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Abstract

According to the World Health Organization, diabetes mellitus (DM) in the year 2030 will be 

ranked the seventh leading cause of death in the world. DM impacts all systems of the body with 

oxidant stress controlling cell fate through endoplasmic reticulum stress, mitochondrial 

dysfunction, alterations in uncoupling proteins, and the induction of apoptosis and autophagy. 

Multiple treatment approaches are being entertained for DM with Wnt1 inducible signaling 

pathway protein 1 (WISP1), mechanistic target of rapamycin (mTOR), and silent mating type 

information regulation 2 homolog) 1 (S. cerevisiae) (SIRT1) generating significant interest as 

target pathways that can address maintenance of glucose homeostasis as well as prevention of 

cellular pathology by controlling insulin resistance, stem cell proliferation, and the programmed 

cell death pathways of apoptosis and autophagy. WISP1, mTOR, and SIRT1 can rely upon similar 

pathways such as AMP activated protein kinase as well as govern cellular metabolism through 

cytokines such as EPO and oral hypoglycemics such as metformin. Yet, these pathways require 

precise biological control to exclude potentially detrimental clinical outcomes. Further elucidation 

of the ability to translate the roles of WISP1, mTOR, and SIRT1 into effective clinical avenues 

offers compelling prospects for new therapies against DM that can benefit hundreds of millions of 

individuals throughout the globe.
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1. Introduction

Each year, metabolic disease impacts a significantly greater portion of the global population. 

Such observations appear to be in contrast to the high expenditures provided for healthcare 

in developed nations. For example, according to the Centers for Medicare and Medicaid 

Services (CMS) (1), the United States in the year 2012 spent 2.8 trillion on healthcare that 

was equal to $8, 915 per person and 17.2 percent of the Gross Domestic Product (GDP). 

Hospital care costs were increased 4.9 percent from the prior year to equal $882.3 billion 
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and spending on physician and clinical services increased 4.6 percent to $565 billion. In 

addition, out of pocket spending per individual on healthcare in the year 2012 was estimated 

to have grown 4.1 percent to $320.2 billion. By the year 2022, healthcare spending is 

projected to be 19.9 percent of the GDP.

Contributing to these costs and the growing prevalence of metabolic disorders such as 

diabetes mellitus (DM) is the increased incidence of obesity in the population (2–6). Obesity 

leads to a number of metabolic disorders that includes cellular oxidative stress and insulin 

resistance (7, 8), lipid –induced dysfunction of pancreatic β cells (9), cellular inflammation 

(10), altered trophic factor release (11–14), and impairment in protein tyrosine phosphatase 

signaling (6, 15). Yet, it is the duration of obese-years rather than the body mass index 

(BMI) that corresponds to a strong risk for developing DM (16).

Given the increased presence and progressive contribution of risk factors such as obesity for 

metabolic disorders, DM also is growing at an exponential rate. The World Health 

Organization predicts that DM will be the seventh leading cause of death by the year 2030 

(17). For the year 2013, 347 million individuals are believed to have DM and more than one 

million of these individuals are dying from the disease. In the United States, it is estimated 

that DM costs employers $69 billion in reduced productivity and another $176 billion for 

direct medical costs. At least 21 million individuals are diagnosed with DM in the US and 

another 8 million individuals are estimated to be undiagnosed with DM (18). A strong case 

can be made for clinical programs that assist with the early diagnosis of DM given that a 

significant portion of the population currently remains undiagnosed with DM (10, 19). 

Furthermore, the incidence of impaired glucose tolerance in the young also raises additional 

concerns (3). Individuals with impaired glucose tolerance have more than twice the risk for 

the onset of diabetic complications than individuals with normal glucose tolerance (20).

DM is considered to be either non-insulin dependent (Type 1) or insulin dependent (Type 2) 

(21). Type 1 DM occurs in approximately 5–10% of DM patients. It is an autoimmune 

disorder with the presence of alleles of the human leukocyte antigen (HLA) class II genes 

within the major histocompatibility complex (MHC) (22). Destruction of pancreatic β-cells 

with inflammatory infiltration of the islets of Langerhans leads to the loss of insulin 

production and regulation. Activation of T-cell clones that are capable of recognizing and 

destroying β-cells can result in severe insulin deficiency. T-cell clones escape thymus 

control that yields high affinity for MHC molecules with T-cell receptors, but these clones 

have incorrect low affinity for self-peptides. Once released into the body, these T-cell clones 

can become activated to destroy self-antigens. Almost 90% of patients with Type 1 DM 

have increased titers of autoantibodies (Type 1A DM). The remaining 10% of Type 1 DM 

individuals do not have serum autoantibodies. These individuals are considered to have 

maturity-onset diabetes of the young (MODY) that can be a result of β-cell dysfunction with 

autosomal-dominant inheritance (Type IB DM).

Type 2 DM occurs in approximately 90% of individuals most notably in individuals over the 

age of 40 and has a progressive deterioration of glucose tolerance with early β-cell 

compensation (23). Initial cell hyperplasia is followed by a decrease in pancreatic β-cell 

mass with subsequent insulin resistance and impairments in insulin secretion occurring. 
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Defective insulin secretion can result from impaired β-cell function, chronic exposure to free 

fatty acids and hyperglycemia, as well as the absence of inhibitory feedback through plasma 

glucagon levels. Interestingly, Type 1 and Type 2 DM may have common links since 

approximately 10% of individuals with Type 2 DM may have elevated serum autoantibodies 

similar to Type 1 DM and insulin resistance also may be a component of Type 1 DM in 

some patients.

