at 3T is the ability to select smaller voxels resulting in a 

reduced likelihood of contamination from adjacent fat, especially in peripherally located 

lesions.(32,107) Unfortunately, contamination cannot be completely avoided and, in cases 

where misregistration occurs within the sampled voxel, there may be poor inversion of the 

lactate peak, which can degrade analysis and confound clinical diagnosis.(32,106)

In addition to measuring metabolite concentrations, MRS can be used to measure the 

absolute brain temperature using the temperature-dependent water chemical shift and 

comparing it to other metabolites such as NAA, creatine, and choline.(112,113) A study 

performed by Wu et al. in 2014, using MRS measurements of brain temperature in 18 

neonates, demonstrated higher brain temperature and brain-rectal temperature gradients in 

neonates with severe HIE compared to those with moderate HIE both during and after 

therapeutic hypothermia.(114)

Perfusion Imaging, Functional MRI (fMRI) and Susceptibility Weighted 
Imaging (SWI)—Perfusion Imaging and functional MRI (fMRI) provide non-invasive 

methods of evaluating cerebral blood flow and the functional development of the brain. The 

most commonly used methods of measuring brain perfusion in pediatric MRI include 

intravascular contrast and arterial spin labeling (ASL).(63,115-117) Each of these 

techniques utilizes a specific cerebral perfusion state to generate signal, and each best 

highlights a particular perfusion parameter.(16,118-122)

Contrast enhanced perfusion MRI uses paramagnetic intravascular contrast agents to 

generate signal intensity versus time activity curves, which can be used to calculate the 
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relative cerebral blood volume, relative cerebral blood flow and mean transit time.

(16,63,117) ASL provides perfusion information without contrast administration and is 

useful in evaluating cerebral blood flow in neonates.(16,63,119-123) (Fig 3) At higher 

magnetic field strengths, the contrast created using ASL of blood lasts longer, due to the 

longer T1 relaxation times, producing a potential 3-fold increase in SNR.(32,61,119,124) 

The effects of higher magnetic field strength on T2 relaxation, although small, may produce 

additional gains in the SNR in ASL imaging.(119) This is especially useful, in fetal and 

neonatal brain imaging, due to higher blood flow rates, which allow the label to pass further 

into the vascular bed without any loss in signal intensity.(32,119,120)

Functional MRI (fMRI) uses blood oxygenation level-dependent (BOLD) signal, to detect 

regional hemodynamic changes within the brain parenchyma that correlate with response to 

various visual, auditory and sensorimotor stimuli.(29,70,125-128) BOLD fMRI is 

significantly improved at 3T, as a result of the higher susceptibility contrast sensitivity and 

higher SNR, resulting in up to a 40% increase in detected activation on BOLD images 

compared to 1.5T.(34,40,45,129-131) In fMRI of the developing brain, this has been used to 

establish normal and abnormal patterns of brain activation.(132) Unfortunately, BOLD 

images can be degraded by signal loss due to low-frequency fluctuations in brain 

oxygenation.(121,122)

Functional MRI has also been used to evaluate the activity of the brain in its resting state; 

also known as resting state functional MRI (rs-fMRI). Resting state fMRI is well-suited for 

evaluation of neonates as it allows assessment of the brain during sleep.(133-135) Resting 

state fMRI uses functional MRI data collected during rest, analyzes the data by detecting 

low-frequency (< 0.1 Hz) fluctuations in the brain which represent specific spatial 

structures, and produces a representation of the brain’s spontaneous fluctuations in the 

absence of external stimuli.(126,127,133-139) Resting state fMRI has identified many 

distinct brain networks, which are involved in both sensory and cognitive functioning 

(94,126,134,140-142), and multiple studies have demonstrated these networks in both term 

and preterm infants.(133,134,141-145) When rs-FMRI is combined with tractography it can 

provide a non-invasive map of both the functional and structural interconnectivity of the 

brain, or “the human brain connectome.”(88,145-149) The ability to successfully identify 

resting-state networks in healthy infants, provides a comparison for cases of brain injury 

where altered resting-state connectivity may be present.(126)

The quality of both perfusion imaging and fMRI is dependent on the presence of 

susceptibility artifacts and on patient motion.(6,150-153) The increased conspicuity of 

susceptibility artifacts at 3T can be advantageous in both SWI and fMRI. In SWI the 

presence of susceptibility artifacts increases sensitivity for blood products and 

mineralization, which can be used clinically in the detection of non-accidental trauma, birth 

trauma and diffuse axonal injury. In fMRI the increased susceptibility improves sensitivity 

for the presence of deoxyhemoglobin resulting in improved BOLD signal.(32,33,37) 

Unfortunately, not all susceptibility sensitivity is good, and in fetal fMRI, images can be 

degraded by susceptibility produced by the adjacent maternal organs when the fetal head is 

in the pelvis.(6,33,150-153) Functional MRI is also sensitive to patient motion and may 

require the application of complex motion correction algorithms, the use of motion 
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insensitive sequences, or the use of patient sedation. The use of sedation in fetal scanning is 

not commonly employed in the United States, and because it is desirable to minimize 

neonatal exposure to sedation this can provide a significant impediment to high quality 

fMRI acquisition.(6,32,154-158) More recently, a new pipeline has been developed to help 

with correcting resting state BOLD data with respect to motion, bias field and spin history 

correction to improve the recovery of non-corrupted datasets.(159)

Three-Dimensional (3-D) and Volumetric Imaging—Volumetric imaging techniques 

use two-dimensional (2-D) and three-dimensional (3-D) images to quantitatively 

characterize brain development.(70) Dynamic 3-D imaging can be used, in the appropriate 

clinical setting, to obtain sub-second time sequential 3-D images, which is especially useful 

in post-contrast perfusion imaging.(32,160,161) With higher magnetic field strengths and 

the application of parallel imaging techniques, gradient echo T1 and turbo spin-echo T2 

images can be obtained in an isotropic volumetric manner in one plane, and reconstructed in 

any other reformatted plane, allowing faster multi-planar imaging. Volumetric evaluation of 

the brain allows for post-acquisition segmentation, measurement and detailed evaluation of 

subsets of the brain based on differences in signal intensity on multiple sequences.

(16,70,160-163) 3-D and volumetric imaging are sensitive to motion and their use is limited 

in fetal MRI for this reason. Post-processing methods for motion correction have been 

developed and can be applied to fetal data to produce a single geometrically consistent 3-D 

image of the moving fetus (160-162,164,165), making 3-D imaging of the fetus more 

feasible.

Motion Correction Sequences—Patient motion presents imagers with a significant 

challenge, in terms of image quality, especially when imaging during the fetal and neonatal 

period. This has led to the development of motion correction sequences, which compensate 

for rotational and/or translational head motion to produce a smoother final image. Motion 

correction sequences work by correcting for the spatial inconsistencies in position and 

rotation of the head between imaging strips and produce an averaging effect at low spatial 

frequencies resulting in less motion artifact on the final image.(16,37,166,167) Motion 

correction sequences are available on most new MRI systems and can be referred to by 

various names including, PROPELLER (GE) (167-171), BLADE (Siemens) (172-174), 

MULTIVANE (Phillips) (175). Multiple studies have shown that the application of 

corrective sequences can reduce the extent of motion artifact on brain imaging in moving 

patients, improving image quality, increasing lesion conspicuity and improving parenchymal 

contrast (167,168,171-175), even when compared to fast spin-echo sequences.(168,171,173) 

Motion correction techniques have been applied to both conventional and advanced MRI 

sequences such as DWI (170), FLAIR (173,174) and fMRI (169).

Safety Concerns Associated with Imaging the Developing Brain

As the role of MRI has increased in the diagnosis and management of fetal and neonatal 

neurologic conditions, concerns about its safety have become an important consideration. 

Since evaluation of the risks and safety to neonates and the fetus are difficult to obtain 

directly, the safety of imaging these patients has been inferred from a number of studies 

evaluating general MRI safety. According to the June 2014 FDA guidelines, MRI carries a 
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“non-significant risk” in neonates (infants less than 1 month old) at static magnetic field 

strengths below 4 Tesla. This designation is based on over 30 years of use accompanied by 

no reports of deleterious short or long-term effects when MR scanners were operate within 

set regulatory limits.(1) In fetal MRI, current data and research studies have failed to 

demonstrate any reproducible harmful effects on pregnant females at magnetic field 

strengths of 3T or less. Based on this and recent practice parameters it seems reasonable to 

assume that imaging the fetus at 3T field strengths would not pose an increased risk to the 

mother or fetus.(176) The ACR guidelines further reiterate this, stating that the “present data 

have not conclusively documented any deleterious effects of MR imaging exposure of the 

developing fetus. Therefore no special consideration is recommended for the first, versus 

any other, trimester in pregnancy.”(177,178)

Despite the available data supporting the safety of MRI use in both fetal and neonatal 

imaging at 1.5 and 3 Tesla, there are still some safety parameters which should be 

considered when performing MRI exams, including (1) static magnetic field exposure, (2) 

specific absorption rate (SAR), (3) gradient field switching, and (4) sound pressure levels 

(SPL).

Static Magnetic Field Exposure—Static magnetic field exposure refers to the effects of 

the magnetic field on any person placed in close proximity to the MRI magnetic. The 

primary concerns associated with static magnetic fields are two-fold and include, the hazards 

of ferromagnetic objects becoming projectiles and the potential effects of the static magnetic 

field on biological systems. The first issue has been addressed with the implementation of 

careful screening and safety measures in MRI areas, put in place to prevent the accidental 

placement of a ferromagnetic object in areas with a strong static magnetic field.(177-181)

In terms of the effects on biological systems, numerous studies have been performed, none 

of which demonstrate any direct evidence of deleterious effects with short term exposure to 

high static magnetic field strengths; however, extrapolating data from the available animal 

models to establish the true effect on the fetus or neonate is challenging.(33,182-194) 

Despite the lack of data to support potential harm from the static magnetic field strengths 

currently used for clinical imaging, the FDA has set limits on magnetic field exposure of 8T 

for patients greater than 1 month of age and 4T for patients less than one month of age.(1)

Specific Absorption Rate (SAR)—The specific absorption rate (SAR) is a measure of 

the rate of energy deposition within a given mass of tissue (units = watts/kilogram = W/kg).

(32,33,35,182) Deposition of energy created by radiofrequency (RF) pulses is dissipated as 

heat in the surrounding tissue. This poses a safety concern as it can cause serious tissue 

burns and undesirable increases in body temperature in the imaged subject, which might 

produce adverse outcomes in the fetus or neonate.(32,33,177,178,180,181,195,196) 

Regulations, in both Europe and the United States, have been put in place, which define the 

maximum local and global SAR values in various parts of the human body per unit time.

