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Abstract: Although the folding rates of proteins have been studied extensively, both experimentally

and theoretically, and many native state topological parameters have been proposed to correlate

with or predict these rates, unfolding rates have received much less attention. Moreover, unfolding
rates have generally been thought either to not relate to native topology in the same manner as

folding rates, perhaps depending on different topological parameters, or to be more difficult to pre-

dict. Using a dataset of 108 proteins including two-state and multistate folders, we find that both
unfolding and folding rates correlate strongly, and comparably well, with well-established meas-

ures of native topology, the absolute contact order and the long range order, with correlation coef-

ficient values of 0.75 or higher. In addition, compared to folding rates, the absolute values of
unfolding rates vary more strongly with native topology, have a larger range of values, and corre-

late better with thermodynamic stability. Similar trends are observed for subsets of different pro-

tein structural classes. Taken together, these results suggest that choosing a scaffold for protein
engineering may require a compromise between a simple topology that will fold sufficiently quickly

but also unfold quickly, and a complex topology that will unfold slowly and hence have kinetic sta-

bility, but fold slowly. These observations, together with the established role of kinetic stability in
determining resistance to thermal and chemical denaturation as well as proteases, have important

implications for understanding fundamental aspects of protein unfolding and folding and for pro-

tein engineering and design.
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Introduction
Extensive experimental1,2 and theoretical3–5 research

has been conducted to understand protein folding

rates. In seminal studies, Plaxco et al. found that a

simple measure of the topology of the native state, the

relative contact order (RCO), correlated well with fold-

ing rates for a small set of monomeric proteins that

showed two-state behavior.6 Later, they revised their

conclusions to show that absolute contact order

(ACO), which in addition to topology includes effects

of protein length, correlated better for a larger dataset

including multistate folders.7 It has long been noted

that folding rates depend on protein length, but the

quantitative, physical basis for this dependence

remains under investigation8–13 and additional studies

have demonstrated that consideration of both topology

and length leads to improved correlations compared to

topology alone.14,15 Here, we use structural complexity

as a broad term to encompass the complexity

imparted by both the topology and the length of the

protein, and rate, when referring to the unfolding and

folding rate constants (ku and kf, respectively).

The correlation of ACO with folding rates sug-

gests that while the transition state for folding lacks

much of the well-defined structure of the native state,

it nevertheless has a broadly similar structure and

complexity, as has been suggested from theory and

simulation5,15–17 and demonstrated experimentally.18

Many alternative measures of native state structural

complexity have also been found to correlate with fold-

ing rates.19–24 In particular, two measures have

emerged as being consistently well correlated: the

ACO and the long range order (LRO). LRO was found

not only to correlate well overall19 but also to corre-

late well across different structural classes of pro-

teins.14 Recently, the correlation of folding rates with

ACO was explicitly derived from theory.25

In contrast, relatively little work on the relation-

ship between unfolding rates and native structure has

been reported, with the existing studies suggesting

that while native structure should correlate with

unfolding,26 the measures of structural complexity

that work well for predicting folding do not perform

well for unfolding.27–29 In particular, work by Jung

et al. concluded that while structural complexity does

correlate with both unfolding and folding rates, the

predictive parameters are different.27,28 Harihar and

Selvaraj compared LRO with unfolding rates, finding

a moderate correlation overall, but greatly differing

correlations for the alpha, beta, and mixed structural

classes.29 In these studies, relatively small datasets of

� 25 two-state folding proteins were used. In particu-

lar, the approach in two later studies was to use the

small consensus dataset compiled by Maxwell et al.30

in order to avoid noise in the data resulting from

experimental differences.27,29 However, noise resulting

from sequence-specific effects can also be considerable,

as noted in studies of homologous proteins.31–33 Thus,

the use of a small dataset for examining a relation-

ship with such considerable noise may be a fraught

endeavor. For instance, the original very strong corre-

lation of folding rate with RCO6 was later found to be

considerably weaker when larger datasets including

multistate folders were used.7,14

Here, in order to clearly identify general relation-

ships between folding/unfolding rates and structural

complexity, we have used a relatively large set of

kinetic data for monomeric proteins obtained using

similar experimental approaches. Proteins with disul-

fide bonds or large prosthetic groups are excluded

because they are known to cause anomalous kinetics.