2. DM, Involvement of Multiple Organ Systems, and Oxidative Stress

DM can injure multiple organ systems throughout the body. As a result, DM has been 

reported to lead to vascular disease (24–30), cardiac disorders (31–39), renal disease (2, 40–

43), hepatic disorders (44–49), and immune cell impairment (38, 50–54). In the 

neurovascular arena, DM can contribute to cognitive loss through acute stroke onset (55). 

During chronic neurodegenerative disorders that involve Alzheimer’s disease with DM (22, 

56), insulin resistance has been reported in patients with Alzheimer’s disease that links 

impaired cellular metabolism with cognitive loss (57–59). DM also leads to neuropsychiatric 

disorders (60, 61), peripheral nerve disorders (27), and retinal disease (62–64). At the 

vascular cell level, elevated glucose levels reflective of those that occur during DM can 

result in endothelial cell senescence (25), impaired mobilization of endothelial progenitor 

cells from the bone marrow (65), neuroglialvascular unit compromise (62), inhibition of 

angiogenesis (26), and loss of endothelial cells (14, 30, 66–70).

Oxidative stress is an important determinant of cell injury in DM (4, 21, 71–76). Oxidant 

stress that results in the generation of reactive oxygen species (ROS) can significantly affect 

cellular metabolism and lead to cell injury during DM (77, 78) and contribute to disability 

that involves impaired cognitive function (79–81), cerebral ischemia (77, 82), and epigenetic 

linked disease (83–87). ROS are formed through superoxide free radicals, hydrogen 

peroxide, singlet oxygen, nitric oxide (NO), and peroxynitrite that lead to mitochondrial 

dysfunction, loss of DNA integrity, cellular dysfunction, and protein misfolding (21, 76, 88–

91). Endogenous antioxidant systems can limit the generation of ROS and include catalase, 

superoxide dismutase, glutathione peroxidase, and vitamins C, D, E, and K (23, 75, 85, 90, 

92–100).

Yet, excessive production of ROS or impairments in the endogenous antioxidant system 

such as those that can occur during DM can ultimately lead to oxidative stress and cell death 

(8, 22, 23, 27, 29, 63, 74, 76, 101). In murine animal models of Type 2 DM, oxidative stress 

results in elevated glutathione levels and increased lipid peroxidation (33). Advanced 

glycation end products (AGEs), entities that promote complications in DM (32, 36), also 

result in the release of reactive oxygen species (ROS) and caspase activation (74). In 

experimental cell models, exposure to elevated glucose levels foster oxidant stress 

mechanisms that lead to cell injury in cardiomyocytes (35, 39, 102), neurons (55, 63, 69, 

103, 104), and endothelial cells (62, 65–68, 105). Elevations in serum glucose also can 

increase antioxidant enzyme levels in human endothelial cells, suggesting that some cells 

can attempt a reparative process during oxidative stress exposure (106). In clinical studies, 

patients with Type 2 DM display serum markers of oxidative stress with ischemia-modified 

albumin (107). However, chronic hyperglycemia during DM is not necessary to lead to 
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oxidative stress injury, since even brief periods of hyperglycemia generate ROS (108). 

Clinical correlates show that both acute glucose swings as well as chronic hyperglycemia 

can trigger oxidative stress mechanisms during Type 2 DM (109).

Oxidative stress during DM also leads to mitochondrial dysfunction, endoplasmic reticulum 

stress, and alterations in uncoupling proteins (UCPs) (72, 110). ROS exposure during DM 

can result in the opening of the mitochondrial membrane permeability transition pore, 

reduce mitochondrial NAD+ stores, activate cytochrome c release, and initiate caspase 

activity (29, 66, 68, 70, 105, 111, 112). Exposure of glucolipotoxicity caused by elevated 

plasma glucose and lipid levels to pancreatic β-cells promotes oxidative stress with 

cytochrome c release, caspase activation, and apoptosis (111). High fat diets (113) as well as 

free fatty acid release that occurs during DM have been shown to release ROS, lead to 

mitochondrial DNA damage, and impair pancreatic β-cell function (114). Subsequently, 

mitochondrial dysfunction and cell death leads to apoptosis and autophagy (63). In patients 

with Type 2 DM, skeletal muscle mitochondria have been reported to be smaller than those 

in control subjects (115). A decrease in the levels of mitochondrial proteins and 

mitochondrial DNA in adipocytes also has been associated with the development of Type 2 

DM (116). “Highly-oxidized glycated” low density lipoproteins that can occur in DM also 

result in oxidative and endoplasmic reticulum stress in human retinal capillary pericytes 

(63).