(1,32,182,197) The SAR limits, none of which can be exceeded during any MR 

examination, defined by the FDA in 2014 (1) state that exposure should be:

• Less than 4 W/kg averaged over 15 minutes in the whole body; and
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• Less than 3.2 W/kg average over 10 minutes in the head

As a result of the guidelines, MR scanners used for clinical exams have failsafe mechanisms 

in place to halt scanning when the SAR regulatory limits have been reached that are 

independent of the magnetic field strength used for imaging.(182)

The rate of energy deposition in a mass of tissue depends on the applied RF fields, which 

increase with increasing magnetic field strength. It is important, however, to remember that 

an equivalent quantity of absorbed energy, independent of the magnetic field strength, will 

produce an identical increase in temperature in the imaged subject.(182) The SAR is 

proportional to the square of the static magnetic field strength (B0
2) leading to four times the 

rate of energy deposition at 3T compared to 1.5T.(22,28,32,36,45,53) SAR is also dependent 

on other factors including flip angle and TR (39), which need to be considered when 

utilizing fast contrast enhanced 3-D angiographic sequences and fully rephrase gradient echo 

techniques, which use high flip angles and short TR to yield optimal signal.(31,32,34,53)

Given regulatory limits on SAR and the increased rate of energy deposition at higher 

magnetic field strengths, it is important to consider sequence selection and timing when 

performing examinations at 3 Tesla. SAR is increased to a greater degree in sequences using 

larger flip angles, as discussed above. Increased SAR is also a concern with fast spin-echo 

(FSE) sequences and fluid attenuation inversion recovery (FLAIR) sequences. In FSE 

sequences, SAR is increased due to the use of multiple refocusing pulses, each of which 

deposit energy in the imaged subject. In FLAIR imaging, the amount of radiofrequency 

energy required to generate the signal used in image production is higher than in normal 

spin-echo sequences.(41) SAR is also increased in sequences that utilize short TR gradient 

echo pulses such as true-FISP and FIESTA, due to the rapid sequential application of the RF 

pulses.(32)

Reductions in SAR can be achieved by using special radiofrequency (RF) coil designs such 

as multichannel transmit phased-array coils, reducing the number of slices, increasing the 

repetition time (TR), decreasing the flip angle, using parallel imaging or shortening the echo 

train length (ETL).(31-34,51) It is important to note that the echo train length is increased in 

fast spin-echo (FSE) sequences, such as single-shot fast spin echo (SSFSE), which are the 

workhorse of fetal imaging.(33,198) Reducing the flip-angle can also decrease the SAR, but 

causes alterations in tissue contrast, which has led to the development of special RF pulses 

that use variable flip angles through the sequence (e.g. hyperechoes, TRAPS). The 

application of these specialized sequences can reduce the SAR four-fold but at the expense 

of image contrast and/or SNR.(32,35,199)

Gradient Field Switching—Gradient fields are magnetic fields created by passing 

currents through combinations of three spatially co-registered orthogonal gradient coils 

during imaging to encode spatial position information in the imaged portion of the body. 

Further, inverting gradient fields create useable signals or echoes, the timing of which 

produces the ultimately detected tissue signal at the desired TE. Gradient field switching 

results in a local magnetic field incident on the patient resulting from pulsing the gradient on 

and off during scanning. The rate of magnetic field switching is referred to as the slew rate. 
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The slew rate is dependent upon the selected imaging parameters and the capabilities of the 

gradient equipment available in that MR scanner. While it is not in and of itself field 

strength dependent the more expensive 3T imaging systems are frequently accompanied by 

more capable gradient sub-systems. Gradient field switching poses the potential hazards of 

unwanted neurostimulation by Faraday’s Law as well as the production of acoustic noise 

(which will be discussed in the next section). The main biologic effects we are concerned 

with are peripheral nerve stimulation and the potential for fetal distress during scanning as a 

result of increased noise exposure and neurostimulation.(33,182)

The sequential application of gradient pulses produces changes in the magnetic field 

experienced by the imaged subject during each pulse. According to Faraday’s Law, 

exposure to rapidly changing magnetic field, such as those produced during gradient 

switching in echo-planar imaging (EPI), can result in involuntary peripheral nerve 

stimulation during scanning. In practice, this may result in a mild tingling or tapping 

sensation when gradients are turned on and off.(33,182) Due to the potentially unwanted 

effects of gradient switching, the FDA has created limits on the exposure to changing 

magnetic fields, which are independent of magnetic field strength.(33) The 2014 FDA 

guidelines state that gradient field switching should be limited “any time [the] rate of change 

of gradient fields (dB/dt) [is] sufficient to produce severe discomfort or painful nerve 

stimulation.”(1) As a result, MR scanners have been installed with programming that is able 

to monitor the rate of gradient switching and maintain dB/dt values within acceptable 

ranges.(33,200)

Acoustic Noise and Sound Pressure Levels (SPL)—Acoustic noise is produced by 

gradient field switching when the energy produced by the gradient coil is in the audible 

frequency range. In general, the acoustic noise produced during MR image acquisition is 

increased at higher magnetic field strengths as a result of more expensive and capable 

gradient systems, which are able to achieve higher dB/dt values, longer duty cycles and 

faster slew rates.(34,35,182,201,202) Noise exposure in MRI can exceed levels that cause 

the patient pain. The actual noise level at which pain occurs is patient dependent and occurs 

over a range of values, sometimes as low as 102 to 105 dBA.(203-205) This is especially 

important in high-speed sequences such as echo planar imaging (EPI), where sequential 

gradients are rapidly applied.(202,206,207)

FDA regulations require that noise exposure from MRI (in adults) not exceed peak 

unweighted sound pressure levels of 140 dB (1), and while no similar regulatory guidelines 

exist for neonates, ad hoc limits have been suggested (e.g. neonatal noise exposure limits 

should not exceed 60 dB for inter-institutional transport).(207-209) The FDA also requires 

that the “A-weighted root mean square (rms) sound pressure level [not exceed] 99 dBA with 

hearing protection in place.”(1,177,178) As a result of these limits, and despite the fact that 

there are no specific guidelines about the use and type of hearing protection applied during 

MRI, passive hearing protection is used on all neonates undergoing MRI examination.(210) 

In the case of the fetus, multiple studies have demonstrated that the gravid uterus provides 

an acceptable barrier for sound attenuation, and that sound generated by MRI during in utero 

imaging would not be harmful to the fetal ear.(211-216)
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Fetal Imaging

Introduction

The first fetal brain MRI performed in the early 1980’s demonstrated improved detection 

capabilities compared to prenatal sonography, allowing imagers to see lesions which were 

not apparent on ultrasound.(6,9,10) However, it was not until the 1990’s when single-shot 

rapid acquisitions, which essentially freeze fetal motion, were developed that fetal MRI 

became feasible clinically.(11-15) Increased speed of acquisition and other technical 

improvements have resulted in the practical performance of in vivo exanimation of fetal 

anatomy at both 1.5T and 3T. The unparalleled soft tissue detail and insensitivity to a 

number of technical factors associated with ultrasound (US) have resulted in more frequent 

MRI examinations. As a result, MRI has gained increased recognition as a proven modality 

for evaluating fetal brain anomalies in cases where ultrasound is either not adequate or 

where a high familial risk exists, making fetal brain MRI at 1.5T field strengths part of 

routine clinical practice.(6,47,176,182,198,217-221) MRI has also provided a means by 

which to determine whether the fetal brain is following normal patterns of maturation and 

development.(222-228)

While US remains the primary modality for imaging the fetus, in special and complex cases, 

such as those with equivocal findings or known pathologic abnormalities, MRI has become 

an important addition to complete imaging evaluation.(6,12,14,217-220,229-231) Fetal brain 

MRI improves detection and visualization of potentially life altering abnormalities in cases 

where there are high pre-test risks or when early detection of abnormalities could help in 

timely and informed patient management decisions.(6,33,232) MRI offers superior soft 

tissue contrast, which in addition to advanced techniques, such as DWI, MRS and fMRI, 

improves the diagnostic accuracy and identification of subtle fetal central nervous system 

(CNS) abnormalities.(6,107-109,220,221,227,228,233) The most common indications for 

fetal brain MRI include: ventriculomegaly, anomalies of the corpus callosum, cortical 

malformations, complications of monochorionic twinning, and posterior fossa abnormalities. 

MRI has also been used to image the fetus before and after in utero interventions, for 

parental counseling, delivery planning and postnatal therapy.

(6,11-13,176,198,217-219,230-232,234)

Unlike US, MRI is not limited by factors such as fetal lie, oligohydramnios, overlying 

maternal structures, calvarial development or maternal obesity. MRI also has the capability 

of imaging the fetus in multiple planes, which provides a better morphologic assessment of 

the intracranial contents. MRI also acquires images using a larger field of view (FOV), 

which can include the placenta.(6,12,47,217,230-232,235,236) Large field of view, multi-

planar evaluation of the fetus can be instrumental in planning and implementation of 

multidisciplinary care when approaching complex cases, which may require detailed 

delivery planning, fetal or postnatal surgical planning, and family counseling about current 

pregnancy risk and the risk of recurrence in future pregnancies.(6,229,230) Fetal MRI is 

limited in some cases when patients are extremely obese and exceed the MRI table weights 

or are too large to fit within the bore of a traditional MRI scanner (35), although the 

introduction of large bore MR scanners has helped to accommodate larger maternal size/
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girths. The development of fast acquisition sequences, such as single-shot fast spin-echo 

(SSFSE), half-Fourier acquisitions, and single-shot turbo spin echo have made imaging the 

fetus in multiple planes clinically feasible.(6,12,33) Additionally sequences such as fast 

multi-planar spoiled gradient-recalled sequences, have been used to generate T1-weighted 

images that are able to detect fat, hemorrhage and calcifications.(6)

The use of advanced MRI techniques, such as MRS, diffusion imaging, fMRI and parallel 

imaging have improved the diagnostic accuracy and evaluation of the fetal brain.

(6,77,107-109,219-221,228,233) MRS, for example, has been used in fetal imaging to detect 

in utero insults to the brain resulting in earlier diagnosis and better estimates of long-term 

prognosis for affected infants. MRS has also been used to examine the normal physiologic 

changes that occur during brain development, providing a basis of comparison in abnormal 

studies in both the fetus and neonate.(78,80,85,86,100,103,107-109,228,233) DTI has been 

successful applied in the fetal brain to calculate normative mean diffusivity values in the 

second and third trimesters, which can be used to evaluate cerebral maturation and provide a 

quantitative marker of in utero brain development.(6,29,222,223,225,226) Functional MRI 

has been performed by multiple groups during the third trimester to assess the response to 

auditory and visual stimuli placed over the maternal abdomen. Unfortunately, many of the 

studies were limited by fetal motion and susceptibility artifacts produced by the adjacent 

maternal organs.(150-152,237-239) Additionally, in two studies, low magnetic field 

strengths (0.5T) were used, resulting in a low SNR, decreased BOLD signal and low-

resolution anatomic images for fMRI localization.(150,238) Thomason et al. used BOLD 

fMRI techniques to demonstrate cross-hemispheric functional connectivity in the fetus 

between the 24th and 39th weeks of gestation, confirming callosal development and inter-

hemispheric communication in the developing brain.(240)

In the following sections, we will discuss some of the specifics related to fetal imaging at 3T 

versus 1.5T field strengths. We will discuss the advantages and challenges as they related to 

fetal imaging specifically, including the timing of fetal MRI scanning and how to optimize 

diagnostic yield. Finally, we will address safety issues related to MRI scanning and how 

they pertain to imaging of the fetus.