The dataset is largely similar to that of Garbuzynskiy

et al., who recently elucidated relationships between

protein length, stability, and folding rates.34 Using our

dataset of 108 two-state and multistate folders (see

Methods, Supporting Information Table SII), we tested

various measures of structural complexity, discovering

that two commonly used parameters, ACO and LRO,

not only correlate strongly with folding rates but also

correlate strongly, and equally well, with unfolding

rates. Furthermore, the results are very similar for dif-

ferent structural classes of proteins. Importantly, these

results address the previously reported apparent differ-

ences between the structural determinants of unfolding

and folding rates which may have been a consequence

of the comparatively smaller datasets that obscured the

true relationships. The finding that the same measures

of structural complexity are equally predictive of

unfolding and folding rates has important implications

for fundamental understanding of the process of pro-

tein unfolding. It also suggests that for the protein engi-

neer, a key choice needs to be made when selecting a

scaffold for design to achieve the desired balance

between the typically desirable properties of fast fold-

ing and slow unfolding.

Results and Discussion

To identify general trends with increased confidence,

we used a previously established large dataset30,34

augmented with additional proteins (see Methods).

We analyzed this dataset using a range of measures

of structural complexity found previously to be cor-

related with folding rates (Supporting Information

Table SI). Two well-established parameters, ACO

and LRO (see Methods), exhibited superior correla-

tions, which are described in detail later. We note

that the trends for unfolding rates for the full data-

set shown in Figure 1 also hold in general (with

some variations in statistical significance) for vari-

ous subsets of the data (Table I).

Unfolding rates correlate with ACO, LRO,

folding rates, and stability

Strikingly, the logarithm of both ku and kf have

equally negative correlation coefficients with ACO

and LRO [Fig. 1(A–D), Table I], which suggests
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these measures of structural complexity are simi-

larly predictive of both rates (small variations in cor-

relation are expected owing to differing

experimental conditions and the necessary extrapo-

lation of the rates from kinetic data). Thus, both

unfolding and folding rates decrease with increasing

structural complexity. These results contrast with

those of previous studies using smaller datasets of

22 and 25 proteins which concluded that one param-

eter was not equally well suited for predicting both

Figure 1. Correlations between structural complexity, folding and unfolding rates, and thermodynamic stability. Correlations are

shown between (A) folding rates and ACO, (B) unfolding rates and ACO, (C) folding rates and LRO, (D) unfolding rates and

LRO, (E) folding rates and thermodynamic stability, (F) unfolding rates and thermodynamic stability, and (G) unfolding and fold-

ing rates. The lines of best fit (solid black) and corresponding equations and correlation values are given for the whole dataset,

values for subsets of data are given in Table I for two-state (filled diamonds), multistate (open squares), alpha (blue), beta (red),

and mixed (green) proteins. Dotted lines for panels A–D denote 610-fold and 6100-fold variation in kf and ku, respectively.
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unfolding and folding.27,28 Further, we find that the

correlation for unfolding holds well across different

structural classes (Table I), whereas another analy-

sis29 suggested all-beta proteins have a much

weaker correlation with LRO that is opposite in sign

to that for all-alpha and mixed structural classes.

These apparent discrepancies are likely caused by

the small dataset sizes used in the earlier study

Table I. Correlations and Linear Fits of Unfolding and Folding Rate Constants, Measures of Native Structure,
and Thermodynamic Stability

Parameter x Parameter y Dataset (size)

