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Abstract: Finding backbone substructures from the Protein Data Bank that match an arbitrary

query structural motif, composed of multiple disjoint segments, is a problem of growing relevance

in structure prediction and protein design. Although numerous protein structure search approaches
have been proposed, methods that address this specific task without additional restrictions and on

practical time scales are generally lacking. Here, we propose a solution, dubbed MASTER, that is

both rapid, enabling searches over the Protein Data Bank in a matter of seconds, and provably cor-
rect, finding all matches below a user-specified root-mean-square deviation cutoff. We show that

despite the potentially exponential time complexity of the problem, running times in practice are

modest even for queries with many segments. The ability to explore naturally plausible structural
and sequence variations around a given motif has the potential to synthesize its design principles

in an automated manner; so we go on to illustrate the utility of MASTER to protein structural biol-

ogy. We demonstrate its capacity to rapidly establish structure–sequence relationships, uncover
the native designability landscapes of tertiary structural motifs, identify structural signatures of

binding, and automatically rewire protein topologies. Given the broad utility of protein tertiary frag-

ment searches, we hope that providing MASTER in an open-source format will enable novel advan-
ces in understanding, predicting, and designing protein structure.

Keywords: protein structure search; designability landscape; topology remodeling; computational
protein design

Introduction
The observed modularity of protein structure—that

is, the frequent recurrence in nature of local struc-

tural patterns—has had a strong influence on meth-

ods of computational structural biology. Modularity

is evident on the level of secondary structure, with

reliable amino acid propensities emergent from

structural databases,1 assembly of secondary struc-

tural elements (SSEs),2–5 and even conserved

domains.6 Computational methods have taken

advantage of this in a multitude of ways. The

observed recurrence of compact folds in unrelated

native proteins gave rise to various template-based

structure prediction approaches.7–9 Conformational

sampling based on previously observed contiguous

structural fragments has revolutionized both struc-

ture prediction10–12 and protein design.13–15 As the

Protein Data Bank (PDB) continues to grow, more

ambitious uses of fragment-based data, incorporat-

ing both secondary and tertiary information, are

being proposed for design and prediction.16–19

Given the increased use of protein substructure

statistics, the problem of rapidly finding close

matches to a structural motif is growing in signifi-

cance. We find that a particularly useful flavor of

this general problem is the identification of precise
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atom-for-atom matches to arbitrary constellations of

disjoint backbone fragments. We refer to this as the

atomistic tertiary fragment search (ATFS) problem,

and propose an efficient method to solve it here. We

believe ATFS is of high value for many applications

in structural biology, and we carry out several com-

putational experiments demonstrating this in this

study. A particularly useful feature of ATFS is that

it does not require sequence constraints, which ena-

bles the discovery of natural sequence–structure

relationships, as we have shown previously15,20 and

further demonstrate here.

Numerous methods have been proposed under

the general umbrella of the protein structure search

problem.21 Most development has focused on search-

ing for structural similarity on the level of whole

proteins or domains,22–28 with intended applications

including function prediction and evolutionary infer-

ence. This is a challenging problem, because one

needs to find good query–target alignments while

simultaneously choosing the best subset and permu-

tation of query residues upon which the alignment

is based. Methods for identifying matches to smaller

protein substructures have also been pro-

posed.20,29–32 Search techniques used can be broken

down into either heuristics-based approaches or

those looking for provably optimal matches based on

a given similarity score. Heuristic methods have

dominated because of computational demands of the

problem.21 Further, a number of ad hoc similarity

scoring functions have been proposed as researchers

have attempted to codify the intuition inherent in

comparing structures manually. Such functions often

assume the importance of certain structural fea-

tures, such as the presence of canonical SSEs.

Although this may be appropriate in most cases

when querying with native structures, it may not

apply as readily to simulated conformations.

The ATFS problem we consider here differs

from the generic substructure search in that it fur-

ther stipulates that all residues in the query are to

be matched and the query connectivity is to be pre-

served (i.e., residues bonded in the query must also

be bonded in matches). These additional constraints

potentially simplify the problem a great deal, such

that heuristics may not be necessary and exact

methods could be efficient. Surprisingly, however,

relatively little effort has been directed toward

addressing this problem explicitly, without addi-

tional restrictions (e.g., preservation of sequence

patterns) or heuristic requirements (e.g., presence of

SSEs). We arrived at the need for ATFS through our

work on computational protein design,15 having

since identified more applications, some of which we

demonstrate here. Other researchers have also

found it necessary to perform ATFS-like operations

in protein design studies, devising tailored solutions

on a case-by-case basis.18,33 It is thus clear that

there is a growing need for a robust ATFS engine

based on a universally applicable similarity metric

that does not a priori assume the importance of cer-

tain structural features.

To address this need, we have developed an effi-

cient exact ATFS method based on backbone root-

mean-square deviation (RMSD) as the similarity

metric. The method, dubbed MASTER (Method of

Accelerated Search for Tertiary Ensemble Represen-

tatives), takes as query a structural fragment com-

posed of one or more disjoint segments and provably

finds all fragments from a database matching the

query to within a given RMSD threshold. The

method is fast, enabling searches over the PDB in a

matter of seconds (for realistic thresholds), with the

running time in practice most sensitive to the num-

ber of matches falling below the RMSD cutoff. This

supports the notion that heuristics may not be nec-

essary for ATFS. In fact, we show that application of

typical heuristic filters (based on intersegment dis-

tances or local RMSD) either moderately speeds up

the search at the loss of some matches (when filters

are stringent) or preserves all matches but fails to

produce any speedup (when filters are loose).

We previously proposed a different ATFS

method, MaDCaT, which used a distance map-based

similarity score as the search metric.20 Like MAS-

TER, MaDCaT finds provably optimal matches, and

we have used it extensively in both design and

structural analysis applications.15,20 In so doing, we

have found backbone RMSD to be a much better

structural similarity metric, as it orders matches

much more in line with our structural intuition

about their relative “closeness” to the query. Fur-

ther, though MaDCaT was already highly opti-

mized,20 we found that its speed would be a limiting

factor in higher-throughput applications (e.g., sys-

tematic exploration of motif geometries). The devel-

opment of MASTER, motivated by the need for a

fast RMSD-based search engine, resulted in at least

an order of magnitude speedup relative to MaDCaT

for most queries we have tested.

In this study, we elude to applications in protein

design and structure prediction that we believe are

enabled by rapid solutions to ATFS. We demonstrate

that MASTER searches can be used to establish the

apparent designability landscape of a structural

motif as a function of its geometric parameters, and

to provide detailed information on the sequence fea-

tures necessary to encode different geometries. We

show that ATFS easily lends itself to functional min-

ing and annotation, illustrating that putative pep-

tide binding sites can be rapidly identified with just

one example of a binding motif. Further, we demon-

strate that ATFS can be used to “fill in” missing

pieces of structure, enabling the rapid redesign of

topology. We are providing MASTER as an open-

source C11 package in hopes that it will be useful
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to the community in tackling these and related

applications and to stimulate the further develop-

ment of efficient ATFS engines.

Results
An ATFS query is a structural fragment consisting

of one or more disjoint segments, each representing

a contiguous stretch of amino acids. A valid align-

ment of this fragment is a one-to-one correspondence

between residues of the query and a subset of resi-

dues from a database structure, such that each

query segment maps onto a sequence-consecutive

segment in the database structure. A valid align-

ment is a match, when the resulting best-fit RMSD

is below a prespecified threshold.

In developing MASTER we assumed that the

RMSD of each individual query segment aligned onto

each possible position in the database is easily comput-

able. MASTER currently calculates these RMSDs

explicitly on the fly (as needed), but much better per-

formance can be achieved by taking advantage of the

metric property of RMSD,34 parallelization, and/or

faster-to-compute RMSD bounds.35,36 We decided not

to focus on this aspect of the problem, choosing rather

to pour our effort into addressing the issue making

ATFS “difficult”—namely, the potential combinatorial

explosion of possible alignments when the query struc-

ture is composed of multiple disjoint segments.