Specifics Related to Fetal Imaging at 1.5T versus 3T

Fetal imaging at higher magnetic field strengths can provide us with improved tissue 

contrast and better anatomical delineation of the fetus. Unfortunately, increased magnetic 

field strength does not simply equate to better images, and a number of factors need to be 

considered when transitioning to a higher magnetic field strength. Improved image quality 

must be balanced with a need for fast imaging, due to the rapidly moving fetus, and with 

safety concerns related to higher energy deposition and noise production at 3T. As a result 

single-shot fast spin-echo (SSFSE) sequences have become the workhorse of fetal MRI.(33)

One major hurdle encountered with 3T imaging is the need for protocol modification 

resulting from changes in factors such as T1, T2 and T2*. Numerous modifications exist to 

overcome the associated changes in tissue contrast and increased conspicuity of artifacts at 

higher magnetic field strengths. One of the most significant modifications, particularly in 

fetal imaging, is increasing the TR to improve T1 tissue contrast at the expense of longer 
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scan times and possible motion artifact from the moving fetus. As a result of competing 

interests, a balance must be struck between optimal imaging time and optimal tissue 

contrast. While T2 relaxation is not significantly affected by the increase in magnetic field 

strength, the T2* effects become significantly more pronounced at 3T leading to greater 

susceptibility artifact production, which can be used when performing SWI, increasing the 

sensitivity for blood products and calcifications within the fetal brain.(32,33)

Phased-array coils and surface coils specifically designed for use at 3T can be created with 

more elements than those used at 1.5T.(33,47,48) The use of these specifically designed 

coils improves the SNR and can compensate for some of the losses resulting from decreased 

T1 relaxation.(33,47) The use of parallel imaging with phased-array coils at 3T magnetic 

field strengths allows faster acquisition times as a result of faster k-space filling.(31,46) 

Phased-array coils, with parallel imaging capabilities, can be applied in fetal imaging to 

acquire high quality images in the setting of poor maternal breath holding and a constantly 

moving fetus.(33,47)

In many institutions the increased radiofrequency energy deposition/SAR at 3T has limited 

its use in fetal imaging (35), however, a study performed by Krishnamurthy et al. in 2014 

directly comparing 1.5T examinations to 3.0T examinations in the same patients, showed 

that SAR limits were not violated during fetal MRI and that 3T imaging of the fetal brain 

could be performed safely while reaping the benefits of improved tissue contrast and lesions 

conspicuity compared to 1.5T examinations.(39) Despite its apparent safety, sequence 

modification is needed when transition from 1.5T to 3T in order to comply with FDA 

guidelines regarding specific absorption rates (SAR) and energy deposition.(182) Decreased 

flip angles (at the expense of the very SNR advantage that 3T holds over 1.5T) and 

optimization of other scan parameters need to be considered to maintain SAR below the 

regulatory limits, while maintaining diagnostic image quality.(32,53)

Advantages of Fetal MRI Scanning at 3T

There are numerous advantages to fetal MRI scanning, and although US remains the 

primary imaging modality in evaluation of the fetus, MRI has proven itself to be an 

important adjunct in complex cases and cases where there is a high index of suspicion for 

potential anomalies. MRI at higher magnetic field strengths, especially for evaluation of the 

brain, also has the advantage of improved SNR, better anatomic delineation and increased 

beneficial artifact production, which can be used to highlight various pathologic and non-

pathologic processes.

The improved signal strength at 3T, results in an increased SNR of approximately 1.7 to 1.8 

in most cases (31-33,39,42), however, new hardware improvements may result in SNR 

increases that approach 2.(43,44) Despite a less than two-fold increase, the increased signal 

we do gain can be used to improve image quality or can be traded for increased spatial 

and/or temporal resolution. Increased signal allows more streamlined implementation of 

parallel imaging with multichannel coils which decreases the acquisition time for single-shot 

sequences, reduces echo time (TE) in long echo train sequences, reduces susceptibility and 

decreases radiofrequency heating by minimizing the number of pulses required to fill k-

space and generate an image (33) leading to more efficient imaging evaluation of the fetus.
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Compared to US, the mainstay of fetal imaging, there is improved anatomic delineation even 

with MRI performed at low magnetic field strengths. The anatomic detail provided by MRI 

is one of the primary reasons it has become an important adjunct to US in complex cases. 

Higher magnetic field strengths, such as 3T, further improve anatomic delineation due to 

increases in the amount of available signal. The increased spatial resolution results in an 

ability to highlight small differences in adjacent tissues when the imaging protocols are 

optimized, providing more detailed anatomic information and improved visualization of 

existing abnormalities in the fetus. The improved diagnostic quality of the images produced 

at 3T allows better informed decisions about intervention, management and outcomes in 

fetal medicine.(6,33)

Challenges of Fetal MRI Scanning at 3T

Artifacts—Artifacts including magnetic field inhomogeneity, standing wave artifacts, 

susceptibility artifacts, and chemical shift artifacts can degrade fetal images, and each will 

be discussed below.

Magnetic Field Inhomogeneity and Standing Wave Artifacts: Magnetic field 

inhomogeneity (B1) in fetal imaging can lead to standing wave or dielectric resonance 

artifacts that result in degradation of echoplanar, spin-echo, steady state free precession 

(SSFP) and single-shot fast spin-echo sequences (SSFSE), the latter of which is the mainstay 

in fetal imaging.(32,33,37) (Fig 1) Higher magnetic field strength results in increased 

frequency and decreased wavelength of the magnetic field radiofrequency. The 

radiofrequency wavelength in amniotic fluid may approximates the field of view (FOV), 

especially at 3T where the wavelength is decreased, producing an interference pattern that 

results in heterogeneous signal and areas of hypointensity or blackout mixed with areas of 

brightening. This artifact is more apparent when the discrepancy between the FOV and 

wavelength increases, and results in more pronounced artifactual bands in obese and 

pregnant patients.(31,33,35,42,53)

In the maternal abdomen, standing wave artifacts result from both the increased abdominal 

circumference and the presence of amniotic fluid, resulting in areas of blackout near the 

center of the field of view, which is unfortunately where the fetus is positioned. To reduce 

the appearance of standing wave artifacts, dielectric pads or radiofrequency cushions can be 

used to alter the magnetic field inhomogeneities by changing the geometry of the imaged 

subject.(31-35,65,66) The use of dielectric pads, which are placed on the anterior abdominal 

wall of the pregnant patient, can be uncomfortable, especially in the case of gel pads that 

incorporate gadolinium or manganese-based mediums. This has led to the development of 

lighter saline filled pads.(33,34,42,66) Other methods of decreasing radiofrequency 

inhomogeneity include multichannel transmission body coils and active RF shimming 

combined with parallel imaging, however, these methods are not always available on 

commercial MR scanners (35,48,52,241,242) and will not be discussed in any further detail 

in this review.

The effects of field inhomogeneity in steady state free precession (SSFP) sequences result in 

off-resonance effects that can potentially exacerbate the appearance of banding artifacts, 
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alternating dark and light bands, especially at the edge of the field of view. (31,33) To 

compensate for this increased artifact, the orientation of the scanning field of view or 

frequency encoding gradient can be changed, or modifications can be made to the applied 

RF frequency or bandwidth selection to displace the artifact away from the area of interest, 

while not eliminating the artifact entirely.(33)

Magnetic Susceptibility Artifacts: Magnetic susceptibility artifacts are increased at higher 

magnetic fields strengths, and are therefore of concern when transitioning to 3T imaging.

(32,33) Magnetic susceptibility occurs, for example, at the interface between the uterus and 

adjacent gas-filled colon, and is of particular concern, in the vertex-positioned fetus, where 

it can degrade brain imaging. The presence of susceptibility artifacts can be minimized by 

changing the readout direction of the acquisition to alter the location of the artifact away 

from the primary FOV. It can also be decreased by implementing parallel imaging 

techniques and using shorter echo times (TE). In brain imaging, in particular, the use of 

shorter TE at higher field strengths is often necessary in order to correct for geometric 

distortion of the head and accentuation of the intracranial vasculature on echo planar images.

(33) Susceptibility induced signal loss from maternal organs can also degrade fMRI 

acquisitions, especially late in pregnancy when the fetal head is engaged in the pelvis.

(6,150-153)

Chemical Shift Artifacts: The magnitude of the chemical shift artifact is linearly more 

prominent at 3T than it is at 1.5T. Fortunately, the effects of chemical shift are not a 

significant concern in fetal imaging; due to the fact that the two sources of fetal fat 

(subcutaneous and intra-abdominal) are not present until late in pregnancy and do not 

appreciably contribute to artifact formation during fetal imaging.(33)

Circulating Electrical Current Field Created by Amniotic Fluid—Circulating 

electrical currents are created in amniotic fluid secondary to rapidly changing magnetic 

fields. The circulating current in the amniotic fluids acts like an electromagnet, which 

opposes the fluctuating magnetic field and leads to a reduction in the amplitude and 

dissipation of the radiofrequency field. This effect is also known as radiofrequency shielding 

artifact.(31,33,35) The production of radiofrequency shielding artifact results in hypointense 

areas in regions of radiofrequency inhomogeneity.(31) In fetal imaging the combination of 

radiofrequency shielding artifacts and an enlarged abdomen is associated with magnetic 

field inhomogeneity and standing wave artifacts, which produce areas of blackout in the 

center of the field of view where the fetus is located.(33) As described above, these tend to 

be more pronounced at 3T than they are at 1.5T due to the shorter RF wavelengths inherent 

to 3T MRI.

Fetal Motion—Motion from both fetal and maternal sources can produce artifacts, which 

confounds already difficult to interpret images and is exacerbated at 3T field strengths. (Fig 

1) Fast scanning sequences, such as fast spin-echo and turbo spin-echo, are limited and must 

be optimized to decrease scanning time and motion artifact, while preserving T1 and T2 

signal differences in a given acquisition.(217,232) The use of a surface phased-array coil 

and parallel imaging to decrease acquisition time, by filling k-space faster, can increase 
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image resolution and decrease motion artifact, with the added bonus of a lower specific 

absorption rate (SAR).(6,12,15,33) Parallel imaging is more practical at higher magnetic 

field strengths, as a result of the increased signal, which compensates for the inherent 

decrease in SNR when using parallel imaging.(33) Fetal motion can make it difficult to 

apply advanced sequences such as DTI and MRS at 1.5T, however, increased speed of 

acquisition at 3T may make these sequences more feasible.(6,38) Functional MRI is also 

sensitive to motion artifact, and is usually performed late in pregnancy when the fetal head 

is engaged in the pelvis, however, if earlier evaluation is desired, the presence of significant 

motion may require the application of complex correction algorithms in order to produce 

diagnostically acceptable image output.(150-153,238) Maternal comfort measures, such as 

positioning on the left side, as well as keeping patients NPO prior to examinations can be 

used to decrease fetal and maternal motion during exams.(11,12)

Other—Additional factors that present unique challenges in fetal imaging include the small 

size of the structures being imaged and the distance between the receiver coil and the fetus. 