Linear fit:
y 5 b 1 m* x Pearson correlation

m b R Pa

ACO log kf Full (108) 20.25 5.1 20.75 1.4 3 10220

Two-state (73) 20.25 5.4 20.73 3.6 3 10213

Multistate (35) 20.20 4.0 20.75 2.7 3 1027

Alpha (33) 20.22 5.3 20.62 1.1 3 1024

Beta (34) 20.35 6.1 20.86 4.9 3 10211

Mixed (41) 20.16 3.7 20.52 5.1 3 1024

Maxwell (28) 20.14 4.1 20.48 9.5 3 1023

ACO log ku Full (108) 20.40 3.6 20.79 3.0 3 10224

Two-state (73) 20.46 4.4 20.82 3.9 3 10219

Multistate (35) 20.30 1.9 20.70 2.8 3 1026

Alpha (33) 20.48 4.5 20.70 6.4 3 1026

Beta (34) 20.55 5.4 20.82 3.5 3 1029

Mixed (41) 20.25 1.0 20.67 2.0 3 1026

Maxwell (28) 20.30 2.1 20.71 2.7 3 1025

LRO log kf Full (108) 21.0 6.0 20.79 2.9 3 10224

Two-state (73) 20.94 6.0 20.80 2.0 3 10217

Multistate (35) 21.0 5.6 20.75 2.7 3 1027

Alpha (33) 20.96 5.9 20.69 1.0 3 1025

Beta (34) 21.1 6.3 20.82 4.3 3 1029

Mixed (41) 20.95 5.8 20.54 2.6 3 1024

Maxwell (28) 20.93 6.2 20.68 7.6 3 1025

LRO log ku Full (108) 21.6 4.7 20.79 6.9 3 10224

Two-state (73) 21.6 4.9 20.82 3.4 3 10219

Multistate (35) 21.4 3.7 20.64 3.5 3 1025

Alpha (33) 21.8 5.2 20.68 1.3 3 1025

Beta (34) 21.7 5.9 20.79 3.6 3 1028

Mixed (41) 21.2 3.0 20.56 1.4 3 1024

Maxwell (28) 21.5 4.7 20.74 5.6 3 1026

log kf DGF-U Full (108) 0.31 25.4 0.23 1.8 3 1022

Two-state (73) 0.37 25.6 0.27 2.3 3 1022

Multistate (35) 0.23 25.1 0.15 4.0 3 1021 NS

Alpha (33) 0.78 26.6 0.47 5.2 3 1023

Beta (34) 0.49 25.3 0.36 3.8 3 1022

Mixed (41) 20.52 25.1 20.33 3.6 3 0122

Maxwell (28) 20.49 24.4 20.26 1.9 3 1021 NS

log ku DGF-U Full (108) 0.68 23.8 0.78 2.4 3 10223

Two-state (73) 0.69 24.0 0.80 2.2 3 10217

Multistate (35) 0.76 23.0 0.79 1.4 3 1028

Alpha (33) 0.77 24.4 0.89 7.0 3 10212

Beta (34) 0.69 23.3 0.83 1.7 3 1029

Mixed (41) 0.82 23.2 0.66 3.0 3 1026

Maxwell (28) 0.98 23.8 0.77 1.9 3 1026

log kf log ku Full (108) 1.2 23.9 0.79 6.4 3 10224

Two-state (73) 1.3 24.1 0.79 7.4 3 10217

Multistate (35) 1.2 23.8 0.72 1.1 3 1026

Alpha (33) 1.6 24.8 0.83 2.6 3 1029

Beta (34) 1.4 23.9 0.82 2.6 3 1029

Mixed (41) 0.62 23.7 0.50 9.8 3 1024

Maxwell (28) 0.64 23.3 0.42 2.5 3 1022

Individual correlations and linear fits are shown for subsets of the data as in Figure 1. Additionally, values for the com-
monly used dataset of Maxwell et al. are shown for comparison.
a Two-tailed probability value.
NS Correlation is not significant at the 0.05 level (5.0 3 1022).
DGF-U 5 GF 2 GU 5 2RT ln (kf/ku), where R is the gas constant and T is the absolute temperature in Kelvin, gives the Gibbs
free energy of the folded state relative to the unfolded state.
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where the alpha and beta classes had 5 and 7, com-

pared here with 33 and 34 proteins, respectively.

We also note that unfolding rates are strongly

correlated with folding rates [Fig. 1(E) and Table I],

and that ACO and LRO are strongly correlated with

rates at the transition midpoints (i.e., under condi-

tions of equal thermostability; Supporting Informa-

tion Fig. S1, Table SI). Thus, ACO and LRO may

report on the structural complexity and relative

energy of the transition state.35 There is also a

weaker correlation between protein length and the

unfolding and folding rates (Supporting Information

Table SI). Together these trends indicate that pro-

tein topological complexity and size affect both fold-

ing and unfolding rates.

Lastly, there is a strong correlation between

unfolding rate and thermodynamic stability [Fig.

1(F), Table I]. In contrast, the correlation of folding

rate with thermodynamic stability is weak [Fig.