To contain this explosion, MASTER adopts a

variant of the classical branch and bound approach,

using backbone RMSD as the search metric (the cur-

rent implementation searches by CA-atom RMSD,

but the algorithm is easily generalizable to more

than one atom per residue). The main idea behind

MASTER is that once alignment positions are cho-

sen for the first one or more segments, one can cal-

culate exact bounds on the locations of the

remaining unaligned segments (i.e., their distances

relative to the aligned ones) and on their individual

RMSDs (see Fig. 1). MASTER uses a tailored data-

base format that allows it to take advantage of these

bounds to very quickly retrieve the restricted set of

possible alignments for currently unaligned seg-

ments, making the search very fast in practice.

Algorithm

In the following description, RMSD will denote the

root-mean-square deviation upon optimal superposi-

tion. MASTER defines a “central” residue for each of

the disjoint segments in the query (a residue

roughly in the middle of each segment; see Materials

and Methods section) and limits the combinations of

segment alignments by bounding center-to-center

distances. Given a query, its n segments are first

sorted by number of residues in descending order.

The first segment, of length n1, is considered for

alignment onto all equally long sequence-consecutive

segments from a given database structure T, with

the RMSD of each of these alignments calculated.

We next apply a notion that is used repeatedly in

the algorithm—namely that given a partial align-

ment of length np, if its RMSD is above r0

ffiffiffiffiffiffiffiffiffiffiffiffi
N=np

p
,

where N is the length of the entire query and r0 is

the requested overall RMSD cutoff, then this align-

ment can be safely eliminated as a possibility (i.e., it

will never lead to a full alignment with RMSD below

r0). Thus, if the RMSD of the first segment is above

r0

ffiffiffiffiffiffiffiffiffiffiffiffi
N=n1

p
, we can safely skip the corresponding

alignment. If instead the alignment passes, we go on

to consider alignments of the second segment. How-

ever, rather than checking all possibilities, we pur-

sue only those that are at a distance from the first

aligned region that is reasonably close to the dis-

tance between the first and second segments in the

query (see Fig. 1). We use central residues to define

intersegment distances and apply an exact bound to

limit candidates. Specifically, as we prove in the

Materials and Methods section, given a partial

alignment with overall RMSD rp and length np, the

distance to the next segment considered for

Figure 1. Schematic representation of the MASTER search algorithm. (A) The search query, consisting of two disjoint seg-

ments, is shown on the left, and a database structure on the right. (B) A potential location of a match for the first segment

(black dot designates the central residue). Given this alignment, possible locations for aligning the second segment are limited,

as shown in (C), by the distance from the central residue of the first segment [see Eq. (10)]. Further, the individual RMSD of

aligning the second fragment is also constrained given the error already incurred in aligning the first [see Eq. (6)]; so, an even

smaller set of possibilities is available for the second segment. One of these is shown in (D).
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alignment cannot deviate by more thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 r2

0 �N2r2
p � np

� �r
from its value in the query. So,

as the alignment grows accumulating length (and

generally RMSD), the tolerance on distance devia-

tions becomes lower. This is one of the main reasons

for the efficiency of MASTER, allowing it to contain

the potential combinatorial explosion of ATFS. Fur-

ther, our disk-based database is designed to enable

the quick retrieval of all atoms within a certain dis-

tance range of a given source atom (see Materials

and Methods section). Together with the provable

distance bound above, this produces a limited list of

possible alignment locations for the second segment.

Each of these locations is then visited, and three

separate RMSD bounds are applied before continu-

ing. First, the RMSD of the second-segment align-

ment on its own is checked against r0

ffiffiffiffiffiffiffiffiffiffiffiffi
N=n2

p
(where

n2 is the length of the second segment). If it is above

the bound, the alignment can be safely eliminated

as an option for the second segment altogether. That

is, it can be marked as invalid for the segment and

will never have to be visited again as part of any

combination. If the bound fails to eliminate, we then

check the same RMSD against
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0 �N2r2
1 � n1

� �
=n2

q
.

This bound requires no additional RMSD calcula-

tions and gives the potential to eliminate the align-

ment for the second segment in the context of the

individual RMSD already accumulated by the first

segment (though the former cannot be marked as

invalid by itself). Finally, in the case where this

bound does not apply, we check the total RMSD of

segments 1 and 2 together against r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N= n11n2ð Þ

p
.

An RMSD above this value allows for the elimina-

tion of the partial alignment, though each of the

alignments of segments 1 and 2 cannot be individu-

ally eliminated. If the partial alignment passes all

bounds, the process repeats recursively for subse-

quent segments just as we described above for the

second segment. When a valid alignment location is

found for the last segment, the corresponding match

is recorded. Taking this process until completion for

the given structure T will find all matches with

RMSD below r0. The pseudo-code of the method is

outlined in Table I (omitting some details).

MASTER is fast in practice

To thoroughly test the practically relevant running

time performance of MASTER, we applied it to search

for matches to a highly diverse set of 50 substructure

motifs under a range of RMSD cutoffs. The motifs var-

ied in overall size (from 6 to 50 residues), topology (a-

helical, b-sheet, noncanonical secondary structures in

a variety of combinations), and number of disjoint

segments (from 1 to 5; see Fig. 2). A nonredundant

subset of the PDB, comprising 12,661 protein struc-

tures generated by using BLASTClust at 30%

sequence identity, was used as the search database

(hereafter referred to as nrPDB30).37 Searches were

performed under six different RMSD cutoffs: 0.4, 0.6,

0.8, 1.0, 1.5, and 2.0 Å.

Table II summarizes the search times (in sec-

onds) for all motif–RMSD combinations as a function

of two parameters that most influenced the perform-

ance—the number of disjoint segments in the query

and the number of matches given the RMSD cutoff.

Our implementation of the Kabsch algorithm38 per-

forms around a million superpositions per second

(for up to �40-residue fragments; see Materials and

Methods section); so, it took on the order of 3 sec to

align a single segment onto every residue in our

database. Because MASTER aligns the first query

segment onto every possible database position, this

is a lower bound for the search time. Remarkably, in

Table I. Basic pseudo-code for the MASTER search
algorithm (some time-saving features of the algorithm
are omitted for clarity)

Input: query Q with L segments
Input: database structure T

Output: match list M

1 set C(k) to all residues in T, for k51. . .L

2 set M to an empty set
3 set m to an empty match
4 return masterSearch(C,m,1)
5 masterSearch(C,m,k) {
6 for each i 2 C(k) do
7 set r to RMSD(k,i)a

8 if r>maxA(k)b

9 eliminate i from the list C(k)

10 continue
11 end if
12 if (r>maxB(k)c) OR (cRMSD(k)d>maxC(k)e)
13 continue
14 end if
15 set m(k) to residue i

16 if (k 55 L)
17 insert match m into M

18 else
19 [dmin, dmax]5distBounds(k)f

20 C(k11)5residues in T within
[dmin, dmax] of m(k)

21 masterSearch(C,m,k11)
22 end if
23 end for
24 }

a Computes the individual RMSD of segment k when
aligned onto T with position i corresponding to the central
residue of k.
b Upper bound on the RMSD of the k-th segment, assum-
ing a perfect fit for all others [Eq. (5)].
c Upper bound on the RMSD of k-th segment given the
residuals already accumulated by segments 1..k21 [Eq.
(6)].
d Computes the cumulative RMSD incurred by the first k

segments aligned together.
e Upper bound on the joint RMSD of the first k segments
assuming a perfect fit for the remainder [Eq. (7)].
f Computes upper and lower bounds on the distance
between k-th segment and the next one to be aligned,
based on the currently accumulated residuals [Eq. (10)].

Zhou and Grigoryan PROTEIN SCIENCE VOL 24:508—524 511



most cases, the full search took not much longer,

with significant exceptions corresponding to cases

with very many matches (e.g., over 106), large

queries (e.g., four or five segments), or both. The

single-segment searches can certainly be improved,

given the metric property of RMSD34 and the exis-

tence of efficient lower bounds.35,36 However, our

focus here was on containing the combinatorial

explosion, and MASTER seems to do this well as

even the large motifs under RMSD cutoffs that

recover millions of hits run in seconds to 1–2 min.