While the development of new and better coils may partially mitigate these factors, their 

presence makes imaging prior to 22 weeks suboptimal.(6,15)

Optimal Timing of Fetal MRI

As important as all the technical factors associated with the MR scanner itself are, the 

selection of optimal imaging time is also important and depends on the clinical question 

being answered.(217,232) Prior to 16-18 weeks of life, the value of fetal MRI is limited due 

to the small size of the fetus, increased fetal motion and the fact that some anomalies, such 

as cortical dysplasia, have not developed yet.(14,232) Between 18-22 weeks of life, the use 

of MRI can be helpful in further evaluating or confirming findings identified on prenatal US, 

which may impact pregnancy and delivery planning.(232) Imaging at this point in gestation 

can help decrease fetal motion, especially when the fetal head is engaged in the pelvis, 

making it easier to obtain true midline sagittal images of the brain for evaluation of the 

posterior fossa and corpus callosum.(6) MRI is further improved in the third trimester, and 

examination during this time frame is optimal for assessment of cortical anomalies, because 

of improved spatial resolution and decreased fetal motion.(232) Unfortunately, studies this 

late in pregnancy carry the risk of identifying anomalies too late for optimal intervention, 

and in cases where the fetus is at high risk for abnormalities or in cases requiring complex 

delivery planning, such as neck masses, MR studies should be performed during the second 

trimester with potential follow-up in the third trimester.(229,232)

Safety Issues

Safety is always a concern when we implement diagnostic testing, even when those tests are 

non-invasive. For every diagnostic test, the benefit of performing the examination must 

outweigh the potential risks to the patient, whether or not adverse effects have been 

identified.(180,181,243) While no current evidence exists to show that fetal MRI is harmful 

to either the mother or fetus, there is a lack of consensus as to whether any true risk exists. 

Current evidence is limited and inconclusive due to small sample size, data variability and 

potential confounders, such as a lack of studies evaluating field strengths above 1.5 Tesla. 

To that effect, there are no long-term studies available regarding 3T magnetic field strengths 
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and the long-term safety effects related to RF field exposure and loud acoustic 

environments, both of which are still being evaluated.

(177,178,193,197,212,214,232,244-246) Based on the currently available data, MRI during 

the second and third trimester appears to pose minimal risk to the fetus (12), although 

concern still exists about potential auditory safety in late trimester imaging at 3T (relative to 

1.5T) and further evaluation is this area is needed.

Currently the FDA has no specific safety guidelines related to fetal MRI at any magnetic 

field strength as a result of the limited data availability and need for larger sample sizes even 

at 1.5T field strengths. As a result of this lack of data at 1.5T, there has been a hesitance to 

shift the performance of fetal MRI at 3T.(182) However, due to the unknown effects of 

higher magnetic field strengths and potentially prolonged imaging times it is generally 

recommended that MRI be performed after 18 weeks.(232) The current FDA 

recommendation, as referenced in MRI in Practice by Westbrook, et al., states that “if non-

ionizing imaging is suboptimal, or if the information to be gained by MR would have 

required more invasive testing, MRI is acceptable” and goes on to explain that “in light of 

the high risk potential for pregnant patients in general, many facilities prefer to delay any 

examination of pregnant patients until after the first trimester.”(247) Guidelines from the 

FDA also indicate that the safety of MRI with respect to the fetuses and embryos “has not 

been completely established”.(248) The American College of Radiology (ACR) guidelines 

state that “pregnant patient can be accepted to undergo MR scan at any stage of pregnancy 

if, in the determination of a level 2 MR personnel-designated attending radiologist, the risk-

benefit ratio to the patient warrants that the study be performed” and requires documentation 

that the “study cannot be acquired via nonionizing means (e.g. ultrasonography),” “the data 

are need to potentially affect the care of the patient or fetus during the pregnancy,” and “the 

referring physician does not feel it is prudent to wait until the patient is no longer pregnant 

to obtain these data.”(177,178) The 2004 International Non-Ionizing Radiation Protection 

(ICNIRP) guidelines recommend MR procedures in pregnant patients should only be 

performed “after critical risk/benefit analysis, in particular in the first trimester, to 

investigate important clinical problems or to manage potential complications for the patient 

or fetus.”(180,181)

Safety issues directly related to imaging the fetus at any magnetic field strength include 

possible teratogenic effects and the use of contrast agents. Also, as we increase the magnetic 

field strength from 1.5T to 3T, we must consider the effects of static magnetic field 

exposure, radiofrequency (RF) power deposition, specific absorption rate (SAR), gradient 

field switching, and acoustic noise/sound pressure levels.(1,33,182,197)

Teratogenic Effects—Teratogenic effects of MRI are of greatest concern when 

examinations are performed early in pregnancy, especially during the first trimester.(12) 

These effects are related to heat generated by transmitted RF power, as well as direct non-

thermal interactions with the electromagnetic field. The teratogenic effects of heating have 

not been directly studied in humans; however, animal studies have shown that such effects 

do exist. Unfortunately, due to the study design in animal models, it is difficult to 

extrapolate reliable data about the effects on humans.(192,193,246,249-253) The effects of 

SAR and energy deposition on the fetus are also not well established and require further 
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study.(196,254,255) Kanal et al (256) evaluated 280 pregnant MR workers and 

demonstrated no statistically significant negative effects on the fetus from work-related 

exposure to the static magnetic fields (up to 1.5T) used for diagnostic MRI.

Contrast Agents—The use of gadolinium has not been adequately studied in pregnant 

human subjects and is not used during pregnancy unless absolutely clinically necessary, 

especially during organogenesis.(232) The main concern with gadolinium is its ability to 

cross the placenta and circulate for long periods of time in the amniotic fluid, prolonging the 

exposure time for the fetus, and increasing the potential for toxicity related to disassociation 

of the gadolinium from its chelate.(12,176-178,257,258) At doses several times higher than 

those used for human diagnostic MRI examinations, and in cases of repeated dosing, animal 

studies have demonstrated some teratogenic effects, including growth retardation, visual 

problems and structural anomalies.(257,259) However, to date there are no animal models 

demonstrating carcinogenic or mutagenic effects related to gadolinium use, and of the few 

clinical studies evaluating contrast administration in humans, all have failed to demonstrate 

adverse effects to the fetus or neonate, even when contrast was administered during the first 

trimester.(232,260-264)

The ACR-SPR guidelines recommend against the routine administration of gadolinium to 

pregnant patients, and at this time gadolinium is a class C drug, indicating that safety in 

humans has not be proven.(176) The ACR also states that “MR contrast agents should not be 

routinely provided to pregnant patients.”(177,178) The 2004 ICNIRP guidelines state that 

contrast agents “should only be used during pregnancy if the potential benefit justifies the 

risk to the fetus,” which is based on data demonstrating that administration of large doses of 

gadolinium-based contrasts agents have been shown to cause numerous adverse effects 

including “post-implantation fetal loss, retarded development, increased locomotive activity 

and skeletal and visceral abnormalities” in animal models.(180,181)

Safety Considerations Related to Higher Static Magnetic Field Strength

Static Magnetic Field Exposure: Static field exposure risks are two-fold, including the risk 

of ferromagnetic objects becoming projectiles and the potential negative effects on 

biological systems that are exposed to strong magnetic fields. Numerous studies have 

evaluated these effects on growth and development in biological systems, and while a small 

number of reports suggest potential harm, there are currently no long-term harmful effects 

firmly established as scientific fact. (179,182-194,246,249-253,265-274) Harmful effects 

have not, to date, been demonstrated at the magnetic field strengths used for diagnostic 

imaging and in cases where the collected data was obtained at higher field strengths (e.g. 

16T), it is difficult to extrapolate the possible effects on the human fetus.

(33,186,193,246,269-274) Myers et al. studied 74 women who underwent five serial MRI 

scans at 0.5T between 20 weeks and 40 weeks gestation and demonstrated that MRI did not 

significantly affect intrauterine fetal growth when compared to matched controls.(244) 

Additional follow-up studies evaluating the development of children exposed to MRI during 

pregnancy have failed to demonstrate any significant long-term developmental deficits 

related to their exposure.(214,245)

Tocchio et al. Page 21

Semin Perinatol. Author manuscript; available in PMC 2016 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Radiofrequency (RF) Power Deposition and Specific Absorption Rate (SAR): 
Radiofrequency power deposition can create temperature changes in the imaged subject, 

which may produce undesired outcomes in the fetus.(195) Radiofrequency field 

inhomogeneity and dielectric/standing wave effects may complicate the effects of heating by 

creating focal hot spots where the SAR is higher, and these focal hotspots can be projected 

around or within the fetus producing localized unwanted temperature changes.(31,33,35) 

Because of this and the increased field inhomogeneity at 3 Tesla, the SAR needs to be more 

closely monitored during 3T examinations.(232) Despite the field inhomogeneities and focal 

hotspot creation at 3T, the current literature, which was reliant primarily on electromagnetic 

simulations, showed no significant safety concerns for 3T compared to 1.5T in fetal imaging 

as long as the scanner was operated in the normal-level SAR mode.(182)

The theoretical effects of RF energy deposition and tissue heating in the fetus have relied on 

data extrapolation from animal models, mathematical models, phantom simulations and 

electromagnetic simulations of the fields created by RF excitation.

(177,178,182,196,254,275-283) At 3T the effects of RF induced heating are increased, 

especially in pregnant patients during the second and third trimester, when the volume of 

conductive amniotic fluid is larger and the abdominal circumference has increased.(182) In 

2006, Hand et al. used a simplified model of the pregnant woman to study the effects on the 

fetus related to SAR, and demonstrated that the maximum local SAR is always located in 

the mother and not directly in the fetus, and that fetal safety is not compromised as long as 

the established SAR limits are not exceeded.(280) A follow-up study performed by the same 

group in 2010, using an enhanced model of the gravid female, demonstrated that if scan 

parameters were compliant with the International Electrochemical Commission (IEC) 

normal-level SAR mode conditions, the temperature increase in the mother did not exceed 

the IEC limit of 0.5°C and the temperature of the fetus remained below 38°C.(254) 

Numerous additional studies have been performed, further supporting that there is no reason 

not to perform fetal MR on a 3T system, although caution is suggested when performing 

scans without using normal-level SAR mode, as the maximum local SAR value can be 

violated and may fall in the body of the fetus.(177,178,182,281-283)

Despite the lack of evidence supporting any actual harm to the fetus, there is continued 

concern about the potentially unknown risks of specific absorption rate and radiofrequency 

energy deposition. As a result of these continued concerns, the FDA has imposed limits (1) 

for RF exposure of 4 W/kg for maternal whole body exposure, independent of the magnetic 

field strength, and scanner failsafe mechanisms have been put in place to ensure these 

exposure levels are not exceeded. The ICNIRP 2004 guidelines state that the body 

temperature of the pregnant patient should not rise more than 0.5°C and the temperature of 

the fetus should not exceed 38°C.(180,181) Victoria et al. demonstrated that at both 1.5T 

and 3T field strengths, using the typical fetal MR pulse sequences (T1, EPI, SSFSE, SSFP), 

that the SAR was kept well below the whole-body exposure limit of 4 W/kg.(33) Also, 

modeling by Hand et al., showed that care must be taken to limit the amount of time the 

fetus is imaged, because the maximum temperature predicted in the fetus can exceed 38°C 

following continuous exposures lasting longer than 7.5 minutes.(254) Hand et al. (280) 

demonstrated that the maximum local SAR occurs within the mother, and the maximum 
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local SAR experienced by fetus is approximately 40-70% of the maximum local SAR 

experienced by the mother, and based on these observations, suggested that when safety 

guidelines related to local, rather than whole body, SAR limits are adhered to that fetal SAR 

exposure would remain within regulatory limits. Kikuchi et al. (282) showed that if the 

scanner calculated maternal whole-body SAR was less than 2 W/kg, that it would take 

approximately 47 minutes to increase the fetal body temperature 0.5°C and exceed the safety 

recommendations for acceptable temperature change. The amount of safe scanning time 

decreased significantly when the whole-body averaged SAR was increased to 4 W/kg. These 

findings suggest that care should be taken to monitor both the local and whole-body SAR in 

pregnant patients and suggest that if careful monitoring is performed scanning of the fetus 

can be performed safely at both 1.5T and 3T.