In addition to the role that mitochondria play during oxidative stress and DM, UCPs are a 

significant component in modulating cell survival in DM (72, 110, 117). UCPs are a family 

of carrier proteins found in the inner membrane of mitochondria and consist of the 

mammalian members UCP-1, 2,3,4,5 (118). UCPs uncouple oxygen consumption through 

the respiratory chain from ATP synthesis and can lead to the generation of ROS. UCPs 

disperse a proton electrochemical potential gradient across the mitochondrial inner 

membrane resulting in the activation of substrate oxidation and dissipation of oxidation 

energy as heat instead of ATP (72, 110). In addition, UCP family members also can 

influence insulin sensitivity. Uncoupling of respiration by UCPs plays a role in regulating 

ATP synthesis, fatty acid release, and glucose oxidation. For example, UCP1 may have 

beneficial effects during DM. Muscle-specific overexpression of UCP for skeletal muscle 

can increase energy expenditure and enhance insulin sensitivity to protect in animal models 

from high-fat diet induced insulin resistance (119). Skeletal muscle respiratory uncoupling 

also can enhance insulin sensitivity in obesity (120). Yet, other UCPs such as UCP2 may 

have detrimental effects. Overexpression of UCP2 in isolated pancreatic islets results in 

decreased ATP levels and blunted glucose-stimulated insulin secretion. Deletion UCP2 

improves insulin secretion and decreases hyperglycemia in leptin-deficient mice (121). In 

relation to other UCP members during DM, UCP3 can stimulate insulin uptake (122) and 

may function to facilitate fatty acid oxidation and minimize ROS production (123).

3. DM, Apoptosis, and Autophagy

The programed cell death pathways of apoptosis (4, 23, 27, 70, 75, 124) as well as 

autophagy (2, 21, 125, 126) play significant roles during DM and oxidative stress (127). 

Necroptosis, another pathway involved in programmed cell death, does not presently appear 

Maiese Page 4

Curr Neurovasc Res. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to contribute significantly to cell survival in DM (128), but further published work may 

change these observations. Recent studies in murine models of Type 1 DM suggest that 

necroptosis may have less than an essential role in cell death during DM (129).

Apoptosis can oversee tissue development and remodeling during early stages of 

development, but in mature cells and tissues, the induction of apoptosis can lead to cell 

death during DM (4, 125). Apoptosis consists of both an early phase that involves the loss of 

plasma membrane lipid phosphatidylserine (PS) asymmetry and a later phase that leads to 

genomic DNA degradation (79, 130–132). Since the early phase of apoptosis with 

membrane PS externalization alerts inflammatory cells to engulf and remove injured cells, 

prevention of membrane PS externalization is vital to block the loss of functional cells that 

may become temporarily disabled (21). In DM, apoptosis can lead to neuronal injury (60, 

103, 104, 133), cardiomyocyte destruction (34, 35, 38), pancreatic β-cell loss (134–136), 

endothelial cell injury (25, 26, 67, 105, 137), and renal cell dysfunction (138–140).

In regards to autophagy during DM, this pathway of programmed cell death may have 

variable outcomes (141). Autophagy recycles cytoplasmic components and discards 

defective organelles for tissue remodeling (125, 142). During DM, the sub classification of 

macroautophagy plays a principal role and involves the sequestration of cytoplasmic 

proteins into autophagosomes that fuse with lysosomes for degradation and recycling for 

future cellular processes (2, 29). Autophagy may be cytoprotective during DM. Recent work 

suggests that loss of autophagy may foster the progression from obesity to DM, since 

autophagy haploinsufficiency in murine animal models of obesity can lead to increased 

insulin resistance with elevated lipids and inflammation (143). Autophagy also may be 

required to eliminate misfolded proteins and non-functioning mitochondria to avert β-cell 

dysfunction and the onset of DM (144). Exercise in mice also has been shown to initiate 

autophagy and regulate glucose homeostasis (145). These results may be associated with 

observations that autophagy has been reported to improve insulin sensitivity during high fat 

diets in mice (8). Pathways of autophagy and apoptosis also may complement one another to 

control cell survival. For example, induction of autophagy may protect cardiomyocytes from 

apoptotic cell death during DM (34).

However, it should be noted that autophagy might not be consistently beneficial (128, 141, 

146). Under some conditions, autophagy may be less of a prominent modulator of cell 

survival than apoptosis in some experimental models (147). In addition, during elevated 

glucose exposure, autophagy has been shown to impair endothelial progenitor cells, lead to 

mitochondrial oxidative and endoplasmic reticulum stress (148), and prevent the formation 

of new blood vessels (29). Increased activity of autophagy also has been associated with 

significant loss of cardiac and liver tissue in diabetic rats during attempts to achieve 

glycemic control through diet modification (149). During periods of elevated glucose, AGEs 

have been shown to lead to the induction of autophagy and vascular smooth muscle 

proliferation that can result in atherosclerosis (28) as well as cardiomyopathy (102).
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4. WISP1 and DM

Multiple pathways can result in cellular injury through oxidative stress mechanisms during 

DM. As a result, recent investigations have concentrated upon pathways that involve anti-

oxidant therapies (3, 23, 27, 30, 53, 71, 75), mammalian forkhead transcription factors (9, 

37, 47, 150, 151), protein tyrosine phosphatases (6, 15, 152), and growth factors (11–13, 50, 

65, 70, 104). In addition, new therapeutic strategies are now focusing upon the role of 

extracellular matrix associated proteins such as the CCN family of proteins (153, 154). The 

CCN family of proteins consists of six secreted extracellular matrix associated proteins. This 

family is defined by the first three members of the family that include Cysteine-rich protein 

61, Connective tissue growth factor, and Nephroblastoma over-expressed gene (155). The 

CCN family members contain four cysteine-rich modular domains that include insulin-like 

growth factor-binding domain, thrombospondin domain, von Willebrand factor type C 

module, and C-terminal cysteine knot-like domain.