This is particularly impressive given that the MAS-

TER database resides on disk, such that coordinates

and other information are read on the fly as the

search proceeds. However, because the database for-

mat was tailored around access patterns during a

search (see Materials and Methods section), fraction

of the total run time due to I/O was minor, ranging

from 0.0% to 1.2%, with a median of 0.25%. Finally,

the quoted times are for a single 2.7-GHz Intel Xeon

processor. Because ATFS is an embarrassingly paral-

lel problem, close-to-linear speedups can be expected

from parallelizing the search by splitting the data-

base. Thus, MASTER makes ATFS an easily man-

ageable problem in practice, even for large motifs

and very generous RMSD cutoffs.

Despite the aforementioned time-saving techni-

ques in MASTER, the problem still remains expo-

nentially complex in nature, such that for large-

enough motifs and generous-enough cutoffs, the

time complexity will still become unmanageable.

The beginning of this trend is seen even among the

queries considered here (see Fig. 3). Importantly,

however, the run time increases significantly only

when the RMSD cutoff used produces very many

matches (and only when the query motif has many

disjoint segments; see Fig. 3). Arguably, this does

not correspond to a practical use case, because one

would not expect a large and complex motif to have

millions of meaningful matches. In fact, in practice,

this would indicate that the chosen RMSD cutoff

was too loose. Because it is not always easy to

anticipate the correct RMSD cutoff to use, MASTER

offers an option to limit the number of matches to

some integer N. This allows the initial RMSD cutoff

to be set loosely, and once the number of found

matches reaches N, the cutoff is lowered speeding

up the search. The result is that the provably best-

by-RMSD N matches are quickly found, without the

need to know the right RMSD cutoff a priori.

Because in practice one rarely expects or needs

more than 1000 matches, we repeated all test runs

Figure 2. Fifty structural fragments used to test the performance of MASTER. Disjoint segments are designated with cartoon

color; number of segments ranged from 1 to 5, with 10 motifs considered in each category. Within a given number of seg-

ments, motifs are ordered by increasing total number of residues, in column-major fashion.

Table II. MASTER search times as a function of the number of disjoint fragments in the query and the number of
returned matches (determined by the requested RMSD cutoff)

Matches

Segments

1 2 3 4 5

0–10 3.1–4.6 (32) 2.5–6.3 (35) 2.7–21 (26) 2.7–35 (33) 2.8–21 (31)
1012102 3.7–4.4 (6) 3.0–7.5 (5) 2.9–9.4 (11) 2.9–72 (14) 9.5–41 (12)
1022103 3.3–4.2 (5) 3.0–6.4 (3) 3.5–28 (7) 3.4–90 (7) 17–119 (10)
1032104 3.2–3.8 (8) 3.7–57 (5) 5.0–58 (6) 5.4–146 (4) 90–210 (6)
1042105 3.4–3.8 (3) 5.2–22 (4) 9.4–37 (6) 41 (1) 482 (1)
1052106 3.8–4.8 (4) 7.7–37 (6) 57–103 (3) 143 (1) (0)
1062107 5.5–5.7 (2) 43–82 (2) 162 (1) (0) (0)

Ranges of times are indicated in seconds and the number of different queries in each category is shown in parentheses.
Cases with average running times over 1 min are shown in gray.
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with N set to 1000 and the most loose RMSD cutoff

considered (2.0 Å). The results summarized in Table

III show that for the more complex motifs, this

improves the running time by as much as an order

of magnitude. Note that in practice, an RMSD cutoff

of 2.0 Å would likely be too loose for most circum-

stances; so, practical running times would be even

lower than these.

To our knowledge, no other ATFS approach

offers such performance, while guarantying to find

all matches and not requiring additional constraints

(e.g., sequence filters). Our previously proposed

method MaDCaT also finds all matches, but it uses

a distance matrix-based metric. We have found that

MASTER’s search time consistently outperforms

that of MaDCaT, in some cases by orders of magni-

tude. In particular, finding the top 1000 matches by

RMSD using MASTER was, on average, 34 times

faster (over all queries considered in Fig. 2) than

finding the top 1000 matches by distance-map simi-

larity with MaDCaT (maximal speedup was 220;

Supporting Information Fig. S1 shows speedups for

all queries).

Greedy heuristics provide only a limited
performance boost

RMSD does not necessarily grow monotonically with

increasing alignment size. Thus, many poor partial

alignments cannot be provably eliminated because it

is formally possible that the missing part of the

alignment will bring the total RMSD below the

desired cutoff. On the other hand, intuition suggests

that alignments that start off very poorly will not

generally result in good matches. We have consid-

ered three greedy rules one might apply to eliminate

poor partial alignments early: (1) the accumulated

residual for the partial alignment seems too high

given the fraction of the alignment covered; (2) dis-

tances between disjoint segments in the partial

alignment deviate too strongly from those in the

query; (3) backbone dihedral u/w angles in the par-

tial alignment differ significantly from those in the

query. Application of such greedy filters would speed

up the search, but may lead to some matches being

missed. Further, the tradeoff between the speed gain

and matches lost is a characteristic of the problem

itself. If RMSD-based ATFS had considerable opti-

mal substructure (with respect to the greedy filters),

one would expect to gain significant speedups with

little loss in match coverage. To test this characteris-

tic, we implemented the three filters above in MAS-

TER and repeated the running time analysis with

each. Specifically, Heuristic 1 limited how quickly

the RMSD of a partial alignment could grow with

increasing alignment size via:

r2
p �

r2
o b N2np

� �
1np

� �
np

(1)

where ro is the overall RMSD cutoff, rp and np are

the RMSD and length of the current partial align-

ment, respectively, N is the total query length, and

Figure 3. MASTER search time as a function of the number

of disjoint segments in the query and the number of matches

(determined by the RMSD cutoff used). Each dot corre-

sponds to a single query–RMSD cutoff combination, with

those taking more than a minute to search marked as

squares. Queries with different numbers of segments are dif-

ferentiated by color for clarity. The search slows down sub-

stantially only when the specified RMSD cutoff corresponds

to a very large number of matches, and mostly with complex

queries. Inset shows the same plot with the Z-axis in logarith-

mic scale.

Table III. Speedup of MASTER obtained by limiting the number of matches to the top 1000 and setting a loose ini-
tial RMSD cutoff of 2.0 Å

Matches

Segments

1 2 3 4 5

1032104 1.0–1.0 (8) 1.0–1.6 (5) 1.0–1.3 (6) 1.0–1.5 (4) 1.0–1.6 (6)
1042105 1.0–1.1 (3) 1.2–2.9 (4) 1.4–4.0 (6) 1.7 (1) 2.3 (1)
1052106 1.2–1.5 (4) 1.8–7.3 (6) 7.0–10 (3) 5.4 (1) (0)
1062107 1.7–1.7 (2) 9.6–9.6 (2) 22 (1) (0) (0)

Speedups are measured relative to searches with the same cutoff but without limiting the number of matches. Results are
categorized according to the number of query segments and total number of matches under 2.0 Å. Queries for which there
were fewer than 1000 matches under 2.0 Å were discarded for this analysis. Ranges of speedups in each category are indi-
cated, with the number of examples shown in parentheses.

Zhou and Grigoryan PROTEIN SCIENCE VOL 24:508—524 513



b is a tuning parameter determining the degree of

greediness (higher values mean more greediness).

With b51, RMSD is required to grow no faster than

linearly with query size and is perhaps the highest

reasonable level of greediness. On the other hand, b

50 corresponds to the case where the partial align-

ments are required to have an RMSD no worse than

the overall cutoff ro. Although this is a looser filter,

it is still greedy because RMSD is not monotonic

with alignment size; so, lower values of b can be

used to limit the degree to which local RMSD can be

worse than the overall cutoff. For our experiments

below, we used the fairly greedy value of b50:5. For

Heuristic 2, a partial alignment was considered

invalid if the deviation in any intersegment dis-

tance, with respect to that in the query, was above 4

Å. Note that this filter effectively limits the search

radius for locating possible alignment options for a

subsequent segment given a partial alignment [see

Fig. 1(C)]. This is how the filter is implemented in

MASTER, essentially using prespecified greedy

bounds on intersegment distances in place of the

provable ones in the original algorithm (function

distBounds in Table I). Finally, Heuristic 3 stipu-

lated that backbone u/w angles of corresponding

query and matching residues had to be within 40� of

each other, which was also used to a priori limit pos-

sible segment alignment locations.