Gradient Field Switching: Gradient fields are used in MRI to encode spatial information 

during image generation. The major safety concerns associated with gradient field switching 

are the potential for peripheral nerve stimulation and fetal distress during scanning as a 

result of increased noise exposure and neurostimulation (sound production is also a concern, 

and will be discussed on the next section).(182) A study performed by Rodegerdts et al., 

showed that there were no effects on cell proliferation when fetal human fibroblasts were 

exposed to varying gradient fields, even in cases of prolonged exposure of up to 24 hours, 

further suggesting a lack of teratogenicity related to magnetic field exposure and gradient 

field switching.(284) There is also little support in the current literature to suggest that 

peripheral nerve stimulation poses an increased risk to the fetus when transitioning from 

1.5T to 3T. The effects of peripheral nerve stimulation, independent of the magnetic field 

strength, have a smaller effect on the region of the image towards the geometric centers of 

the gradient fields used, which is where the fetus is located.(33,182)

Acoustic Noise and Sound Pressure Level (SPL): Concern has been raised related to the 

potential for acoustic damage to the fetal ear as a result of MRI scanning. Gradient field 

switching produces acoustic noise, manifested as a loud tapping or buzzing noise when coils 

are exposed to rapidly changing gradients, which may be detrimental to fetal auditory 

development.(182,232,246) Some studies report evidence of high frequency hearing loss, 

shortened gestation and low birth weight in cases where the fetus was exposed to excessive 

noise in utero; however the noise in these cases was a result of chronic maternal exposure to 

loud noise, and did not reflect the acute noise levels experienced during fetal MRI 

examinations.(285,286)

A 1994 Study performed by Baker et al. followed 20 children who had undergone in utero 

MRI evaluation, with echo-planar imaging, and concluded that there was no demonstrable 

increase in disease, disability or hearing loss in the studied children.(212) A 1995 study 

performed by Glover et al. suggested that attenuation of the sound by the gravid uterus was 

sufficient to prevent harmful effects on the fetal ear.(211) Additional studies performed by 

Kok et al. and Reeves et al. also support these findings, reinforcing that there is no 

significant increased risk of hearing loss secondary to fetal acoustic noise exposure from 

MRI.(213,214) Of note, all of the above referenced studies were performed at 1.5T and there 

are currently no similar outcome studies performed following 3T exposure.(182)
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Despite the lack of concrete data supporting a true risk of acoustic damage to the fetus, some 

safety measures have been put in place to decrease sound further than the natural barrier of 

the uterus, amniotic fluid and overlying soft tissues. Acoustic foam, placed on the scanner 

table, can be used to further decrease sound transmission to the fetus. Engaging vendors, to 

determine the peak and root mean square sound pressure levels for various sequences used 

in fetal imaging, can also reduce the risk of noise exposure to the fetus. Precautions such as 

acoustic foam should be applied at both 1.5T and 3T field strengths to insure adequate 

protection independent of the imaging parameters selected.(182) Recently, Siemens and GE 

introduced new advanced noise reduction technology referred to as “Quiet Suite” (Siemens) 

and “Silent Scan” (GE), which addresses fast gradient switches and can provide acoustic 

noise reduction during MRI scanning.(287,288)

Neonatal Imaging

Introduction

Cranial ultrasound has been used to image the neonatal brain since the late 1970’s and 

remains the most commonly used imaging modality in the evaluation of the neonatal brain, 

as a result of its versatility, portability and safety.(2,3,7,8,258,289-295) Despite the wide 

availability of ultrasound, and in much the same way that fetal MRI has become a routine 

part of clinical practice, post-natal MRI, in both term and pre-term neonates has become 

integral in the management of the sickest and most vulnerable newborns, although cranial 

ultrasound is still regularly used in clinical practice.(7,258) Unlike fetal MRI, which is still 

primarily performed at 1.5T field strengths, neonatal MRI has gained wide acceptance at 3T, 

where phased-array coils and parallel imaging have improved image quality and decreased 

examination times.(52,182) MRI provides valuable information about brain injury during 

the neonatal period through early detection and evaluation of metabolic and physiological 

derangements, in addition to quantitative assessment of the injured brain parenchyma. MRI 

evaluation of the neonate can provide important information about prognosis and 

neurodevelopmental outcomes, which combined with the use of advanced imaging 

sequences allows for more targeted examinations that directly assess clinical concerns and 

patient risk factors.(2,4,5,16,27,99,295-300). Myelination and cortical in-folding occur in 

predictable patterns, which can be can be used as markers of cerebral maturation and are 

well assessed with MRI.(2,82)

Advanced sequences, such as MRS, DWI, DTI and fMRI, can improve diagnostic 

assessment and supplement the information obtained in standard imaging sequences. MRS 

improves assessment of brain maturation and increases sensitivity for detecting brain injury 

from hypoxic, metabolic and neurodegenerative conditions.

(24,26,32,85-87,99,101-103,111,300-311) Vigneron et al. demonstrated the benefit of multi-

voxel MRS in assessing metabolic differences between anatomic regions of the brain in 

preterm infants.(312) Diffusion weighted imaging (DWI) and diffusion tensor imaging 

(DTI) can be used to better characterize brain injury from hypoxic insults.

(2,5,24,32,76,87,99,298,300,311,313-316) For example, DWI has been successful used in 

the assessment of multiple pathologic processes including, but not limited to, hypoxic-

ischemic encephalopathy (HIE), stroke, traumatic brain injury, diffuse excessive high signal 
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intensity (DEHSI) of the white matter, and metabolic disorders 

(32,70,99,311,313-315,317-320), although some reports suggest that the extent of injury 

may be underestimated on diffusion images alone.(311,313) In the case of isolated DEHSI, 

multiple studies have shown that in the absence of other lesions, isolated DEHSI does not 

correlate with neurodevelopmental disability.(70,319,320) Finally, functional MRI has been 

used to evaluate patterns of normal and abnormal functional activation in the brain.(321)

Exploiting alterations in T1 and T2 weighting, combined with MRS and DWI, can better 

define whether perinatal white matter injury is focal or diffuse, which can have a profound 

impact on clinical outcomes.(4,18,24,76,99,294,300,314,317,318,322-326) Optimal timing 

of examinations is an important consideration when performing and ordering brain MRI in 

preterm infants. For example, early MRI allows timely counseling, implementation of 

rehabilitation strategies and evaluation of early biomarkers for brain injury, while scanning 

at term equivalent age tends to predict long term prognosis more accurately.(4,327,328) 

DWI is especially sensitive to abnormalities during the acute phase of a hypoxic insult, such 

as HIE, which makes prompt image acquisition in suspected cases of HIE imperative to 

achieving the best diagnosis.(2,16,316)

The early detection of brain injury in premature infants is important as many of the infants 

who survive early life experience some degree of neurodevelopmental disability. Preterm 

infants are at increased risk for germinal matrix hemorrhage, interventricular hemorrhage, 

parenchymal infarction, periventricular leukomalacia (PVL) and diffuse white matter injury 

which increases their risk for motor, cognitive and other neurological impairments.

(7,8,326,329) This is of particular concern since the number of preterm births has increased 

and the survival of very low birth weight infants has improved, without a concomitant 

improvement in their associated neurodevelopmental outcomes, resulting in an increased 

number of children with long term neurological deficits such as cerebral palsy, cognitive 

deficits and sensory impairment, all of which are much less commonly seen in term infants.

(2,7,8,4,297,325,329-341) In 2001, Roelants-van Rijn et al. showed that early and late MRI 

examinations were helpful at predicting neurologic outcomes in cases where ultrasound was 

abnormal, however, their utility was decreased in cases with serially normal ultrasound.(8) 

In 2004, Mirmiran et al. showed that MRI was superior to ultrasound as a predictor of poor 

outcomes, such as cerebral palsy, in preterm and near term infants, but that both imaging 

modalities, when positive, had a high specificity for adverse outcomes.(342) In 2006, 

Woodward et al. studied 167 preterm infants, and showed that abnormal findings on MRI at 

term equivalent in these patients was a strong predictor of poor neurodevelopmental 

outcomes and suggested that MRI performed at term equivalent age could be used in risk 

stratification of these infants.(343) On the other hand, a normal MRI examination carries 

with it a high negative predictive value for poor outcomes.(70)

Indications for MRI in neonates include prematurity (gestational age less than 30 weeks), 

hypoxic ischemic encephalopathy or neurologic signs of encephalopathy, ultrasound 

demonstration of significant brain injury or abnormality, traumatic delivery, suspicion of 

posterior fossa abnormality or cerebral convexity abnormality, severe and/or symptomatic 

hypoglycemia, suspected metabolic disease, suspicion of meningitis, encephalitis or brain 

abscess, congenital malformations with possible brain involvement and equivocal findings 
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on cranial ultrasound.(2,3,344,345) While there are many clinical indications for the use of 

MRI in neonates, the medical risks and logistics associated with transporting sick neonates 

to the radiology department has led to the development of dedicated NICU magnets and 

MRI conditional neonatal incubators.(17,18,20-23,49,321,258,289,346,347)

In the following sections we will discuss specifics related to imaging neonates at 3T field 

strengths vs. 1.5T. We will discuss special monitoring and imaging equipment, such as 

neonatal coils, MRI conditional incubators and small footprint NICU MRI scanners that are 

specially designed to improve neonatal imaging and make imaging even the sickest babies 

possible. Finally, we will discuss some of the advantages, challenges, and safety concerns as 

they specifically relate to neonatal imaging.