Of the CCN family members, Wnt1 inducible signaling pathway protein 1 (WISP1) is 

increasingly being recognized as a potential target for the complications tied to DM (Fig. 1). 

The WISP1 gene was identified in a mouse mammary epithelial cell line (156) and later 

shown to modulate gastric tumor growth (157). WISP1 is a target of the wingless pathway 

Wnt1, a cysteine-rich glycosylated protein that can modulate neuronal development, 

angiogenesis, bone growth, immune cell modulation, tumorigenesis, programmed cell death, 

and stem cell proliferation (158–170). WISP1 is present in a multiple sites throughout the 

body including the epithelium, heart, kidney, lung, pancreas, placenta, ovaries, small 

intestine, spleen, and brain (125). WISP1 is a matricellular protein that alters the signaling of 

other pathways to impact processes such as programmed cell death, extracellular matrix 

production, cellular migration, and mitosis (171). Early work highlighted that WISP1 can 

block p53 mediated DNA damage and prevent the induction of apoptosis (172). Yet, WISP1 

also can control other pathways of programmed cell death such as autophagy (125, 147) as 

well as apoptosis (172–175) and caspase activation (173, 174, 176).

WISP1 drives cellular proliferation and survival through several pathways that involve 

phosphoinositide 3 –kinase (PI 3-K), protein kinase B (Akt), sirtuins, and the mechanistic 

target of rapamycin (mTOR) (21, 153, 177). WISP1 can up-regulate PI 3-K and Akt during 

oxidative stress (147, 174, 176), DNA damage (172), fibroblast proliferation in airway 

remodeling (178), cardiomyocyte injury (173), vascular smooth muscle proliferation (179), 

and toxic β-amyloid (Aβ) exposure (180). Through Akt activation, WISP1 leads to the 

inhibitory phosphorylation of glycogen synthase kinase -3β (GSK-3β) (147, 173, 176, 178) 

that maintains the integrity of β-catenin and allows translocation of this protein to the cell 

nucleus to block apoptotic cell death (159, 164, 181–185).

WISP1 cellular protection also relies upon sirtuin and mTOR mediated pathways. Sirtuins 

are histone deacetylases that transfer acetyl groups from ε-N-acetyl lysine amino acids on 

the histones of DNA to regulate transcription (10, 131, 186–190). In regards to silent mating 

type information regulation 2 homolog) 1 (S. cerevisiae) (SIRT1), a member of the sirtuin 

family that can modulate cellular metabolism during DM (44, 54, 191, 192), WISP1 

increases SIRT1 activity and promotes SIRT1 nuclear translocation (174) that results in the 
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blockade of apoptotic injury (105, 193, 194). WISP1 controls the mammalian forkhead 

transcription factor FoxO3a, a mediator of cellular metabolism as well as caspase activity (9, 

37, 47, 150, 151) to maintain the integrity of SIRT1 during oxidative stress (174).

With mTOR, WISP1 can activate this pathway and phosphorylate the mTOR down-stream 

components of p70 ribosomal S6 kinase (p70S6K) and the eukaryotic initiation factor 4E-

binding protein 1 (4EBP1) (32, 195). In addition, WISP1 increases mTOR activity by 

blocking the inhibitory actions of the mTOR component proline rich Akt substrate 40 kDa 

(PRAS40) (196). WISP1 also oversees the post-translational phosphorylation of AMP 

activated protein kinase (AMPK) that is involved in glucose homeostasis (197–200) to 

control the activity of this protein as well as mTOR. AMPK regulates the activity of the 

hamartin (tuberous sclerosis 1)/tuberin (tuberous sclerosis 2) (TSC1/TSC2) complex that is 

an inhibitor of the mTOR complex mTOR Complex 1 (mTORC1) (201). When active, 

AMPK phosphorylates TSC2 as well as Raptor to block the activity of mTOR and the 

complex mTORC1 during energy stress (202). WISP1 modulates AMPK activation by 

differentially decreasing phosphorylation of TSC2 at Ser1387, a target of AMPK, and 

increasing phosphorylation of TSC2 at Thr1462, a target of Akt (180). As a result, WISP1 

increases TSC2 activation with concurrent limits placed upon AMPK activation. For proper 

cellular function and survival with WISP1, a minimal level of TSC2 and AMPK activity is 

necessary (180). The ability of WISP1 to modulate AMPK activity is critical for proper 

cellular metabolism during DM (200). In some cases, AMPK activity can lead to a reduction 

in insulin resistance and diminished oxidative stress mediated through activation of 

autophagy (8). In addition, AMPK may limit myocardial ischemia in experimental models 

of DM (203), promote proper metabolic function of cells (204), and block adipocyte 

differentiation, lipid accumulation, and obesity (205). However, the level of AMPK activity 

may be an important consideration in DM since in some experimental models of Type 2 

DM, AMPK activation can lead to apoptosis in pancreatic islet cells (206).