1(G), Table I], as has been found previously.6,36 The

larger contribution of unfolding rate to thermody-

namic stability has been noted before,27,28,32,33,37

and is also apparent in the differences between the

upper and lower limits of the dataset, where the

upper limit on fast folding and unfolding is similar,

while the lower bound for unfolding is substantially

slower than that for folding (Supporting Information

Table SII). These results suggest that variations in

thermodynamic stability, which are determined by

the ratios of folding to unfolding rates, are domi-

nated by unfolding rather than folding rates (Table

I). Why is this so? Folding may have a biologically

imposed lower limit in vivo, such that it is suffi-

ciently fast to avoid degradation or aggregation,38

and an upper limit imposed by physical constraints

even for the most topologically simple folds.34 Con-

versely, while there may be a similar physical limit

for fast unfolding, the biological limit for slow

unfolding, which may be related to the need for

eventual protein turnover,39 may be more malleable

due to the greatly differing roles and lifetimes of

natural proteins.

Experimental and theoretical support for
correlation between unfolding rates and native

structure

Multiple lines of evidence suggest that unfolding

rates should correlate with native structural com-

plexity. First, while the relationships between

unfolding rates and structure observed here may

appear to be at odds with prior studies,27–29 this is

likely spurious due to trends being obscured previ-

ously when analyzing smaller datasets with substan-

tial noise. Specifically, for a given value of a

structural parameter (ACO or LRO), the variation in

the observed unfolding rates is 6�10-fold larger

than that for the folding rates [Fig. 1(A–D)]. Thus,

compared to folding rates, to detect significant corre-

lations between unfolding rates and structural

parameters, the absolute range of unfolding rates

needs to be larger. The smaller datasets used in pre-

vious unfolding analyses,27–29 which were based on

the more curated set of Maxwell et al.,30 had a range

of � eight orders of magnitude for the unfolding

rates (6 3 1026 – 1 3 102 s21). The larger dataset

used here spans �16 orders of magnitude (4 3 10211

– 53105 s21), and as such the correlation between

unfolding rate and structural complexity can be

observed more clearly. Second, as the rates at the

transition midpoint (where ku is equal to kf, and DG

is 0) report on the transition state energy, the corre-

lation of these rates with measures of structural

complexity suggests that both the folding and

unfolding rates (under conditions of different DG)

should also be correlated with those same measures

of structural complexity. Third, a recently developed

method based on physical principles and protein

structural class and size was able to predict both

unfolding and folding rates for a set of 52 two-state

folding proteins.40 Finally, an analysis of 53 two-

state and 19 multistate folders using a complex frac-

tal parameter found comparable correlations with

unfolding and folding rates, although the strength of

the correlation was weaker than reported here.24

The above considerations provide support for our

observation of the significant correlations of struc-

tural complexity with both folding and unfolding

rates.

Implications for design
The correlations reported herein indicate that the

same measures of structural complexity predict both

folding and unfolding rates equally well, and conse-

quently, it may be difficult to modulate one aspect of

the structure to alter (e.g., gain) folding speed, while

leaving unfolding speed unaffected. Thus, it may

seem a daunting task to achieve the desirable out-

come of both fast folding and slow unfolding simulta-

neously. However, while the correlations of

structural complexity and folding/unfolding rates

have high statistical significance (Table I), there is

nevertheless considerable variation around the lines

of best fit, which we roughly estimate to be in the

range of 6 two orders of magnitude for folding

and 6 three orders of magnitude for unfolding rates

[Fig. 1(A–D)]. Although some of this variation may

be caused by more complex topological features such

as nested structures,25,35,41 it has been noted previ-

ously14,42 and well documented experimentally, for

example, by comparison of homologous pro-

teins,31–33,36,42 that while the native structure may

place upper and lower boundaries on folding and

unfolding rates, sequence-specific effects can be sub-

stantial. This is also illustrated by the effects, some-

times quite large, of point mutations on kinetics.43,44

In addition, single mutations tend to have a larger
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absolute effect on unfolding rather than folding

rates based on our analysis of a dataset collected by

Naganathan and Mu~noz45 where the change in

unfolding rate is �15-fold greater on average than

for folding rates (Supporting Information Table

SIII). Together, the above points suggest that while

the scaffold may define broad ranges for folding/

unfolding rates, sequence-specific engineering can

provide substantial scope to modulate these rates in

order to achieve to some extent, fast folding and

slow unfolding.