Specifics Related to Neonatal Imaging at 1.5T versus 3T

Increased magnetic field strength increases SNR and allows thinner slices with better 

anatomic evaluation of small structures. Unfortunately, in neonates, the higher water content 

of the brain, especially in the white matter, makes the delineation of gray and white matter 

difficult due to its effect on T1 and T2 relaxation.(32,315) This is further complicated at 3T 

because of the longer T1 relaxation times, which already decrease T1 tissue contrast. The 

decreased gray-white matter contrast at 3T can be improved by adjusting scan sequence 

parameters such as TR, TE and flip angles and through the use of T1-fluid attenuation 

inversion recovery (T1-FLAIR) sequences.(32)

The ability to apply advanced imaging sequences such as diffusion tensor imaging (DTI) at 

3T is more feasible and may provide the ability to assess neural tracts such as the brachial 

plexus in the setting of post-delivery brachial nerve palsy and define aberrant connectivity in 

cases of structural brain malformations.(32) Many of the other advanced imaging sequences, 

including fMRI, MRA, BOLD, ASL, DTI, MRS, and T2* sequences for blood are improved 

at 3T.(28,40,41,58,347) Improved SWI is particularly important given the increased 

frequency of hemorrhagic and ischemic events in preterm neonates.(289)

Equipment Considerations and MR Conditional Devices Used in Neonatal Imaging

The tenuous nature of neonates has led to the development of highly specialized equipment 

for monitoring and imaging neonates such as MR conditional incubators and dedicated 

neonatal coils. Additionally the risk of transport and the demands on staff required to bring 

sick neonates to the radiology department for scanning has led to the development of 

dedicated small-footprint magnets, which can be placed directly in the NICU.

Monitoring Equipment—One of the most important challenges in neonatal imaging is 

providing adequate support to a thermally unstable neonate throughout the entirety of an 

MRI examination whether the exam is performed on a department MRI scanner or in a 

dedicated NICU scanner. Neonates, especially pre-term neonates, are vulnerable to 

hypothermia, hemodynamic instability and often require respiratory support.(17,258,346) 

These physiological demands have led to the development of both MR conditional 

incubators, specialized neonatal head and body coils and to the installation of magnets 

directly in the NICU decreasing both handling and transport of these small babies.
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(20-23,49,289,346) Additionally, when scanning at any field strength, especially 3T, the use 

of specifically designed and tested monitoring equipment must be used to ensure patient 

safety related to equipment malfunction and inappropriate heating.(49,99,177,178,258,348)

MR Conditional Incubators—The lack of available dedicated NICU magnets combined 

with vulnerability of neonates has necessitated the development of MR conditional 

incubators, which are designed to decrease the risks of transporting neonates between the 

NICU and the radiology department. Most commercially available incubators are embedded 

with dedicated neonatal head and body coils, and can be used in both 1.5T and 3T systems. 

Dedicated MRI incubators allow the transfer of the neonate into the incubator in the 

controlled environment of the NICU, maintaining continuity of monitoring and, hopefully, 

patient stability. The entire incubator is transported from the NICU to the radiology 

department and once in the department the entire incubator is moved from the transport cart 

to the MRI table without physically have to manipulate the infant.(17-21,49,99,154) (Fig 4) 

Incubators designed with integrated RF coils are commercially available for adult-sized MRI 

systems, at both 1.5T and 3T field strengths; however, despite the presence of an incubator, 

the logistics of transportation and stability of the neonate can in some cases preclude 

scanning of the smallest, sickest children.(2,17,20,21,25,26,289,321,344,349)

The FDA has approved MR conditional incubators and monitoring systems to ensure that 

the systems being used are able to maintain consistent, reliable and effective monitoring, as 

well as respiratory and cardiovascular support throughout the duration of the exam.(16) 

Incubators provide the ability to maintain airflow, humidity, temperature regulation, 

monitoring and respiratory support in systems with integrated RF coils, by integrating gas 

supply, pulse oximetry, MRI conditional ventilators, infusion pumps, and suction devices, 

creating a safe and controlled environment for imaging neonates.(16-19,21) Specially 

designed coils are integrated into the incubators eliminating some of the risks and limitations 

associated with using adult coils for neonatal MRI.(17-19,21) Bluml et al. published a report 

on the safety and efficacy of neonatal MR incubator use in clinical practice, which found 

that the diagnostic quality of the acquired images was superior to images taken with 

standard MR equipment.(21) Rona et al. demonstrated that the use of a neonatal MR 

conditional incubator made imaging younger, smaller and more clinically unstable infants 

feasible, with improved image quality and decreased mean imaging time.(18) Additional 

studies by Whitby et al. (20) and Erberich et al. (321) demonstrated the safe use of a 

neonatal incubator in obtaining high quality images of the neonatal brain. These studies 

illustrate the advantage of using an MR conditional incubator and its benefits on the 

acquired images.

While dedicated incubators have increased the feasibility of neonatal MR exams, they are 

not without their limitations. One important limitation is the maximum patient size that can 

be accommodated by the incubator. Lane et al. employed an incubator that was suitable for 

patients weighing up to approximately 4500g, with a head circumference up to 

approximately 40cm.(17) The incubator used by Bluml et al. (21) and Erberich et al. (321) 

was designed for temporary used during scanning and could accommodate an infant 

weighing up to 4.5 kg, or with a body length of 55cm. (Fig 4) These size limitations may 

make evaluation of critically ill, full-term neonates difficult or impossible. Additional 
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challenges are associated with the timing and logistics of using the incubator itself. For 

example, in order to perform an exam using the incubator, the NICU requires advanced 

notice to pre-heat the unit before transferring the baby into the incubator. Also, the displays 

on the incubators can be difficult to read from the MRI control room due to small display 

screens and room configuration, making constant monitoring in the radiology department 

difficult.(17)

Neonatal Coils—For many years neonates were transported to the main radiology 

department and imaged using adult MRI coils. The increased use of MRI in neonatal 

evaluation and clinical management has led to the development of dedicated neonatal coils. 

The main disadvantage with using adult radiofrequency coils is the size mismatch between 

the neonate and the coils, which negatively impacts image quality because of decreased 

SNR and decreased spatial resolution.(22,49) The use of RF head coils, designed 

specifically for newborns (Fig 5), improves the quality of MR images by increasing the 

signal to noise and improving image contrast to noise. In addition to the development of 

multichannel arrays, the improved SNR from dedicated coils has also resulted in decreased 

scan time while maintaining high quality diagnostic image output.(16,21,49,321) Bluml et 

al. showed that there was no increased risk of energy deposition or focal hot spot creation in 

the infant when a specially designed neonatal coil was employed.(21) As discussed in the 

previous section, specialized, appropriately sized, neonatal coils have been integrated into 

MR conditional incubators resulting in better image quality and the ability to perform high-

quality advanced imaging sequences such as fMRI.(18-21,49,321)

Other design characteristics that need to be considered when developing standalone and 

incubator integrated neonatal coils include the integration of monitoring and ventilation 

equipment, the ease of access to and visualization of the infant by the support staff, and the 

space allowance for placement of oxygen masks and other support equipment on the infant 

in cases where this is necessary. Ideally, a well-designed coil would provide both high 

quality diagnostic images and easy access and monitoring of the infant being scanned. In the 

case of standalone coils, many coil designs have been created for easy removal, in cases of 

emergent airway or cardiovascular compromise.(49) However, there are sometimes issues 

with removing and accessing the baby to provide support when the coils are integrated with 

an incubator.(20)

Dedicated Neonatal Intensive Care Unit (NICU) Magnets—In many institutions, 

neonates undergoing MRI examination are still transported from the NICU to the main 

radiology department. This process has inherent risks, both medical and logistical, which 

have led to research and development into MRI scanners that can be placed directly in the 

NICU.(22,49,154,289,344,349) A few MRI systems have been developed and installed in 

NICUs around the world, with a range spanning low magnetic field strengths up to 3T.(49) 

These dedicated NICU MRI systems eliminate some of the medical risks and many of the 

logistical challenges of transporting the smallest and sickest patients in the hospital to and 

from the radiology department.(22,23,49,289) Dedicated NICU scanners also create more 

flexible schedules for scanning that can better accommodate the feed and sleep patterns and 

ongoing needs of the infant.(49)
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In 2012 a 1.5T small footprint dedicated NICU scanner was developed and tested by Tkach 

et al. at Cincinnati Children’s Hospital Medical Center (Cincinnati, OH, USA). The scanner 

used in their study was a modified OPTIMA™ MR430s (GE Healthcare, Waukesha, WI) 

musculoskeletal scanner.(Fig 6) Modifications were made to the scanner to better facilitate 

its use in the NICU, which included changing the orientation and height of the magnet and 

development of a custom built MRI patient table. Due to the inherent small size of the 

OPTIMA magnet there were overall changes to the bore diameter, alteration of the 5-gauss 

line, decreased magnet weight, decreased cryogen requirements, and improved gradient 

performance (secondary to smaller gradient coils). In addition, control electronics and the 

radiofrequency system from a state-of-the-art 1.5T GE scanner were integrated with the 

basic OPTIMA™ MR430s system to give the system the capabilities of a normal 

department MRI scanner, including advanced imaging capabilities, such as MRS, DTI, 

fMRI, ASL and phase-contrast angiography. Radiofrequency shielding of the room, air 

temperature and humidity requirements remained the same as an adult-size MRI system.(22)

In their examination of the initial feasibility of a dedicated NICU magnet, Tkach et al. 

showed that the cost associated with exams could be decreased when using a dedicated 

NICU scanner due to the smaller footprint, smaller fringe field, reduced weight and lower 

cryogen consumption of the system. They also demonstrated that exams could be completed 

with acceptable scan times for brain MRI with visualization of gray-white matter 

differentiation and areas of early myelination compatible with immature white matter tracts.

(22,23) Tkach et al. also demonstrated that lower noise levels produced by NICU magnets 

were less disruptive to the neonates sleep, which is better developmentally, and increases the 

likelihood that an exam can be completed without the use of sedation.(210) One limitation 

of NICU scanners is the inability to accommodate larger patients, as demonstrated by the 

magnet used by Tkach et al. which was able to accommodate neonates weighting 4.5kg or 

less. These size restrictions may limit the use of a NICU magnet in critically ill full-term 

infants. At the time of publication in 2014, Tkach et al. reported that they were in the 

process of developing a head coils with a patient bore diameter or 20cm accommodating 

infants up to 6.25kg in their NICU MRI scanner.(23)

In addition to the size mismatch between the neonate and the adult-sized equipment, there 

are issues related to access and monitoring of the neonate when they are placed in the long-

bore of an adult MRI scanner and the potential safety risks associated with non-MRI 

conditional support and monitoring equipment being placed in the scan room. This is 

especially true at 3T where there is limited availability of monitoring equipment that is 

cleared at that field strength.(22,347,348) Vital sign monitoring on the dedicated NICU 

system, used by Tkach et al, was done using MRI conditional equipment, similar to that 

used on adult-sized 1.5T magnets.(22) Also, due to the shorter bore and better room design 

there was better visualization of and access to the neonate throughout scanning.(22,23,289)

There are numerous advantages of a dedicated NICU magnet, including lower purchasing 

and operating costs, improved ease of access, lower weight, smaller size, smaller fringe 

field, lower noise output, improved gradient performance, and most importantly reduced 

medical risk to the neonate.(22,23,210,289) In examinations by Tkach et al. they were able 

to obtain high-quality images with good spatial resolution, signal-to-noise and tissue 
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contrast using 30 minute scan times with standard clinical protocols on a 1.5T small-

footprint scanner. In their study, the SNR was slightly better for the NICU magnet compared 

to an adult-sized 1.5T magnet.(22) Also, the sound pressure levels (SPL) experienced by the 

neonate were lower on the NICU scanner for all six MR acquisitions (spin-echo, gradient-

echo, fast RF spoiled gradient-echo, echoplanar, fully balanced SSFP and DWI).(22,210) 

Dedicated NICU MRI scanners demonstrate improved gradient performance compared with 

department MRI scanners. Superior gradient performance was achieved with a smaller field 

of view and high spatial resolution using a NICU scanner without compromising scanning 

parameters such as TR and TE.(22) The gradient performance of the NICU magnet is 

roughly twice the performance of a conventional whole-body adult system.(22,210)

While there are numerous advantages to implementing NICU scanners, some limitations still 

exist that deserve discussion. In general, 3T scanners are typically preferred for neonatal 

brain imaging; however, 3T scanners are less well established for neonatal cardiac, 

abdominal and musculoskeletal evaluation. As a result, 3T scanners have not been tested or 

implemented as dedicated NICU magnets at this point in time. The same safety concerns 

associated with 3T scanning previously discussed (including increased susceptibility 

artifacts, increased risk of tissue heating and the limited number of available MRI 

conditional support systems) would apply to a small-footprint 3T NICU MRI system.(22) 

Despite these issues, as better 3T sequences are developed consideration may be given to 

placing 3T MRI units in the NICU, although further studies would be required to ensure 

their safe use and feasibility.