Table IV summarizes the speedups generated by

each heuristic (relative to the provable version) and

the corresponding match recovery ratios, defined as

the fraction of all matches below the specified RMSD

recovered by the heuristic. Interestingly, the speed-

ups are generally well below an order of magnitude,

while a significant portion of matches is already lost

in some cases. In fact, the speedups are most signifi-

cant in cases with most matches lost. Experimenting

with filter stringency showed that increased strin-

gency does provide additional speedups in multiseg-

ment cases, but is quite problematic for coverage

(data not shown). Although we have not considered

all potential heuristics, these results nevertheless

suggest that RMSD-based ATFS problem does not

have a particularly optimal substructure in terms of

properties of partial alignments. In turn, this means

that one should generally not expect to gain substan-

tial speedups of ATFS through greedy algorithms

without losing considerable fractions of matches. On

the other hand, in some cases it may be desirable to

incorporate greedy filters as part of the definition of a

match, which is enabled by MASTER’s heuristic

options.

Designability landscapes are readily obtained
from the PDB

We have previously argued that the number of unique

natural examples of a structural motif should corre-

late with its designability.3,20 We have also shown

that mining native structural representatives of a

motif can reveal important sequence features neces-

sary for realizing it,20 and we have used this concept

in designing novel protein assemblies.15 To make min-

ing the PDB for designability information a matter of

routine requires a fast ATFS method. Furthermore,

when comparing different motifs or geometries of the

same motif, it is crucial to recover all matches; other-

wise, relative statistics become difficult to interpret.

MASTER does just this, and to ascertain the practi-

cality of its use in designability analysis, we consid-

ered the simple a-helix/b-strand motif shown in Fig.

4(A). The motif is derived from an ideal-like structure

de novo designed by Baker and coworkers13 (PDB ID

2KL8), and defined three parameters that can be var-

ied to sample its geometry: (1) the separation between

the two SSEs (DR), (2) the helical phase angle (Du),

and (3) axial shift of the strand with respect to the

helix [DZ; see Fig. 4(A)]. All values were defined rela-

tive to the original motif in 2KL8, and parameters

were sampled to generate 13,671 structures. Specifi-

cally, DR was varied from 22.0 to 2.0 Å in 21 incre-

ments, Du was varied from 250� and 50� in 21

increments, and DZ was varied from 22 3 1.5 to

2 3 1.5 Å in 31 increments (1.5 Å is roughly the rise-

per-residue for an ideal a-helix). Each generated

structure was subjected to a search against nrPDB30

via MASTER, recovering all close matches (i.e., those

Table IV. Speedup and the fraction of matches recovered (recovery ratio) as a function of the number of disjoint
segments in the query for three heuristic versions of MASTER (RMSD cutoff of 2.0 Å was used in all cases)

Heuristic

Segments

1 2 3 4 5

Heuristic 1a 1.0 6 0.03 1.1 6 0.1 1.3 6 0.3 1.6 6 0.3 1.6 6 0.1
Heuristic 2a 1.0 6 0.04 1.6 6 0.5 1.8 6 0.6 2.2 6 0.9 3.1 6 0.8
Heuristic 3a 1.9 6 0.3 2.6 6 1.5 2.1 6 1.0 3.0 6 2.1 4.2 6 2.0
Heuristic 1b 100 6 0.0 100 6 0.1 97.1 6 3.0 93.3 6 10.4 95.6 6 1.9
Heuristic 2b 100 6 0.0 98.5 6 3.5 96.2 6 4.8 94.9 6 5.7 89.5 6 7.6
Heuristic 3b 84.6 6 19.4 69.2 6 31.4 70.2 6 22.9 72.1 6 23.5 68.8 6 18.2

a Values given are average speedup 6 standard deviation.
b Values given are average recovery ratio (%) 6 standard deviation (%).
Cases with average speedups over 2 or recovery ratio below 85% are shown in gray.
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within 0.5 Å CA RMSD and 0.5 Å full-backbone

RMSD of the query).

Figure 4(B,C) illustrates the resultant native des-

ignability landscape for this a/b motif. Figure 4(B)

shows the number of close matches as a function of

helical phase and intersegment separation (for each

point, DZ is chosen to maximize the number of

matches). The landscape shows that although the

original geometry (corresponding to the origin in the

figure) is within the well-designable region of the

parameter space, there are two clearly identifiable

maxima that exhibit closer approach between the two

segments (lower values of DR). Figure 4(C) shows the

optimal choice of DZ for each DR/Du combination,

demonstrating substantial coupling between all three

parameters. This reveals that the two pronounced

designability maxima correspond to DZ values far

from that in the de novo designed structure. On the

other hand, the region corresponding to DR 5 0/

Du 5 0 seems to be most designable among those for

which optimal DZ is around zero. Thus, the parame-

ters of the designed structure are well matched for

one another.

In addition to estimating designability, the

above analysis also reveals sequence preferences cor-

responding to different geometric parameters. Fig-

ure 4(D) compares sequence distributions of motifs

matching either of the two detectable designability

peaks as well as the DR 5 0, Du 5 0, DZ 5 0 structure

(closest to the designed geometry). Upon examining

the structures of the two peaks [Fig. 4(D), top left] it

is clear that they actually represent roughly the

same packing geometry. The helical phase and DZ in

the two structures adjust to compensate for one

Figure 4. The designability landscape of a simple a/b motif. (A) The fragment was initially excised from PDB entry 2KL8 (resi-

dues 18–24 and 33–35) and idealized (to avoid bias in searching) by superimposing perfectly repeating a-helix ( u/w angles of

257�/247�, respectively) and b-strand ( u/w angles of 2135�/135�, respectively) elements onto the corresponding segments

(total backbone-RMSD upon superposition was 0.25 Å; ideal version shown). The principal axis of the helix served to define

the Z-axis (shown as a gray tube), with Du defined by rotating the helix around Z and DZ defined by translating the strand

relative to the helix in the Z-direction. DR was defined as translations along the axis connecting the centroids of the helix and

the strand (in the original structure). Positive directions of change are indicated with arrows for all three variables. (B) The

number of matches within 0.5 Å in terms of both CA- and full-backbone RMSD, as a function of DR and Du. DZ is optimized

for largest number of matches for each point, with the corresponding values shown in (C). (D) Structures and sequence logos

corresponding to the two apparent maxima in the designability landscape (left) and the structure closest to the original motif

(corresponding to DR 5 0, Du 5 0, and DZ 5 0; right). Images in (B) and (C) are generated via cubic interpolation of the raw

counts.
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another, so that roughly the same close interdigi-

tated packing of strand residue 1 or 3 [correspond-

ing to the left and right peaks in Fig. 4(B),

respectively] is observed in both cases (the slightly

higher designability of the left peak is an artifact of

limiting the range of DZ to [23; 3] Å). Accordingly,

the two structures show very similar sequence pref-

erences [and thus only the sequence logo for the left

peak is shown in Fig. 4(D)]. The sequence of the

designed structure is in close agreement with its cor-

responding sequence preferences from the designa-

bility analysis [Fig. 4(D), right], with hydrophobic

residues appearing at expected positions. The most

designable geometries, however, do exhibit stronger

sequence biases, especially for a Val or other b-

branched amino acids in the strand position packing

into the helix.

Important to the practicability of such analysis

is its computational cost. We estimate that using

just 100 parallel compute jobs, this entire analysis

(including all search and postprocessing time) would

be completed in under an hour. This performance is

reasonable to enable the routine use of such calcula-

tions in protein design as a means of validating

designed structures/sequences or at the stage of

choosing a design template.

Searching with geometric signatures of binding

Binding sites and other functional regions of pro-

teins are often characterized in terms of structural

features that are understood to be essential for

their function. For example, binding sites of PDZ

domains involve a distinctive loop with exposed

amides, essential for the accommodation of C-

terminal backbone carboxylates of partnering pep-

tides.39 Antiapoptotic and proapoptotic Bcl-2 family

members interact through a conserved helix-into-

groove structural motif, which forms the basis for

their control of apoptosis.40 Many other essential

structural features of protein modules with specific

functions have been characterized. An interesting

question is to what extent such structural features

may be unique to these functions. For example, is

the presence of a PDZ-like binding loop with

exposed amides indicative of a PDZ domain? Or,

are there grooves structurally similar to those in

Bcl-2 family proteins that function in unrelated

pathways? Such information would greatly help

with the identification and classification of func-

tional modules, as well as for inferring distant

evolutionary and functional relationships.