Fortunately, much work has been done on the

sequence-specific determinants of folding and unfold-

ing rates, and some lessons may be learned from

this. First, the nature of functional sites in proteins

may modulate topological complexity and alter

kinetics. This was studied for two beta-trefoil pro-

teins: the functional myristoyl binding site of Hisac-

tophilin is a cavity within the protein core which

reduces structural complexity and so may speed

folding and unfolding, whereas the binding site of

Interleukin-1 beta is formed by two long loops which

increase structural complexity and may slow the

kinetics.46 Second, both residual structure in the

denatured state47,48 and nonnative interactions in

the transition state49–51 can increase the folding rate

independent of the overall topology. Third, unfolding

rates can be slowed by introducing hydrophobic resi-

dues on the surface of the native structure, which

may increase local rigidity and the barrier to local

hydration,52 or by surface electrostatic interactions,

which may act as clips.53 Lastly, it may be possible

through computational simulation to identify partic-

ular weak points in the structure which, if strength-

ened, could increase unfolding cooperativity and

therefore increase the height of the unfolding bar-

rier.54 Thus, multiple approaches may be used to

modulate sequence-specific interactions in order to

alter folding/unfolding rates.

Conclusions
We have shown, using a large dataset with highly

significant correlations, that the measures of struc-

tural complexity that have emerged as strong pre-

dictors of folding rates, ACO and LRO, are equally

predictive of unfolding rates, contrary to what has

been reported previously when using smaller data-

sets.27–29 In addition, the correlations are fairly

robust to kinetic mechanism, whether two-state or

multistate, and structural class, whether alpha,

beta, or mixed. From a fundamental protein folding

point of view, this suggests that the structural com-

plexity reported on by ACO and LRO is a key deter-

minant of both folding and unfolding processes.

These results have important implications for

protein engineering and design. Specifically, a topo-

logically simple scaffold may fold quickly, and so

attain in vivo activity34,38; but, it will also unfold

quickly, reducing kinetic stability and resistance to

thermal or chemical denaturation and degradation

by proteases.55,56 Conversely, a topologically complex

scaffold may possess the high kinetic stability that

would be ideal for harsh industrial conditions or

crowded and proteolytic biological environments,56

but it may have difficulty folding fast enough to be

biologically viable.8,34 These conflicting kinetic con-

straints may limit the prospects when both fast fold-

ing and kinetic stability are required, or when

improving a particular scaffold that is desirable for

other reasons (such as function). However, these dif-

ficulties can be overcome as in existing proteins

where the large variation in folding/unfolding rates

and significant effects of point mutations44 (Support-

ing Information Table SIII) demonstrate that appro-

priately designed sequences can ease constraints

placed on the folding and unfolding rates by the

structural complexity of the protein scaffold.

Methods
Our dataset is largely that of Garbuzynskiy et al.34

(which includes the smaller dataset of Maxwell

et al.30). We added data from the Kinetic DataBase57

and other published kinetic data including our

own32,58–60 as well as data on our engineered Three-

Foil protein61 (for which the kinetic experiments will

be published separately). In adding data, we fol-

lowed the general criterion used by Garbuzynskiy

et al.,34 using only monomeric, single domain pro-

teins, which lack disulfide bonds and prosthetic

groups. In addition, the experimental temperature

was in the range, or could be reliably extrapolated,

to �25�C, and the folding and unfolding rates were

measured at, or could be extrapolated to, 0 M dena-

turant. The specific details of the sources for each

member of the 108 protein dataset are given in Sup-

porting Information Table SII.

ACO, the average sequence separation between

contacting heavy atoms, was calculated as described

by Ivankov et al.7

ACO 5
1

Nc

XNc

i;j

ji2jj

where Nc is the total number of contacts between

heavy atoms, and |i 2 j| is the sequence separation

in residues for a given contacting pair of atoms. Con-

tacts are considered between heavy atoms less than

6 Å apart.

The formula for calculating LRO is that of Gro-

miha and Selvaraj19

LRO 5
1

L

XRc

i;j

ni;j

where L is the protein length, Rc is the total number

of contacting residues and ni,j is 1 when |i 2 j|� 12

and 0 otherwise. We have modified the definition of

a contact between residues to be the same as in
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ACO rather than the original criterion of a Ca sepa-

ration less than 8 Å. This modified form yields

slightly improved correlations for both folding and

unfolding; using 6 Å may correct for underestima-

tion of long range contacts between large residues in

cores.
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