The reparative processes of WISP1 that involve DM also may be linked to stem cell 

proliferation, migration, and differentiation. Expression of WISP1 is increased during stem 

cell migration (207). WISP1 can influence induced pluripotent stem cell reprogramming 

(208, 209). In relation to cellular metabolism, WISP1 is differentially regulated during 

human embryonic stem cell and adipose-derived stem cell differentiation. WISP1 is up-

regulated during human adipocyte differentiation (154), in human embryonic stem cells, and 

is repressed in adipose-derived stem cells during hepatic differentiation (210). Furthermore, 

in studies that examine pancreatic regeneration, WISP1 is one of several genes that are over-

expressed during this process, suggesting that WISP1 may control a protective process 

during DM (211). WISP1 may be critical for the development of therapeutic strategies 

against vascular complications of DM. WISP1 expression is selectively up-regulated and 

may support vascular repair and regeneration during saphenous vein crush injury (212). 

WISP1 also promotes vascular smooth muscle proliferation that may be important for tissue 

repair during injury or affect restenosis following vascular grafting (179, 213). Importantly, 

WISP1 can lead to cellular senescence (214) and does not appear to foster excessive cellular 

proliferation in aging vascular cells (215) that may result in the development of 

atherosclerosis. As a potential endogenous reparative response to injury, WISP1 expression 
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is affected by weight change in humans and increases during insulin resistance and 

inflammation in glucose-tolerant individuals (154).

5. mTOR and DM

As noted with some of the metabolic pathways linked to WISP1, mTOR is one of the 

principal pathways necessary for the control of aging and cellular metabolism during DM (4, 

199, 216) (Fig. 1). Also known as the mammalian target of rapamycin and FK506-binding 

protein 12-rapamycin complex-associated protein 1, mTOR is a 289-kDa serine/threonine 

protein kinase that is encoded by a single gene FRAP1 (217–219). mTOR is a component of 

the protein complexes mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) 

(197, 199). mTORC1 is composed of Raptor (Regulatory-Associated Protein of mTOR), the 

proline rich Akt substrate 40 kDa (PRAS40), Deptor (DEP domain-containing mTOR 

interacting protein), and mLST8/GβL (mammalian lethal with Sec13 protein 8, termed 

mLST8). In contrast, mTORC2 is composed of Rictor (Rapamycin-Insensitive Companion 

of mTOR), Deptor, mLST8, the mammalian stress-activated protein kinase interacting 

protein (mSIN1), and the protein observed with Rictor-1 (Protor-1) (199, 220).

mTOR can influence both apoptotic and autophagic pathways of programmed cell death 

(221). In relation to cellular metabolism and DM, mTOR activation through glucagon-like 

peptide-1 agonists can protect pancreatic β-cells from cholesterol mediated apoptotic cell 

injury (222), promote pancreatic β-cell proliferation (136), and block neural apoptotic cell 

loss during DM through the epidermal growth factor receptor (133). mTOR can prevent 

apoptosis and limit insulin resistance as well as vascular thrombosis in patients with 

metabolic syndrome (223). Through mTOR activation, pathways associated with apoptosis 

and atherosclerosis also can be blocked (224).

Furthermore, control of mTOR is seen as a vital component to other strategies that may be 

effective to treat DM and its complications. For example, erythropoietin (EPO), a cytokine 

and an investigational therapeutic strategy for DM (12, 225), targets multiple cellular signal 

transduction pathways in the body (226, 227) and relies upon mTOR for cytoprotection (2, 

32, 42, 199, 228). EPO uses mTOR to increase cell survival during oxygen-glucose 

deprivation (195, 229), prevent cell injury during β-amyloid exposure (230), modulate bone 

homeostasis (231), improve cognitive function sepsis-associated encephalopathy (232), 

promote retinal progenitor cell survival during oxidant stress (233), prevent retinal 

degeneration in models of polycystic kidney disease (62), and foster the neuronal phenotype 

of adult neuronal precursor cells (234). During abnormalities in cellular metabolism, EPO 

facilitates wound healing during DM (50), attenuates AGE-induced toxicity (235), protects 

endothelial cell survival during experimental models of DM (66, 67), maintains cellular 

mitochondrial function and energy metabolism (70), limits high glucose-induced oxidative 

stress in renal tubular cells (138), and reduces the detrimental effects of obesity in animal 

models (14).

Agents that are effective in controlling DM rely also upon mTOR and the modulation of 

autophagy to offer cytoprotection. Metformin, a drug used to control hyperglycemia in DM, 

blocks mTOR activity and promotes autophagy. Metformin protects against endothelial cell 
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senescence (25), limits androgen up-regulation during prostate cancer through mTOR 

inhibition (236), and protects against neuronal apoptotic cell death (237). Metformin through 

pathways that activate AMPK limits cell loss during hypoxia through increased AMPK 

activity (238), prevents cardiomyopathy in experimental models of DM (239), enhances 

cardiomyocyte cell survival (34), and reduces cortical infarction during cerebral ischemia 

(240). Although AMPK under some conditions may provide cellular protection by limiting 

oxidative stress that can lead to vascular hypertension (95), increasing cell survival during 

hypoxia (238), and promoting autophagy that may resolve memory impairment (241), 

AMPK activity as previously noted also may have detrimental effects. In some studies 

examining cell survival, AMPK activity may foster neuroinflammation (242), lead to 

aberrant Aβ stress (243) and Aβ toxicity (180), and result in cardiac dysfunction (31) and 

cardiac tissue hypertrophy (244).