To demonstrate that MASTER can be used to

quickly answer such questions, here we isolate

binding-site fragments from single representatives

of PDZ and Bcl-2 families and ask to what extent

the mere presence of similar fragments in PDB

proteins indicates membership in these families.

For PDZ domains, the isolated motif consisted of

the antiparallel a-helix/b-strand arrangement that

typically houses bound peptides [Fig. 5(A), left].

Note that PDZ domains exhibit a great deal of

variability in this general arrangement,41 whereas

our fragment is based on just a single representa-

tive (first PDZ domain of MAGI-1, PDB ID 2I04).

Further, the motif appears to be quite simple, com-

prising short stretches of common SSEs. Thus, it

is not immediately obvious that such a motif

would contain enough information to be necessarily

indicative of PDZ-type binding function. Neverthe-

less, searching for this motif in nrPDB30 reveals

that it is, in fact, highly indicative of PDZ

domains. A total of 32 entries in the database con-

tained PDZ domains. Further, by construction of

nrPDB30, these 32 domains were highly different

(having less than 30% sequence identity with each

other). Eighteen out of these 32 (56%) are identi-

fied as the top hits by MASTER, without any

interleaving non-PDZ domains. In fact, RMSD to

the query motif is a nearly perfect classifier of

PDZ domains, exhibiting the receiver operating

characteristic curve shown in Figure 5(B) with an

area under the curve of 0.93.

Equally interesting are matches that are close

to the motif but are not PDZ domains. These tend to

have structural features obstructing access to the

site represented by the motif, with two common

modes of obstruction illustrated in Figure 5(C). In

these structures, the exposed amides of the PDZ

binding loop are engaged in intrachain hydrogen

bonding, using either a-helical or b-strand geome-

tries. In effect, the proteins’ own backbone carbonyls

serve in place of the C-terminal carboxylate of a

PDZ-bound peptide. This suggests that the PDZ-like

a-helix/b-strand motif may have a strong innate

binding tendency, such that it needs to be

“protected” in proteins where the motif does not

serve a binding function.

We performed a similar analysis for the Bcl-2/

BH3 binding site, using a fragment from one family

representative (Bcl-2-like protein 10, PDB ID 4B4S)

as the query [see Fig. 5(D)]. The fragment, excised

based on visual inspection of the structure to iden-

tify sites important for BH3 binding, consists of four

helical segments, two of which contain just four resi-

dues. As with the PDZ domain example, here it is

not obvious that this simple fragment could uniquely

identify Bcl-2-type binding. In this case, nrPDB30

contained 18 highly diverse Bcl-2 family members,

nine (50%) of which were identified as top hits by

MASTER without any interleaving non-Bcl-2 pro-

teins. Remarkably, the second non-Bcl-2 family hit

(PDB ID 2JBY) was a viral protein previously found

to mimic the structure and function of antiapoptotic

Bcl-2 family members.42 As with the PDZ domain

fragment, RMSD to the query motif here is also a
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nearly perfect classifier of Bcl-2 family members,

achieving an area under the curve of 0.91 as shown

in Figure 5(D).

Topology remodeling

The idea of assembling protein structures from frag-

ments of known proteins has greatly impacted pro-

tein design and structure prediction,10,11,13 and this

constitutes an important application of ATFS. In

recent work, Baker and coworkers demonstrated the

principles of designing ideal proteins.13 By this, the

authors meant proteins that are minimally frus-

trated, with all structural features (local and nonlo-

cal) meant to optimize folding to a single unique

conformational ensemble. To this end, they applied

thorough structural sampling calculations to derive

clear rules describing various junction geometries

for consecutive SSEs, along with the preferred

lengths and conformations of the corresponding con-

necting regions.13 Based on these the authors went

on to successfully design five proteins containing six

to eight mixed a/b SSEs arranged into different

topologies.

An orthogonal method for arriving at structural

preferences is mining the PDB. In fact, Baker and

coworkers showed that loop length preferences

emergent from their computed rules are well

reflected in natural proteins.13 The continually

growing PDB may now allow for the discovery of

effective rules “on demand,” without the need for the

a priori categorization of structural scenarios. Thus,

it may be possible to discover unsuspected rules, as

they are needed, during a design calculation (or

even potentially a sampling simulation). This would

require a fast solution to ATFS. Here, we demon-

strate this idea using MASTER.

First, we consider the problem of loop remodel-

ing. Loops and turns are not only crucial design ele-

ments for properly orienting SSEs,13 but they are

also regions frequently targeted for mutations and

insertions by bioengineers.43–45 The problem of

understanding the impact of different loop

Figure 5. Simple binding site fragments from single representatives of PDZ and Bcl-2 family members serve as signatures of

function. (A) Shown are a PDZ domain (first PDZ domain of MAGI-1, PDB ID 2I04; left) and a Bcl-2 family member (Bcl-2-like

protein 10, PDB ID 4B4S; right) bound to their cognate peptides (gray). The regions excised as potentially representative of the

binding function are shown in green. Receiver operating characteristic curves of RMSD to the excised motifs as classifiers of

family membership for PDZ and Bcl-2 domains are shown in (B) and (D), respectively, along with a superposition of close hits.

Only matches below 2.0 Å were counted as predictions, and this set included all true domains in both cases. Shown in (C) are

two common modes of protecting the PDZ binding loop by engaging the otherwise exposed amides in internal hydrogen

bonds.
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conformations, lengths, and sequences is thus of

high relevance. As an example, we consider a loop in

one of the proteins designed and structurally charac-

terized by Baker and coworkers [PDB entry 2KL8;

see Fig. 6(A)], asking: (1) whether its length is

indeed ideal, as the authors suggest, (2) whether the

designed sequence is indeed appropriate for it, and

(3) whether the loop is a good location for an inser-

tion point. We consider the disjoint motif composed

of four a-helical and three b-strand residues up- and

down-stream of the turn, respectively [Fig. 6(A)],

using MASTER to find all of its close matches. We

then categorize the matches by the length of the

region between the two segments (matches where

the strand comes before the helix in sequence were

discarded). Remarkably, in all close matches, the

length of the insert is two—exactly the length used

by Baker and coworkers. Figure 6(B) shows how the

fraction of two-residue inserts in the list of matches

varies as a function of RMSD cutoff. Clearly, even at

rather generous cutoffs (e.g., 0.8 Å for a seven-

residue query), two residue turns still dominate.

Further, clear sequence preferences of the turn and

the surrounding regions emerge by analyzing close

matches, and these agree quite well with the

designed sequence [see inset in Fig. 6(A)]. Finally, a

simple superposition of close matches reveals the tol-

erable conformational variation, showing limited

flexibility [Fig. 6(A)]. Thus, by applying MASTER, in

a matter of several seconds, we learn that the

designed loop length and sequence are indeed rather

appropriate for the geometry and that this is likely

not a good location for insertions.

We next consider the problem of rewiring a

protein’s topology—that is, permuting the order of

SSEs while maintaining their relative spatial pack-

ing. Circular permutation is a simple example of a

topological rewiring, and this technique is often

used to engineer protein variants with improved

properties or enable a richer diversity of fusion pro-

teins. Being able to rewire a protein’s topology in an

arbitrary fashion would enable much more flexibility

in these and other bioengineering applications.

Here, we demonstrate how PDB mining with MAS-

TER can be used to automate the process of topology

remodeling.

Continuing with the designed structure above,

we remove three of its loops aiming to rewire its

topology as shown in Figure 7. Thus, of five pairs of

consecutive SSEs in the original topology, only two

remain in the new one, whereas the 3D arrange-

ment is unchanged. Given the structure with loops

removed [Fig. 7(B)], we consider regions surround-

ing the desired insertion points (four residues for

helical segments and three for strands), using MAS-

TER to identify best ways of joining them. Thus, for

each of the three connections to be designed, we

quickly learn which connection lengths (and confor-

mations) are most used natively [Fig. 7(D)]. Note

that this information implicitly contains the relevant

structural rules for segment joining. Picking the

closest match from the most representative length

Figure 6. MASTER-based loop remodeling exercise. (A)

Helical and strand segments shown in magenta and cyan,

respectively, are used together as a query motif to rebuild

the loop between them. Shown in gray are loop geometries

from the top 100 matches (all under 0.5 Å full-backbone

RMSD; five matches with different loop lengths were omit-

ted for clarity; matches were fused with the query as

detailed in Materials and Methods section). The inset

shows a sequence logo diagram emergent from the

sequences of these matches. (B) Fraction of two-residue

loop matches as a function of full-backbone RMSD cutoff.