Advantages of Neonatal MRI Scanning

There are many advantages to neonatal MRI including early diagnosis and better clinically 

management of neonates without the use of ionizing radiation, which makes repeated long-

term imaging follow-up feasible.(22) Increased magnetic field strengths and the increased 

availability of 3T magnets have shortened acquisition times making neonatal exams more 

feasible. Improved SNR at 3T allows acquisition of thinner slices and improved delineation 

of smaller structures (32), making it possible to demonstrate the site and extent of white 

matter abnormalities, intracranial hemorrhage, infarction, posterior fossa abnormalities and 

maturational changes in the brain.(289,292,293,350,351) As a result of the improved spatial 

resolution, serial MRI examinations are able to better delineate the rapidly occurring 

changes in the developing brain, especially when performed at higher magnetic field 

strengths.(32)

MRI is especially important in the evaluation of pre-term and extremely low birth weight 

infants, because it allows early detection and diagnosis of patterns of white matter injury that 

can help predict clinical outcomes and guide potential interventions.

(87,290-292,313,323,331,350-353) In a study performed in 2001 by Childs et al., MRI was 

shown to be more sensitive than cranial ultrasound for the detection of non-cystic focal 

white matter disease.(291) In 2003, Debillon et al. demonstrated that MRI was able to better 

delineate less severe forms of white matter damage, and found that early MRI findings were 

more predictive of late MRI findings, when compared to findings from early ultrasound 

evaluation.(351) In general, MRI has become important, either as a replacement for or in 
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addition to transcranial ultrasound, due to the relatively poor sensitivity of ultrasound in 

detecting diffuse and focal, non-cystic white matter lesions.

(3,7,290-295,314,318,324,351,352,354) Traditional T1 and T2-weighted MRI sequences 

may miss cases of diffuse white matter injury, and the addition of advanced sequences such 

as DWI/ADC and DTI with mean diffusivity and fractional anisotropy calculations can 

prove invaluable in making accurate diagnoses.(16) This is clinically relevant as infants with 

cerebral white matter injury are at increased risk for motor, cognitive and behavioral deficits 

if they survive beyond the neonatal period.(355)

Advanced MRI techniques, which are more feasible at 3T, can be used on serial 

examinations to evaluate a patients developing brain and compare it with normal 

developmental controls.(310) Techniques such as 3-D volumetric MRI can be used to 

measure cortical folding and determine volumes of various anatomical regions in the brain. 

DWI and DTI can provide insight into developing white matter structure and cerebral 

interconnectivity.(5,350)

Challenges of Neonatal MRI Scanning

Challenges associated with MRI scanning in neonates are related to the logistics and medical 

risks of scanning pre-term and very low birth weight patients, temperature and vital sign 

monitoring, patient motion and the possible necessity for sedation, which are all addressed 

below.

Preterm and Very-Low Birth Weight Infants—Preterm and very-low birth weight 

infants (weight < 1500 g) are at increased risk for hypothermia and vital sign instability, in 

addition to the fact that many of these babies require respiratory support and intravenous 

infusions to support homeostasis. As a result, minimal handling and transport of newborn 

infants is highly desirable, and cranial ultrasound is the initial imaging exam of choice.

(17,258,346) Studies have shown that MRI can be performed on preterm infants without 

physiologically significant upset in vital signs, including heart rate, oxygen saturation, 

ventilator settings, blood pressure and temperature.(356-358) A 2009 study performed by 

Merchant et al. (347) used a feed and swaddle technique with vacuum bag immobilizer to 

safely and successful perform neuroimaging on very low birth weight infants at 3T without 

any major complications related to thermoregulatory or vital sign instability. Of note is the 

fact that of 70 infants included in this study, none were receiving positive pressure 

ventilation and all were able to maintain normal oxygen saturation with nasal continuous 

positive airway pressure (CPAP), nasal cannula or without assistance. Plasier et al., on the 

other hand, demonstrated minor adverse effects in 50% of its study group of 52 infants at 

term-equivalent 30 weeks gestational age, including respiratory instability and hypothermia, 

which in three cases required the termination of the exam.(359) MRI conditional incubators 

and dedicated NICU MRI scanners aid in mitigating these issues; however, in situations 

where there is no access to this equipment; multidisciplinary coordination and intensive 

monitoring can lead to safe and successful scanning in the radiology department, and the 

lack of MRI conditional incubators and NICU scanners should not limit the use of MRI in 

this population.(17,22,23,49,154,344,346,349)
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Temperature and Vital Sign Regulation—The effects of radiofrequency energy 

deposition and specific absorption rate can create problems with temperature control in 

neonates, necessitating accurate temperature monitoring during scanning. Energy deposition 

can lead to inappropriate increases in body temperature in the neonate who is often already 

swaddled during scanning. Monitoring, using MRI conditional equipment via skin or rectal 

temperature probes, is useful in detecting even small changes in body temperature during 

scanning.(32) These changes in temperature can be confounded by the use of an MR 

conditional incubator, as poor dissipation of heat and higher baseline temperatures in infants 

requiring incubators may necessitate the use of stricter guidelines for energy deposition and 

require very close monitoring of infants to avoid unwanted physiological effects from 

prolonged hyperthermia.(21,197)

Consideration must also be given to vital sign regulation during scanning of both term and 

preterm neonates. In 1996, Philbin et al. (358) showed that rapid changes in blood pressure, 

heart rate and oxygen saturation occurred in term infants undergoing MRI scanning, but 

suggested that these changes were unlikely to be dangerous in healthy term infants and were 

likely not related to transport, sedation or magnetic field exposure. In a follow-up study 

performed by the same group in 1998, Taber et al. (357) demonstrated that physiologic 

fluctuations in heart rate occurred during scanning in almost all infants, and suggested that 

these changes were unlikely to pose a threat to healthy term newborns. In both studies, 

however, there were concerns raised that fluctuations in both blood pressure and heart rate 

occurring in preterm infants with immature cerebral autoregulation could potentially 

increase risk for worsening intracranial hemorrhage, and that carefully monitoring of vital 

signs should be in place in these cases. A study performed by Battin et al. (356) evaluating 

the presence of physiological disturbances in preterm infants undergoing MRI, including 

changes in heart rate, oxygen saturation, blood pressure and temperature, showed that even 

in infants requiring intensive care during scanning, that MRI could be performed without 

any major physiologic upset. These findings were confirmed in a study performed by 

Benavente-Fernandez et.al in 2010 (346), further supporting the safety and feasibility of 

MRI scanning even in the smallest patients with little risk when a coordinated team 

approach and intensive monitoring were employed.

Patient Motion—Patient motion is a potential source of image degradation in all MRI 

exams, but it is especially important in neonatal imaging when trying to evaluate small 

structures. Motion artifact degrades images and may reduce the diagnostic accuracy of a 

study. In some cases motion artifact can be so significant that sedation is required to 

complete the imaging.(22,32,154) Unfortunately, sedation is not free of its own risks and 

attempts are made in all cases to avoid sedation if at all possible. The development of new 

sequences to correct for patient motion (e.g. PROPELLER, BLADE and MULTIVANE), 

are being used clinically as an alternative method to correct and compensate for patient 

motion.(16,49)

Sedation—Sedation may be required for MRI examinations in neonates, although its use is 

avoided whenever possible due to potential risks to the patient, timing, cost and the 

specialized staffing requirements associated with the actual sedation administration.
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(32,49,154-158,258) Some of the potential risks associated with the medications used for 

sedation include brain apoptosis, neurodegeneration, apnea, bradycardia and oxygen 

desaturations, creating an emphasis on obtaining neonatal MR images without the use of 

sedation.(22,157,360-365) A population-based cohort study of 5,357 children from 

Rochester, Minnesota performed in 2009 (157), showed that there was a higher risk of 

learning disabilities in patients exposed to longer duration (> 120 minutes) and multiple 

administrations (2 or more) of anesthesia prior to the age of four, but that there was no 

associated increased risk of learning disability in cases with only a single exposure. Given 

the data suggesting potential deleterious effects on neurodevelopment related to sedation and 

anesthesia, avoidance of its use is desirable if at all possible.

The desire to decrease neonatal exposure to sedation agents has resulted in the development 

of feed and sleep or “feed and bundle” strategies. Additional methods to decrease anesthesia 

use have also been developed including the use of bean bags, timing scans with feed and 

sleep cycles and education of staff and parents.(158) In 2012, Windram et al. (366) 

described a successful strategy, in patients younger than 6 months of age, where an infant 

was fasted for 4 hours prior to scanning, and then fed, swaddled and placed in a vacuum-bag 

immobilizer just prior to imaging. In 2010, Haney et al. successful completed 94% of their 

attempted MRI examinations on NICU patients, without the use of sedation, using a vacuum 

bag immobilizer combined with a coordinated team approach to the examination and 

coordinated transport to and from the radiology department.(367) These strategies may 

prove even more useful when used in conjunction with dedicated NICU scanners as the 

sound production from these machines is much lower than traditional department MRI 

scanners.(210) Also, shorter scan times increase the success of completing imaging without 

the use of sedation, making the increased temporal resolution at 3T advantageous in these 

cases.(32)

Most premature infants can be scanned during the first few weeks of life without the use of 

sedation using feed and swaddle techniques and gentle head immobilization with vacuum-

pack bags and bean bags.(2,258) In general, sedation is usually not required prior to 3 

months of age during which time feed and sleep techniques can be used. Beyond age 3 

months sedation is almost always required to achieve a good quality motion free study.