6. SIRT1 and DM

SIRT1, also known as NAD-dependent deacetylase sirtuin-1, has become a key component 

for the development of therapies directed against DM (4, 10, 186, 245) (Fig. 1). In addition 

to pathways previously described for WISP1, SIRT1 also employs signal transduction 

pathways of mTOR to govern cellular survival and metabolism. SIRT1, a histone 

deacetylase, is one of seven mammalian homologues of the yeast silent information 

regulator-2 (Sir2) that also oversee post-translational changes of proteins involved with 

cellular proliferation, survival, and senescence (25, 105, 193, 245). SIRT1 is dependent 

upon NAD+ as a substrate (54, 186, 246, 247). Through the salvage pathway of NAD+ 

synthesis, nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the conversion of 

nicotinamide to nicotinamide mononucleotide (53). Nicotinamide mononucleotide is 

converted to NAD+ by the nicotinamide/nicotinic acid mononucleotide adenylyltransferase 

(NMNAT) enzyme family (248). NAMPT activity not only increases cellular NAD levels, 

but also increases the activity of SIRT1 transcription.

SIRT1 activity also is overseen by NMNAT, mammalian forkhead transcription factors, and 

AMPK (186, 249–251). NMNAT modulates the deacetylating activity of SIRT1. 

Mammalian forkhead transcription factors bind to the SIRT1 promoter region that contains a 

cluster of five putative core binding repeat motifs (IRS-1) and a forkhead-like consensus-

binding site (FKHD-L) (127). This allows forkhead transcription factors, such as FoxO1, to 

control SIRT1 transcription and increase SIRT1 expression (252). AMPK that 

phosphorylates TSC2 and inhibits mTORC1 activity (21, 199) can increase the cellular 

NAD+/NADH ratio leading to the deacetylation of downstream SIRT1 targets that include 

the peroxisome proliferator-activated receptor-gamma coactivator 1 (PGC-1α), FoxO1 (37), 

and FoxO3a (253). AMPK also can increase NAMPT during glucose restriction that results 

in increased NAD+ and decreased levels of nicotinamide (254), an inhibitor of SIRT1 (3). 

SIRT1 activators, such as resveratrol, also can activate AMPK through SIRT1 dependent 

and independent mechanisms (253, 255). Importantly, the level of SIRT1 activity can yield 

significant consequences for cellular protection. Insufficient SIRT1 activity can be 

detrimental for vascular cell survival (105, 193, 256), protection against cardiovascular 

disease (85), and prevention of neuronal injury (174, 257, 258). However, a reduction in 
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SIRT1 activity also may be required to promote cellular survival in systems involving 

trophic factors such as as insulin growth factor-1 (259).

Cellular survival through SIRT1 is closely regulated through apoptotic and autophagic 

pathways. SIRT1 can control the early phases of apoptotic cell death by preventing the 

externalization of membrane PS exposure (105, 131, 193, 260). In the presence of tumor 

necrosis factor-α (TNF-α), SIRT1 can protect endothelial progenitor cells (261) and enhance 

skeletal myoblast survival (262). SIRT1 also can limit neuronal apoptosis in models of 

traumatic brain injury (263). Loss of SIRT1 in mouse cochlear neurons and in the auditory 

cortex is associated with hearing loss (264) and loss of SIRT1 activity in human 

mesenchymal stem cells results in a reduced proliferation rate with increased apoptosis 

(265). In addition, decreased levels of SIRT1 can occur in smokers and chronic obstructive 

disease patients that leads to endothelial progenitor cell dysfunction with apoptotic cell 

death (266). Decreased levels of SIRT1 activity can be the result of apoptotic pathways 

associated with p38 (267) and c-Jun N-terminal kinase -1 (JNK1) (46) as well as caspase 

degradation of SIRT1 (268) that can then lead to further activation of caspases (268, 269). 

As previously described, pathways such as WISP1 prevent SIRT1 degradation and block 

caspase activation that would otherwise lead to the degradation of SIRT1 (174, 270–272).

SIRT1 also is dependent upon the induction of autophagy to foster cellular survival. For 

example, SIRT1 activity that promotes autophagy is necessary for the protection of 

chondrocytes during oxidative stress, since knockdown of the forkhead transcription factors 