The inset shows the distribution of loop lengths up to 20

residues for the least stringent cutoff. Two-residue loops

still dominate, though other possibilities exist (e.g., seven-

residue loops).
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for each loop, we can automatically generate the

remodeled structure shown in Figure 7(C) (see Mate-

rials and Methods section). Further, close matches

also provide information on any sequence features

necessary to realize the different connection geome-

tries—information crucial at the stage of sequence

design.

Discussion

ATFS is a problem of growing importance in struc-

tural biology. This study presents and thoroughly

validates an efficient and provably accurate ATFS

approach, MASTER, demonstrating that it can rap-

idly generate plausible hypotheses with respect to

designability and associated sequence features,

emergent from the apparent modularity of protein

structure in nature. Such insight can be of high

value in protein design, structure prediction, and

other structural biology applications.

We made several interesting observations with

respect to the ATFS problem itself. It seems that

despite its theoretically exponential complexity with

the number of segments, a provable approach to the

problem that uses simple RMSD and distance bounds

to limit the search space is highly efficient in practice.

The key to this apparent unexpected simplicity of the

problem is that, unlike the search space, solution

space does not generally grow with the number of seg-

ments. In fact, structural intuition suggests that for

larger query motifs we expect fewer close hits (given a

fixed-sized database). So, during a MASTER search,

although having more segments leads to more combi-

natorial possibilities, it also means more constraints

for the match to satisfy and thus a far smaller fraction

of the search space surviving as matches. For this rea-

son, given a fixed RMSD cutoff, MASTER search time

varies little with query complexity. For example, for

an RMSD cutoff of 1.0, the median and mean search

times across all 50 queries were 4.4 and 8.1 sec,

respectively, with a range from 3 to 30 sec (see Sup-

porting Information Table S1). Of course, it is always

possible to use such generous RMSD cutoffs that the

solution space would grow uncontrollably as well. In

fact, MASTER searches slow down significantly only

in cases when the specified RMSD cutoffs result in

very many solutions (and typically with larger motifs;

see Table II). However, such situations are generally

not of practical relevance. As the exact approach was

already quite fast, heuristic methods failed to provide

significant performance boosts. Further, even fairly

conservative heuristic filters, based on local RMSD

and intersegment distance deviations, invariably

missed many matches (see Table IV). This suggests

that though the problem is tractable in practice, it is

Figure 7. Topology remodeling using MASTER. All structures are colored blue-to-red in the N-to-C terminal direction. (A) PDB

entry 2KL8 along with its topology (below). Crossed out connections in the topology correspond to loops marked for deletion.

(B) The structure with loops removed. Gray areas designate segments that are used for finding connector regions to bridge

gaps in the new topology. (C) Remodeled structure with its topology shown underneath. Blue and red spheres designate N-

and C-termini, respectively. (D) Histograms of connector lengths among close matches corresponding to each of the three

regions to be bridged. The most likely length, marked with an asterisk for each connector, was chosen to produce the remod-

eled structure (see Materials and Methods section).
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still difficult and does not have a particularly optimal

substructure.

The ability to explore the native variation

around a given motif lends itself naturally to explor-

ing plausible conformations. In principle, ATFS

should be useful in identifying (and correcting) prob-

lematic regions in structural models, building novel

templates for protein design, and revealing

sequence–structure dependencies. The case studies

in this work are demonstrations of some of these

capabilities. In particular, we show that mining the

PDB provides a detailed characterization of the

apparent designability landscape of a small tertiary

structural motif (see Fig. 4). Using MASTER, we

were able to quickly verify that the geometry of this

motif employed in a recently designed structure was

indeed well designable, and that its sequence was

appropriate for it. We further found that there were

regions in the landscape of higher designability,

albeit these required drastically different axial align-

ments. Given the high utility of such information to

computational protein design, we think designability

mapping will be an important application of ATFS.15

The provably correct aspect of MASTER is particu-

larly important for this application, as it enables the

unbiased comparison of natural abundance as a

function of geometry.

Examples discussed in this work revolve around

small tertiary motifs (e.g., Fig. 2). But do these carry

sufficient structural context to be relevant? Using

MASTER, we demonstrated that surprisingly small

motifs can be indicative of function. For example,

the typical a-helix/b-strand arrangement in the PDZ

binding site seems to be highly characteristic of PDZ

domains [Fig. 5(A,B)]. In fact, in essentially all cases

where a similar motif occurs outside of the PDZ

domain, the binding site is “protected” by a different

part of the structure [Fig. 5(C)]. Similarly, for Bcl-2

family proteins, we found that a small motif consist-

ing of four short helices is highly indicative of

Bcl-2:BH3 binding function, even identifying a viral

Bcl-2 mimic [Fig. 5(D)]. Thus, on the one hand,

small tertiary motifs seem to be relevant for struc-

ture and function and on the other they are likely to

be well sampled within the PDB at its present size.

Statistics on such motifs, revealed by ATFS, may

thus become a rich source of information for prob-

lems of structural biology.

To further explore the utility of ATFS for

designing proteins, we consider problems of loop

remodeling and topology rewiring (Figs. 6 and 7).

We show that using MASTER it is possible to com-

plete missing pieces of an existing structure in a

way that respects any necessary natural structure

and sequence rules. Importantly, these rules are dis-

covered automatically, as needed. For example, by

considering a single loop in a structure previously

engineered by Baker and coworkers,13 we quickly

verified that the chosen loop length is indeed quite

optimal, with very few other options available (see

Fig. 6). In fact, one might wonder what it is about

the segments being joined [four helical and three

strand residues; Fig. 6(A)] that so strongly con-

strains possible connector geometries and lengths.

An expert structural biologist may detect upon vis-

ual inspection that the search query is two residues

short of a paL turn in its aRpaLb conformation,46 and

may proceed with designing such a structure accord-

ingly. However, by mining the PDB, this rule and

others can be discovered automatically, without the

requirement of knowing a priori what the relevant

structural features to look for might be. We further

show that such insight can be used to remodel the

topology of an existing structure in an automated

fashion (Fig. 7). MASTER quickly identifies the

most structurally appropriate means of wiring the

existing SSEs so as to meet the desired topology,

providing optimal connection lengths, conformations,

and necessary sequence features. Importantly, these

insights do not replace the need for accurate and

predictive physical models of structure. Instead,

results of ATFS-based mining should be seen as

hypotheses generated on the basis of natural obser-

vations, to be verified experimentally or with accu-

rate physical calculations. On the other hand, the

ability to generate such plausible hypotheses easily

on the fly is quite appealing for practical engineer-

ing or prediction applications.

Conclusions

Here, we argue that ATFS is a highly valuable tool

for many problems in structural biology, but most

applications require rapid searches. MASTER, a fast

and provably correct ATFS engine, has the potential

to address many existing needs. Specifically, we dem-

onstrate that it can be used to characterize the appa-

rent designability landscape of structural motifs,

generate hypotheses on structural rules to aid in pro-

tein design, and establish connections between

sequence and structure. Although it is certainly pos-

sible to further improve upon the performance of

MASTER, importantly we have shown that despite

the combinatorial complexity of the underlying prob-

lem, in practice search times are rather limited for

realistic search criteria. Thus, given the broad rele-

vance of ATFS to structural biology, MASTER and

related search tools should significantly advance our

ability to design and model protein structures.

Supplementary Material
Supplementary material is in supplement.docx, and

it includes a detailed comparison of MASTER and

MaDCaT running times (Supporting Information

Fig. S1) and the listing of all running times and

numbers of matches found for the main MASTER
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timing study (Supporting Information Tables S1 and

S2; study results summarized in Table II).

