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ABSTRACT

With read lengths of currently up to 2 × 300 bp,
high throughput and low sequencing costs Illumina’s
MiSeq is becoming one of the most utilized sequenc-
ing platforms worldwide. The platform is manageable
and affordable even for smaller labs. This enables
quick turnaround on a broad range of applications
such as targeted gene sequencing, metagenomics,
small genome sequencing and clinical molecular di-
agnostics. However, Illumina error profiles are still
poorly understood and programs are therefore not
designed for the idiosyncrasies of Illumina data. A
better knowledge of the error patterns is essential
for sequence analysis and vital if we are to draw
valid conclusions. Studying true genetic variation in
a population sample is fundamental for understand-
ing diseases, evolution and origin. We conducted a
large study on the error patterns for the MiSeq based
on 16S rRNA amplicon sequencing data. We tested
state-of-the-art library preparation methods for am-
plicon sequencing and showed that the library prepa-
ration method and the choice of primers are the most
significant sources of bias and cause distinct error
patterns. Furthermore we tested the efficiency of var-
ious error correction strategies and identified qual-
ity trimming (Sickle) combined with error correction
(BayesHammer) followed by read overlapping (PAN-
DAseq) as the most successful approach, reducing
substitution error rates on average by 93%.

INTRODUCTION

The announcement by Roche to withdraw the GS FLX 454
pyrosequencing platform emphasizes the need for a bet-
ter understanding of Illumina errors. 454 and Illumina se-
quencing errors are fundamentally different and require dif-
ferent strategies with regard to the downstream analysis.
The majority of errors in 454 data are related to homopoly-

mers (1,2). For Illumina, on the other hand, substitution
type miscalls are the dominant source of errors. The Illu-
mina sequencing technology is based on array formation.
The sequencing templates are immobilized on a flow cell
and a subsequent solid-phase bridge amplification gener-
ates up to 1000 copies in close proximity (cluster gener-
ation). The sequencing-by-synthesis technology uses fluo-
rescently labelled reversible terminator-bound dNTPs (de-
oxyribonucleotides: A,C,G,T) for the polymerization. Only
one base is added in each step due to the 3′ termination of
the incorporated nucleotide. The fluorophores are illumi-
nated by a red laser for A and C and a green laser for G and
T and imaged through different filters to identify the four
different nucleotides. The fluorescent labels and the 3′ termi-
nators are then removed in order for the next cycle to com-
mence. Challenges arise due to a strong correlation of A and
C as well as G and T intensities as a result of similar emis-
sion spectra of the fluorophores and limitations of the filters
that are used to separate the signals. Furthermore problems
known as phasing and pre-phasing can cause noise in the
cluster signal. Phasing can occur due to problems with the
enzyme kinetics such as incomplete removal of the 3′ termi-
nators or the fluorophores and cause the synthesis of some
molecules in a cluster to lag behind. During pre-phasing on
the other hand the synthesis advances too fast which can be
caused by inadequate flushing of the flow cell, by sequences
in a cluster skipping an incorporation cycle or the incor-
poration of nucleotides without an effective 3′ terminator.
The number of affected sequences increases with each cycle
and thus limits the overall read length. Overall, substitution
type miscalls are the major source of errors for Illumina se-
quencing (3).

Most previous studies on Illumina-specific errors have
concentrated on the Genome Analyzer (GAII) and the
HiSeq 2000 (4–6). Significant improvements in the tech-
nology and software have generally improved error rates
but we still face systematic errors in Illumina sequencing.
Nakamura et al. (7) identified two sequence patterns in Il-
lumina GAII data that trigger errors during the sequenc-
ing process––firstly, inverted repeats and secondly, GGC se-
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quences. They suspect that the first pattern causes dephas-
ing by inhibiting single-base elongation through folding of
single-stranded DNA and that the second pattern causes al-
tered enzyme preference on the lagging-strand. They also
report that mismatches are mainly observed in reads se-
quenced in the same direction and there is a strong cor-
relation between average base call quality and mismatch
rate. Their study also showed that the GGC pattern does
not always trigger a sequencing error. The pattern ‘may oc-
cur once every 64 bases by chance’ (7) but sequence-specific
errors (SSEs) are less common. Furthermore a significant
number of SSE positions were not associated with the iden-
tified sequence patterns suggesting that other factors may
be a significant cause for sequencing errors.

For our experiments we used a variety of single species
samples as well as a complex mock community consisting
of 59 organisms. We developed a program that enables us
to infer error profiles based on sequencing data from mock
communities. Erroneous base calls are identified based on
the alignment of the reads against the known reference
genomes. Our software can identify mismatches, insertions
and deletions for any sequenced mock data set. This allowed
us to study and compare the impact of: library preparation
methods, run, input DNA amount, number of polymerase
chain reaction (PCR) cycles, Taq, DNA template and for-
ward and reverse primer combinations. We provide an in-
depth analysis of the errors occurring on both read direc-
tions for all types of errors and tested the reliability of qual-
ity scores. It has been reported previously that the per-base
quality scores can be inaccurate and co-variation has been
observed with attributes like sequencing technology, ma-
chine cycle and sequence context (8). We will show that the
accuracy of the quality scores varies depending on which
library preparation method was used. The differentiation
of true variation and context-specific sequencing errors is a
major challenge in next generation sequencing (NGS) anal-
ysis. Being able to infer error profiles for individual sequenc-
ing runs has the potential to greatly improve our ability to
correct errors and thus enhance further sequencing analysis.