FoxO1 and FoxO3 lead to loss of SIRT1 activity, reduced autophagic related proteins, and 

subsequent cell death (92). In models of cognitive loss that employ chronic intermittent 

hypoxia hypercapnia exposure, SIRT1 activation is able to limit apoptotic cell injury and 

improve cognition through the induction of autophagy (273). During pathways that are 

associated with cellular metabolism, SIRT1 promotes autophagy in mitochondria (274) that 

may be required to maintain a healthy mitochondrial pool (275). SIRT1 up-regulation in 

conjunction with AMPK activation leads to autophagy that is necessary for cellular 

protection in endothelial cells exposed to oxidized low density lipoproteins that can lead to 

atherosclerosis (251). These studies that support a protective role for SIRT1 with autophagy 

and AMPK activation suggest an inverse relationship with mTOR (4). SIRT1 blocks mTOR 

activity and promotes autophagy to preserve the integrity of embryonic stem cells during 

oxidant stress (190). SIRT1 also inhibits mTOR signaling to promote neuronal growth (276) 

and assist with mesangial cell proliferation during high glucose exposure (277). Yet, it 

should be noted that not all cases of cytoprotection with SIRT1 required induction of 

autophagy as well as potential mTOR inhibition. In pulmonary models of oxidative stress 

such as the exposure to cigarette smoke in bronchial epithelial cells, SIRT1 blocks cell 

injury through the inhibition of of autophagy (187, 278).

Activation of SIRT1 in mature and differentiated cells during DM is in most instances 

cytoprotective and can avert insulin resistance. SIRT1 activation activation has been shown 

to increase lifespan in higher organisms such as Drosophila and protect cells from oxidative 

stress (279, 280). The presence of SIRT1 appears vital for the prevention of insulin 

resistance. Loss of SIRT1 can result in insulin resistance and excessive hepatic lipid 

accumulation (44). Gene deletion or inhibition of SIRT1 can alter insulin signaling by 
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interfering with insulin stimulated insulin receptor phosphorylation and glycogen synthase 

(281). Over-expression of SIRT1 can decrease hepatic steatosis and improve insulin 

sensitivity that leads to improved glucose homeostasis (48). In addition, SIRT1 also is 

utilized by the cytokine EPO to block cell injury during DM. EPO can increase endogenous 

cellular SIRT1 activity and foster the subcellular trafficking of SIRT1 to the nucleus to 

result in endothelial cell protection during oxidative stress (193). SIRT1 also is one 

component that allows EPO to maintain adipose cell energy homeostasis and protect against 

metabolic disorders such as DM (192).

SIRT1 may avert insulin resistance through a number of mechanisms that involve fat 

mobilization (44), mTOR signaling (282), as well as modulation of inflammation (101). 

SIRT1 also can increase insulin signaling in insulin-sensitive organs through pathways that 

involve Akt and PI 3-K (105, 131, 193, 258, 283, 284) as well as stimulate glucose-

dependent insulin secretion from pancreatic β cells by repressing UCP2 (285). Regulation of 

insulin sensitivity by SIRT1 may require AMPK. Endothelial cell protection from oxidized 

low-density lipoproteins has been shown to involve SIRT1 as well as AMPK activation 

(205, 251). Interestingly, SIRT1 activation with AMPK also may be necessary to protect 

against spatial memory impairment in combined experimental models of DM and 

Alzheimer’s disease, since these studies demonstrate a loss of SIRT1 and AMPK activities 

that lead to cognitive loss, oxidative stress, and neuronal cell apoptosis (286).

In addition to mature and differentiated cells, SIRT1 also prevents cell injury in stem cells 

that may be important for treatments related to DM. Recent studies have suggested that stem 

cell strategies may be effective for at least treating and maintaining glucose homeostasis 

during DM in animal models (287, 288). SIRT1 has been shown to be necessary to modulate 

autophagic flux (289) and for the transition of muscle stem cells from a quiescence state to 

an active state through the induction of autophagy (290). SIRT1 blocks apoptotic cell injury 

during oxidative stress through the induction of autophagy in endothelial progenitor cells 

(291). In the cardiovascular system, increased SIRT1 expression enhances the survival of 

cardiomyoblasts (292). SIRT1 prevents senescence and impaired differentiation in 

endothelial progenitor cells (293). Mesenchymal stem cells that are subjected to SIRT1 

over-expression show increased blood vessel density in the area of cardiac infarcts, reduced 

cardiac remodeling, and improved cardiac performance in rodent models (294). SIRT1 also 

may assist aged stem cells that are senescent to foster repair. Aged mesenchymal stem cells 

that were subjected to pre-conditioning with glucose depletion demonstrated increased 

expression of SIRT1 in addition to other proliferative entities such as growth factors to lead 

to improved cardiac performance (295). Other work demonstrates that SIRT1 is necessary 

for endothelial progenitor cell mobilization and vascular repair during DM in mice (191). In 

rodent models of DM, SIRT1 can preserve angiogenesis derived from bone marrow-derived 

early outgrowth cells (296). In addition, patients with Type 2 DM show a down-regulation 

of endothelial progenitor cells that has been associated with decreased SIRT1 protein levels 

(297).

However, SIRT1 activation may require a level of modulation since in some systems of the 

body, decreased SIRT1 activity is necessary for proper stem cell development. In the 

nervous system, loss of SIRT1 expression with the induction of heat shock protein -70 
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(HSP70) is required to promote neural differentiation, maturation of embryonic cortical 

neurons (298), and the differentiation of human embryonic stem cells into motoneurons 

(299). SIRT1 also is considered a negative regulator of subventricular zone and hippocampal 

neural precursors in murine animal models, since knockdown of SIRT1 does not eliminate 

neural precursor numbers but increases the production of neurons in the subventricular zone 

and the hippocampus (300). In mouse neural stem cells, neuronal differentiation can be 

driven through the microRNA miR-34a that leads to decreased SIRT1 expression and DNA-

binding of p53 (301). Yet, a level of SIRT1 activity appears to be required for different cell 

types, since in studies with neuronal differentiation, increased expression of SIRT1 

enhanced the astrocytic subpopulation of cells that are necessary to support neuronal cell 

populations (301).