Materials and Methods

RMSD bounds

Given two lists of atoms A and B of the same length N

(e.g., CA traces of two protein structures), ordered accord-

ing to the desired alignment, their best-fit RMSD is:
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where �di is the distance between the i-th atom of A

and B after the two structures are optimally super-

imposed. If we split each structure into two sub-
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If we suppose that the overall RMSD of A and B

must be below some specified cutoff r0 (i.e.,

rAB � r0), we can derive an upper bound for the indi-

vidual RMSD of substructure X:
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where sY5r2
Y � N2nð Þ is the sum-squared residual

upon optimal superposition of substructure Y from

A and B.

In MASTER, we apply this bound in three scenar-

ios. When evaluating the similarity between the i-th

query segment and its candidate match by itself, we

assume the remaining part of the alignment to be per-

fect (i.e., the remaining residual is zero, so sY50). In this

case, the upper bound on the RMSD of the i-th, ri, is:

ri � r0

ffiffiffiffiffi
N

ni

s
(5)

where ni is the length of the segment and N the

length of the entire query structure. We can also

evaluate the similarity of the i-th segment and its

candidate match in the context of the previously

aligned portion. In this case, the remaining

unaligned portion is again assumed to have a perfect

match, so that the residual sY is bounded from below

by the sum-squared residual from the previous

alignment, and thus an upper bound on ri is:

ri �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0 �N2r2
p � np

ni

s
(6)

where rp and np are the RMSD and total length of

the previous alignment, respectively. Finally, when

adding the i-th segment to a previous alignment of

i21ð Þ segments, we can derive a bound for the total

RMSD of the resulting partial alignment, r1!i, by

once again assuming the unaligned portion to have

a perfect match, so sY50:

r1!i � r0

ffiffiffiffiffiffiffiffiffiffi
N

n1!i

s
(7)

where n1!i is the total length of the partial align-

ment that includes segments 1 through i.

Intersegment distance bounds
Given the same A and B as above (and the same

requirement rAB � r0), lets take k and l to be any two

atoms in these structures 1 � k < l � Nð Þ. Let dA
kl and

dB
kl denote the distances between atoms k and l in A and

B, respectively, and let us derive a limit on how different

the two distances may be. We apply the bound from Eq.

(4) by defining X5 k; lf g and thus Y5 1; . . . ;Nf gn k; lf g:

rX �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0 �N2sY

2

s
(8)

where sY is the sum-squared residual from the opti-

mal alignment of A and B without atoms k and l.

Because X contains just two atoms, rX is quite

clearly simply jdA
kl2dB

klj=2. Combining this with the

above equation, we obtain the desired bound:

jdA
kl2dB

klj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 r2

0 �N2sY

� �q
(9)

In MASTER, we use this relationship to limit the

admissible range of distances from the central residue

of the last added i-th segment to candidates for the

central residue of the i11ð Þ-th segment. Thus, here k

and l represent the central residues of the two seg-

ments, and sY is the total accumulated residual with-

out these two atoms. We assume that the presently

unaligned portion may have a perfect match, and so

the only contribution to sY comes from previously

aligned atoms except the central residue of the last

added fragment. Thus, the bound we apply is:

jdA
kl2dB

klj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 r2

0 �N2r2
p0 � np0

� �r
(10)

where rp0 is the optimal RMSD of superimposing the

previously aligned segments onto their
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corresponding matching regions without the central

residue of the i-th segment and np0 is the length of

this alignment (i.e., np05n1!i21).

MASTER database

The present implementation of MASTER uses a disk-

based database. Each structure in the database has a

corresponding file (a Protein Data Structure or PDS

file), composed of several sections with different types

of information. A strategy we have adopted through-

out is to include “navigation” information within the

file such that its different regions can be reached

quickly. For example, the start of each file is a header

that contains offsets for starting points of its compos-

ite sections, such that each can be reached with a sin-

gle seek operation. Besides sections with atomic

coordinate information (i.e., a section with CA atom

coordinates and another with strings representing

full ATOM records from the source PDB file), the files

also store certain auxiliary precomputed data, which

simplify the search. Some of these sections are

detailed below.

Distance distribution. This section stores one

record for each residue in the structure. The record

for residue i is generated by binning the distances

from i to all other residues in the structure, with

each bin storing the list of residues within the corre-

sponding range of distances (CA-to-CA distances are

used; bin width and the maximal recorded distance

are adjustable parameters with 5 and 25 Å, respec-

tively, used in this study). Because the offset to each

bin for each residue is stored in the header for this

section, one can navigate to and read the list of resi-

dues within an arbitrary bin from an arbitrary resi-

due with a handful of seek operations. Further,

because several adjacent bins are often of interest,

storing them consecutively in the file takes maximal

advantage of block-based reading and disk caching.

Backbone dihedral angles distribution. To ena-

ble the rapid application of the backbone dihedral-

based heuristic filter, we precompute and store the

u/w dihedral angles for each residue. To enable rapid

lookup of this information, following an approach

similar to that with distances, we create a series of

bins for each type of dihedral angle (bin width is

adjustable; 10� used here). Each bin stores the list of

residues, with values of the dihedral angle falling

within the corresponding range.

Central residue. For PDS files corresponding to

query structures, we store the central residue of

each segment and its dihedral angles. The central

residue is defined as the residue with the lowest

maximal distance to other residues in the structure.

It has the property that a sphere centered at this

residue can circumscribe the entire structure with

the smallest possible radius, compared with spheres

centered at other residues.29

MASTER availability
The C11 source code for MASTER can be found at

http://grigoryanlab.org/master and is available under

the GPL v3.0 license.

Single-segment brute-force search

We have found that an efficient implementation of

the Kabsch algorithm38 can perform over 106 super-

positions per second on a modern CPU (e.g., Intel

Xeon 2.7 GHz) with structures of up to �40 residues

(more for smaller segments). In our experience, the

competing QCP approach47 gives a similar perform-

ance. The PDB contains �7 3 106 protein residues

(when culled at 50% sequence identity); this means

that a brute-force single segment search would take

on the order of a second to several seconds on a sin-

gle processor. MASTER performs single-segment

searches (and alignments of the first segment in mul-

tisegment queries) in a brute-force manner, such that

the speed of RMSD calculations provides a lower

bound on its performance. The observation that mul-

tisegment searches frequently complete in roughly

the same amount of time as single-segment ones sug-

gests that the combinatorics of ATFS is handled well

by MASTER and is often not the bottleneck. Thus,

improvements in the speed of RMSD calculation

would be expected to significantly improve not only

single-segment, but also on multisegment searches.

Speed test

To measure MASTER’s performance, each structure

shown in Figure 2 was used as a query to search

against nrPDB30 under six different RMSD cutoffs:

0.4, 0.6, 0.8, 1.0, 1.5, and 2.0 Å. Each query/RMSD

cutoff combination was attempted three times, in ran-

dom order of different combinations, on a single 2.7-

GHz Intel Xeon processor with the database stored on

a local disk. Total search times (i.e., wall times) were

averaged over the three runs for each combination

(standard deviations were also computed, but were

negligible in all cases) and were used for analysis.

CPU times (user and system) were also recorded and

averaged, with the difference between wall and CPU

time treated as an estimate of I/O time.

MASTER searches
Where matches are defined in terms of both CA and

full-backbone RMSD, MASTER was first run to

recover all hits below the given CA RMSD value, fol-

lowing which hits above the given full-backbone

RMSD cutoff were discarded. To build nrPDB30, we

downloaded the weekly BLASTClust37 clustering of

the PDB as of July 1, 2014, at 30% sequence identity,

retaining the PDB entry of the first representative
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from each cluster. Of these, protein-containing entries

solved by X-ray crystallography to a resolution below

2.6 Å constituted the final search database, with a

PDS file generated for each corresponding biological

entry. To limit the size of some very large biological

entries (e.g., viral capsids), a feature was imple-

mented in MASTER enabling the removal of struc-

tural redundancy (and near-redundancy) prior to the

creation of a PDS file, while guaranteeing to capture

all unique chains and unique interchain interfaces.

For the sake of consistency, when comparing running

times with MaDCaT, the same redundancy-removed

biological entries were used to create the MaDCaT

search database.

For designability and topology remodeling applica-

tions, the number of matches reported refers to the

number of matches with unique matching-region

sequences. Speedup in Tables III and IV is measured as

the search time of the modified run (i.e., a run limiting

the number of matches or a heuristic) divided by the

search time of the standard exact version of MASTER.