(258,315) The most commonly used substance for sedation in this population is chloral 

hydrate, either orally or as a suppository, and the use of general anesthesia is rarely required 

in patients less than 2 years of age.(315)

Safety

To date there are no short or long term harmful effects associated with MRI performed in a 

neonate at the magnetic field strengths and scan durations used clinically.(182) The safety 

and feasibility of scanning newborns at 3T field strengths has been demonstrated in both 

sedated and non-sedated patients, using both conventional and advanced MRI techniques.

(69,71,347) In cases where dedicated NICU scanners are not available, the transportation 

logistics and medical risks of removing the baby from the NICU for scanning must be 

weighed against the benefits of performing the scan in the radiology department.

(154,344,349,358) Irrespective of the type of scanner and scanner location, consideration 
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must always be given to safety concerns associated with the effects of static magnetic field 

exposure, radiofrequency (RF) power deposition, specific absorption rate (SAR), gradient 

field switching and acoustic noise/sound pressure levels.

Static Magnetic Field Exposure—According to the FDA, MRI carries that status of 

“non-significant risk” in neonates (infants less than 1 month old) when they are scanned in 

static magnetic fields of 4T or less. This designation is based on 30 years of use 

accompanied by no reports of deleterious short or long-term effects when MR scanners are 

operated within set guidelines.(1,182)

Radiofrequency (RF) Power Deposition and Specific Absorption Rate (SAR)—
The radiofrequency energy deposition and specific absorption rate considerations for 

neonatal imaging are similar to those for the fetus and often require adjustment to scan 

parameters when transition from 1.5T to 3T.(32) Heating as a result of radiofrequency 

energy deposition at higher magnetic field strengths may lead to temperature instability in 

the neonate during scanning resulting in a need for close temperature monitoring.(22,154) 

An additional concern in neonatal imaging is the safety of monitoring equipment which, if 

not safety tested at the field strength used for imaging, could lead to tissue heating and 

focally elevated surface temperature. This necessitates specially designed equipment that is 

specifically designed and tested at the static magnetic field strength (and therefore specific 

radiofrequency) being used.(49,154,348) The ICNIRP 2004 guidelines state that the body 

temperature of the infant should not rise more than 0.5°C.(180,181) Also, as previously 

noted, close monitoring of patient temperature in cases employing an MRI conditional 

incubator is warranted as elevated SAR at 3T field strengths can lead to unwanted increases 

in patient body temperature and potentially harm to the infant.(21)

Gradient Field Switching and Acoustic Noise and Sound Pressure Level (SPL)
—The safety concerns associated with gradient field switching include peripheral nerve 

stimulation and the production of acoustic noise, both of which can be decreased when using 

dedicated NICU MRI scanners. In two separate studies, performed in 2012 and 2014, Tkach 

et al. showed that sound pressure levels were lower on dedicated NICU scanners for all six 

MR acquisitions, despite concomitant gains in gradient performance.(22,210) In 2014, 

Tkach et al. demonstrated that NICU scanners were quieter than conventional MRI scanners, 

increasing the safety for the neonate being scanned. The decreased sound production 

allowed placement of a magnet which did not exceed sound pressure levels above 65dBA 

directly in the NICU without disrupting other patients. In the same study, it was shown that 

on average the NICU scanner was 14.2 dB (11 dBA) quieter than a comparable adult-sized 

1.5T scanner, when identical imaging sequences and acquisition parameters were selected. 

These decreases in sound production were attributed to the use of smaller gradient coils.

(210) A study performed by Battin et al. (356) using a departmental MRI scanner with an 

ambient noise level of 67-72 dBA, demonstrated no significant physiological disturbance in 

any of the 23 preterm infants scanned.

Neonates are very sensitive to the presences of sensory stimuli, and sensory stimuli in the 

form of acoustic noise can elicit autonomic instability in both term and pre-term neonates.

(2,22,202,358) Despite the lack of reports demonstrating serious acoustic noise related 
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injury, various forms of hearing protection have been employed to decrease the exposure to 

acoustic noise while undergoing MRI scanning.(2,22,358) Exposure to inappropriate and 

excessive sounds is thought to have both direct and indirect deleterious effect on growth and 

neurological development in term and pre-term infants.(368,369) This is especially apparent 

in pre-term infants where hearing impairment, sleep disturbances, undesired somatic effects, 

impaired auditory perception and impaired emotional development have been demonstrated.

(209) The Committee on Environmental Health recommends monitored sound in the NICU, 

maintenance of noise levels below 45 dB and using simple strategies to reduce noise 

exposure, such as no tapping on incubators.(286) As a result, consideration to both the type 

and level of sound exposure in the NICU and during early development is critical.

As a result of studies demonstrating risks associated with auditory noise, multiple forms of 

passive ear protection, including earmuffs, earplugs, dental putty, and acoustic hoods, have 

been implemented.(202,207,209) Soft shell earmuffs (e.g. MiniMuffs™, Natus Medical Inc., 

San Carlos, CA) are able to provide additional sound attenuation of up to 7-12 dB in the 

neonatal population.(209) Foam earplugs (e.g. E.A.R Classic™, 3M, St. Paul, MN) have 

also been used in conjunction with the soft-shell earmuffs to shield against noise. The 

combination of earmuffs and earplugs has been demonstrated to be better than either device 

individually, however, the improvement in sound protection is generally less than the 

combined rating of the two methods individually.(370-372) In the case of the acoustic hood, 

used by Nordell et al., there was a potential reduction in the peak sound pressure of 

approximately 16-22 dBA depending on the pulse sequence selected.(207) In evaluation of 

sound production in a dedicated NICU scanner, Tkach et al suggested that with 

modifications to patient position and the use of passive devices to attenuate sound (earplugs 

and soft-shell earmuffs), that a reduction of 29 dBA could be achieved. They also 

demonstrated that high-performance diagnostic exams could be performed near or below 

acceptable levels when hearing protection was used.(22,210)

Conclusion

In conclusion, MRI has become an important addition in the imaging evaluation of the 

developing brain. The use of 3 Tesla magnets in both neonatal and fetal brain MRI has 

increased the diagnostic quality of scans, improved the availability and quality of advanced 

imaging sequences, and allowed for better anatomic delineation of the brain, as a result of its 

superior signal-to-noise ratio when compared to 1.5 Tesla. To date, no studies, have 

demonstrated any definite risk to the fetus, mother, or neonate when MR scanners are 

operated within the regulatory guidelines set forth by the FDA and other regulatory 

agencies. In addition, the development of MR conditional neonatal incubators, specialized 

neonatal coils and dedicated NICU magnets has increased the safety and feasibility of 

performing exams on the smallest and sickest babies, has resulted in timely diagnosis of 

metabolic and ischemic insults, and improved predictive value of MRI for long-term 

outcome in high-risk fetal and neonatal populations.
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Fig 1. Fetal 3T Imaging and Artifacts
The top row shows two sagittal single-shot fast-spin echo (SSFSE) T2-weighted images 

obtained on a 3T magnet, demonstrating high resolution anatomic detail of the midline 

structures in the fetal brain. The bottom row shows two coronal SSFSE images of the fetus 

demonstrating motion artifact on the left and dielectric artifact on the right, which are both 

more conspicuous at 3T field strengths and can degrade images of the brain.
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Fig 2. Short echo MR spectroscopy in Newborn Brain
T2-weighted sagittal, axial, and coronal MR images of the newborn brain are shown above. 

The boxes indicate the region of interest (ROI) from where MR spectra will be acquired, 

with their approximate dimensions provided. The top row of images shows sagittal, axial 

and coronal images through the left thalamus, with an ROI in the thalamus. At the end of the 

first row, the spectrum appears normal with no associated abnormality. The bottom row of 

images shows sagittal, axial and coronal images through the left parietal lobe, with an ROI 

in the parietal white matter. The spectrum at the end of the row shows an increase in the 

lactate peak, compatible with hypoxic ischemic injury (HIE). Note that the both ROIs are 

drawn slightly oblique in order to maximize the sampled volume in the area of interest and 

avoid partial volume effects. (spectra courtesy of Dr. Stefan Bluml)
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Fig 3. ASL perfusion in the newborn brain, patient with recurrent seizures
(A) Gray-scale ASL perfusion image showing two areas of increased perfusion in the region 

of the peri-Sylvian gyri bilaterally. (B) Corresponding color ASL perfusion image re-

demonstrating two foci of increased perfusion in the region of the peri-Sylvian gyri 

bilaterally. (C) Axial T2-weighted image through the level of the peri-Sylvian gyri 

corresponding to the region of increased ASL perfusion. (D) Coronal T2-weighted image 

through the peri-Sylvian gyri corresponding to the region of increased ASL perfusion. 

Increased perfusion in this case may represent epileptogenic foci in the brain and/or areas of 

subtle cortical dysplasia.
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Fig 4. Neonatal Incubator
The above image shows a second generation SREE MRI conditional, neonate imaging sub-

system (NISS-MR). The incubator allows a seamless way to safely bundle, transport and 

image high-risk infants. Patented, custom built neonatal coils have been integrated into the 

incubator design allowing high-quality scanning of the infant without removal from the 

incubator. The NISS-MR consists of an MRI transport incubator, MRI trolley and back-up 

power supply box (2 hour capacity), which are classified as MR conditional. The incubator 

is designed to safely accommodate infants up to one month of age, weighing less than 4.5kg 

or with a whole body length of less than 55cm. The MRI system offers air temperature and 

humidity regulation as well as the ability to monitor patient skin temperature. The incubator 

is also designed to accommodate a transport ventilator and wireless pulse-oximeter. 

(incubator images courtesy of Ravi Srinivasan)
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Fig 5. Neonatal Coils
Images of three custom neonatal and infant sized head coils, which can be used to improve 

signal to noise ratio on examination. (A) Infant Cocoon, which can be used to image infants 

from 0-6 months of age. (B) Infant Head Spine Array, which can be used to image infants 

0-6 months of age. (C) Neonatal Head Coil, which can be used in infants 0-1 months of age. 

The above coils can all be integrated with the neonatal incubator show in Fig 4. (coil images 

courtesy of Ravi Srinivasan)
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Fig 6. Modified OPTIMA™ MR430s (GE Healthcare, Waukesha, WI) musculoskeletal scanner 
used at Cincinnati Children’s Hospital Medical Center (CCHMC)
Above is an image of the modified OPTIMA™ MR430s (aka ONI) small-footprint MRI 

scanner installed at CCHMC. Modifications to the scanner included changing the orientation 

and height of the magnet, and development of a custom built MRI patient table. The scanner 

inherently has a smaller, changes to the bore diameter, alteration of the 5-gauss line, 

decreased magnet weight, decreased cryogen requirements, and improved gradient 

performance (secondary to smaller gradient RF coils). In addition, control electronics and 

the radiofrequency system from a state-of-the-art 1.5T GE scanner were integrated with the 

basic OPTIMA™ MR430s system to give the system the capabilities of a normal 

department MRI scanner, including advanced imaging techniques, such as MRS, DTI, 

fMRI, ASL and phase-contrast angiography. The modifications result in feasible placement 

of a scanner in the NICU and acquisition of high quality diagnostic images.
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