7. Future Considerations

DM affects a significantly greater portion of the world’s population each year with many 

additional individuals remaining undiagnosed. Risk factors such as obesity and concurrent 

disorders with DM that can involve the cardiovascular systems, renal system, and the 

nervous system ultimately lead to significant death and disability with staggering healthcare 

costs consuming large portions of the GDP for many countries. Current therapies for both 

achieving glucose homeostasis during DM and averting the complications of DM are limited 

and require the development of novel strategies that can address oxidant stress pathways to 

regulate programmed cell death through both apoptosis and autophagy. WISP1, a CCN 

family member, drives cellular proliferation and survival through mechanisms that oversee 

PI 3-K, Akt, SIRT1, and mTOR that ultimately can limit insulin resistance, lead to stem cell 

regeneration of injured tissues, and enhance cellular protection through modulation of 

apoptosis and autophagy during DM (Fig. 2). Independently, mTOR can block apoptotic 

pathways to enhance pancreatic β-cell proliferation, resolve insulin resistance, inhibit 

pathways tied to atherosclerosis, and avert oxidative stress mediated cellular injury through 

agents that involve cytokines such as EPO and oral hypoglycemics such as metformin. In 

some pathways with mTOR, it is the inhibition of mTOR that is required for cytoprotective 

pathways of autophagy to proceed. Although SIRT1 employs “anti-apoptotic” mechanisms 

to increase cell survival and preserve insulin signaling during oxidant stress exposure, 

SIRT1 also appears at times to have an inverse relationship with mTOR to block mTOR 

activation and foster autophagy for the preservation of cellular energy organelles involving 

mitochondria, the promotion of stem cell proliferation, and the prevention of apoptosis. 

Pathways linking WISP1, mTOR, and SIRT1 with apoptosis and autophagy involve AMPK, 

a pathway intimately tied to glucose homeostasis that can prevent tissue ischemia, insulin 

resistance, cognitive loss, and cell death. Targeting WISP1, mTOR, and SIRT1 for the 

treatment of glucose control in DM as well as the complications of this disease opens 

exciting prospects to eventually limit the devastating and growing impact DM has on the 

world’s population. Yet, it is imperative that future work addresses the fine biological 

control WISP1, mTOR, and SIRT1 hold over metabolism to precisely modulate cellular 

signaling, since these pathways under specific conditions can yield unwanted clinical 

outcomes that involve induction of fibrotic tissue injury (161), tumorigenesis (302–305), 

inflammation (242), progression of neurodegenerative disorders (180, 243), cardiac 
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dysfunction (31), loss of neuronal embryonic stem cells that may limit reparative processes 

in the nervous system (298, 300), and apoptosis in pancreatic islet cells (206).
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Figure 1. 
Topical Highlights for WISP1, mTOR, and SIRT1 in Diabetes Mellitus
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Figure 2. Apoptosis and Autophagy Pathways for WISP1, mTOR, and SIRT1 During Oxidative 
Stress and Diabetes Mellitus
Oxidative stress is an important determinant of cell injury in diabetes mellitus (DM) and 

leads to the generation of reactive oxygen species (ROS) that can significantly affect cellular 

metabolism. Ultimately, DM through oxidative stress can lead to apoptotic cell injury that 

consists of an early phase involving the loss of plasma membrane lipid phosphatidylserine 

(PS) asymmetry and a later phase that leads to genomic DNA degradation. During 

autophagy in DM, macroautophagy plays a principal role and involves the sequestration of 

cytoplasmic proteins into autophagosomes that fuse with lysosomes for degradation and 

recycling for future cellular processes. WISP1, mTOR, and SIRT1 through shared as well as 

independent pathways can oversee phosphoinositide 3 –kinase (PI 3-K), protein kinase B 

(Akt), AMP activated protein kinase (AMPK), and the the hamartin (tuberous sclerosis 1)/

tuberin (tuberous sclerosis 2) (TSC1/TSC2) complex to control multiple biological 

outcomes that include insulin resistance, stem cell proliferation, glucose homeostasis, and 

cell survival. The cytokine erythropoietin (EPO) uses wingless pathways of Wnt1, SIRT1, 

and mTOR to help maintain mitochondrial function and vascular survival during DM. 

Metformin, a hypoglycemic agent, limits mTOR activity and promotes autophagy to not 

only regulate serum glucose, but also limit cellular injury during DM. mTOR is an essential 

component of the protein complexes mTOR Complex 1 (mTORC1) and mTOR Complex 2 

(mTORC2). Activation of mTOR leads to down stream signaling with the cytoprotective 

pathways of p70 ribosomal S6 kinase (p70S6K) and the eukaryotic initiation factor 4E-
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binding protein 1 (4EBP1). In contrast, mTOR activity can be blocked by the proline rich 

Akt substrate 40 kDa (PRAS40) as well as by AMPK through the TSC1/TSC2 complex.
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