Loop stitching

Loop geometries in Figure 6(A) and the topologically

remodeled structure in Figure 7(C) were generated

by fusing query regions with closely matching struc-

tures having desired insert lengths. To this end, the

aligned regions between queries and matches were

linearly recombined (after optimal superposition),

enabling a transition from the designed structure to

the identified PDB fragment. Specifically, the linear

recombination was applied to non-hydrogen back-

bone atoms only, with a scale factor that itself var-

ied linearly along the main chain. That is, the

match and query were scaled by 0 and 1, respec-

tively, at the termini farthest from the insert, and

by 1 and 0, respectively, at termini immediately

adjacent to the insert; the scale factors were line-

arly interpolated in between. Because only very

close matches were used for such fusing (full back-

bone RMSDs ranged from 0.2 to 0.4 Å), this simple

solution led to good backbone geometries of the

fused structures.
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Popović Z, Havranek JJ, Karanicolas J, Das R, Meiler
J, Kortemme T, Gray JJ, Kuhlman B, Baker D,
Bradley P (2011) ROSETTA3: an object-oriented soft-
ware suite for the simulation and design of macromole-
cules. Methods Enzymol 487:545–574.

13. Koga N, Tatsumi-Koga R, Liu G, Xiao R, Acton TB,
Montelione GT, Baker D (2012) Principles for designing
ideal protein structures. Nature 491:222–227.

14. Huang P-SS, Ban Y-EAE, Richter F, Andre I, Vernon
R, Schief WR, Baker D (2011) RosettaRemodel: a gen-
eralized framework for flexible backbone protein
design. PLoS One 6:e24109.

15. Grigoryan G, Kim YH, Acharya R, Axelrod K, Jain
RM, Willis L, Drndic M, Kikkawa JM, DeGrado WF
(2011) Computational design of virus-like protein
assemblies on carbon nanotube surfaces. Science 332:
1071–1076.

16. Verschueren E, Vanhee P, van der Sloot AM, Serrano L,
Rousseau F, Schymkowitz J (2011) Protein design with
fragment databases. Curr Opin Struct Biol 21:452–459.

17. Verschueren E, Vanhee P, Rousseau F, Schymkowitz J,
Serrano L (2013) Protein-peptide complex prediction
through fragment interaction patterns. Structure 21:
789–797.

18. Azoitei ML, Correia BE, Ban Y-EAE, Carrico C,
Kalyuzhniy O, Chen L, Schroeter A, Huang P-SS,
McLellan JS, Kwong PD, Baker D, Strong RK, Schief
WR (2011) Computation-guided backbone grafting of a
discontinuous motif onto a protein scaffold. Science
334:373–376.

19. Correia BE, Bates JT, Loomis RJ, Baneyx G, Carrico
C, Jardine JG, Rupert P, Correnti C, Kalyuzhniy O,
Vittal V, Connell MJ, Stevens E, Schroeter A, Chen M,
Macpherson S, Serra AM, Adachi Y, Holmes MA, Li Y,
Klevit RE, Graham BS, Wyatt RT, Baker D, Strong
RK, Crowe JE, Jr, Johnson PR, Schief WR (2014) Proof
of principle for epitope-focused vaccine design. Nature
507:201–206.

20. Zhang J, Grigoryan G (2013) Mining tertiary struc-
tural motifs for assessment of designability. Methods
Enzymol 523:21–40.

Zhou and Grigoryan PROTEIN SCIENCE VOL 24:508—524 523



21. Hasegawa H, Holm L (2009) Advances and pitfalls of
protein structural alignment. Curr Opin Struct Biol 19:
341–348.

22. Holm L, Sander C (1996) Mapping the protein uni-
verse. Science 273:595–603.

23. Budowski-Tal I, Nov Y, Kolodny R (2010) FragBag,
an accurate representation of protein structure,
retrieves structural neighbors from the entire PDB
quickly and accurately. Proc Natl Acad Sci USA 107:
3481–3486.

24. Shindyalov IN, Bourne PE (1998) Protein structure
alignment by incremental combinatorial extension (CE)
of the optimal path. Protein Eng 11:739–747.

25. Yang J-MM, Tung C-HH (2006) Protein structure data-
base search and evolutionary classification. Nucleic
Acids Res 34:3646–3659.

26. Sacan A, Toroslu IH, Ferhatosmanoglu H (2008) Inte-
grated search and alignment of protein structures. Bio-
informatics 24:2872–2879.

27. Csaba G, Birzele F, Zimmer R (2008) Protein structure
alignment considering phenotypic plasticity. Bioinfor-
matics 24:i98–i104.

28. Ilyin VA, Abyzov A, Leslin CM (2004) Structural align-
ment of proteins by a novel TOPOFIT method, as a
superimposition of common volumes at a topomax
point. Protein Sci 13:1865–1874.

29. He L, Vandin F, Pandurangan G, Bailey-Kellogg C
(2013) Ballast: a ball-based algorithm for structural
motifs. J Comput Biol 20:137–151.

30. Moll M, Bryant DH, Kavraki LE (2010) The LabelHash
algorithm for substructure matching. BMC Bioinform
11:555.

31. Gonzalez G, Hannigan B, DeGrado WF (2014) A real-
time all-atom structural search engine for proteins.
PLoS Comput Biol 10:e1003750.

32. Shirvanyants D, Alexandrova AN, Dokholyan NV
(2011) Rigid substructure search. Bioinformatics 27:
1327–1329.

33. Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C,
Corn JE, Strauch E-MM, Wilson IA, Baker D (2011)
Computational design of proteins targeting the con-
served stem region of influenza hemagglutinin. Science
332:816–821.

34. Steipe B (2002) A revised proof of the metric properties
of optimally superimposed vector sets. Acta Crystallogr
A 58:506.

35. Shibuya T (2010) Searching protein 3-D structures in
linear time. J Comput Biol 17:203–219.

36. Li SC, Ng YK (2010) Calibur: a tool for clustering large
numbers of protein decoys. BMC Bioinform 11:25.

37. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ
(1990) Basic local alignment search tool. J Mol Biol
215:403–410.

38. Kabsch W (1976) A solution for the best rotation to
relate two sets of vectors. Acta Crystallogr A 32:922.

39. Lee H-JJ, Zheng JJ (2010) PDZ domains and their
binding partners: structure, specificity, and modifica-
tion. Cell Commun Signal 8:8.

40. Youle RJ, Strasser A (2008) The BCL-2 protein family:
opposing activities that mediate cell death. Nat Rev
Mol Cell Biol 9:47–59.

41. Ernst A, Appleton BA, Ivarsson Y, Zhang Y, Gfeller D,
Wiesmann C, Sidhu SS (2014) A structural portrait of
the PDZ domain family. J Mol Biol 426:3509–3519.

42. Kvansakul M, van Delft MF, Lee EF, Gulbis JM, Fairlie
WD, Huang DC, Colman PM (2007) A structural viral
mimic of prosurvival Bcl-2: a pivotal role for sequester-
ing proapoptotic Bax and Bak. Mol Cell 25:933–942.

43. Liang J, Yang Y, Yin P, Ding Y, Shen Y, Qin M, Wang
J, Xu Q, Cao Y, Wang W (2013) A yellow fluorescent
protein with reduced chloride sensitivity engineered by
loop-insertion. Chembiochem 14:1423–1426.

44. Cetinkaya M, Zeytun A, Sofo J, Demirel M (2006) How
do insertions affect green fluorescent protein? Chem
Phys Lett 419:4854.

45. Minard P, Scalley-Kim M, Watters A, Baker D (2001) A
“loop entropy reduction” phage-display selection for
folded amino acid sequences. Protein Sci 10:129–134.
Available at: http://onlinelibrary.wiley.com/doi/10.1110/
ps.32401/full.

46. Rajashankar KR, Ramakumar S (1996) Pi-turns in pro-
teins and peptides: classification, conformation, occur-
rence, hydration and sequence. Protein Sci 5:932–946.

47. Theobald DL (2005) Rapid calculation of RMSDs using
a quaternion-based characteristic polynomial. Acta
Crystallogr A 61:478–480.

524 PROTEINSCIENCE.ORG Tertiary Motif Search gives Structure Rules


	l
	l