Currently available programs aiming to address errors in
Illumina sequencing data include quality trimming, error
correction and read overlapping. During quality trimming
the average quality scores are computed over a sliding win-
dow across the whole read. The start of the read is trimmed
until the average quality score is larger than a certain thresh-
old and the end of the read is trimmed if the average qual-
ity score falls below the threshold. Error correction will
be tested with the program BayesHammer. During this ap-
proach a Hamming graph is constructed based on the k-mer
composition of the reads. Using Bayesian subclustering the
connected components are further divided into subclusters
taking the quality values into account. For each subcluster
the central k-mer is assumed to be the true sequence and
the remaining sequences are corrected accordingly. Errors
can also be corrected by overlapping paired-end reads. The
reads are aligned and the optimal overlap is determined fol-
lowed by error correction and assembling of the reads into a
single sequence. Here, the quality scores are used for align-
ing the reads as well as for the error correction. We will test
the capacity of these approaches and discuss their limita-
tions.

MATERIALS AND METHODS

Mock community and sequencing data

We sequenced a variety of samples ranging from sin-
gle species to diverse mock communities with different
abundance distributions. The single organisms included
Anaerocellum thermophilum Z-1320 DSM6725 (AT), Bac-
teroides thetaiotaomicron VPI-5482 (BT), Bacteroides vul-
gatus ATCC 8482 (BV), Herpetosiphon aurantiacus ATCC
23779 (HA), Rhodopirellula baltica SH 1 (RBS), Leptothrix
cholodnii SP-6 (LC) and Caldicellulosiruptor saccharolyticus
DSM 8903 (CS). For the first mock community we com-
bined even amounts of purified genomic DNA (9) from 49
bacteria and 10 archaea (see Supplementary Table S6 for
details). We used the same genomes to construct an uneven
mock community where organisms within the same phyla
are distributed according to a log-normal distribution and
the different phyla in turn follow a log-normal distribution
as well. The bacteria make up a total of 90% of the commu-
nity and the archaea 10% of the community.

We sequenced the V4 and the V3/V4 region of the respec-
tive samples and included two samples for which the whole
16S gene was sequenced. Five different library preparation
methods were used including nested single index (SI), nested
dual index (DI or 5NDI with five random nucleotides be-
fore the primer), NexteraXT (XT) and Fusion Golay (FG).
(For further details on the library preparation methods see
the Supplementary material.) The samples were distributed
across seven runs and two MiSeq sequencing machines. We
tested a range of different input quantities and tested two
DNA polymerases (Kapa HiFi & NEB Q5). In addition we
studied the impact of different forward and reverse primer
combinations. A detailed list of all data sets including their
parameters can be found in the Supplementary material
(Supplementary Tables S3 and S4).

Algorithm for computing the error profiles

First, we aligned the reads with Burrows–Wheeler Aligner
(BWA) (Version 0.7.3a-r367) (10) against the reference se-
quences. Then we converted the alignment to Sequence
Alignment/Map (SAM) format using BWA and generated
the MD tag with SAMtools (11). Our program then infers
position and nucleotide-specific substitution, insertion and
deletion rates. The Compact Idiosyncratic Gapped Align-
ment Report (CIGAR) string encodes matches and mis-
matches with ‘M’, insertions with an ‘I’ and deletions with
‘D’. Based on the MDtag in the SAM format we then iden-
tified the nucleotides that were replaced during a substitu-
tion and the types of nucleotides affected during a deletion.
From the extended CIGAR string we determined the substi-
tuting nucleotides and detected the nucleotides involved in
an insertion. In addition we recorded position-specific qual-
ity scores for all error types and the 3mers preceding errors
(motifs).

Our program outputs 4×L matrices for each error type
(where L is the read length) for the set of R1 and R2 reads,
respectively. The number of rows corresponds to the read
length and each row specifies the nucleotide-specific error
rates for a certain position on the read. The matrices were
normalized as follows: firstly, the occurrences of each nu-
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cleotide on the read for each position were counted. Sec-
ondly, the number of detected substitutions for this nu-
cleotide was added to account for errors where the nu-
cleotide should have been observed as compared to the true
reference sequence of the species sample. Lastly, the number
of substitutions where the nucleotide was the substituting
nucleotide was subtracted, i.e. where a nucleotide was mis-
taken for another nucleotide. This reflects the true number
of occurrences of A, C, G and T.

To verify our algorithm we extended our read simulation
program (12) to generate reads based on error profiles of the
above-described format. The error profiles, inferred from
the simulated reads, concurred with the original error pro-
files used to simulate the reads. In addition we used mock
error profiles with a simple stepwise increase of the error
rate along the read for the read simulation. Again, the re-
constructed error profiles concurred with the mock profiles
used for the simulation and thus validate the algorithm.

Metric for overall comparison: Hellinger distance

We measured the similarity between the error distributions
using the Hellinger distance. The error rates across the
read length can be interpreted as probability distributions.
We considered substitutions, insertions and deletions sepa-
rately for R1 and R2 reads, respectively, and summed over
the different types of errors in each case.

Definition: Let P = (p1, . . . , pL) and Q = (q1, . . . ,
qL) denote two discrete probability distributions. Then the
Hellinger distance H is defined as

H(P, Q) =
√√√√1

2

L∑
i=1

(
√

pi − √
qi )2.

A value between 0 and 1 is returned. The closer this value
is to zero, the more similar the two distributions.

We used a permutation ANOVA (analysis of variance)
(http://CRAN.R-project.org/package=vegan) to identify
the significant experimental factors for the substitution er-
ror patterns as those constitute the majority of errors. We
computed the distance matrices using the results based on
the Hellinger distance. We chose a model for the permuta-
tion ANOVA using the step function in R together with re-
dundancy analysis.

RESULTS

We only present the detailed results for data set (DS) DS
35. However, the same detailed analysis was conducted for
all data sets listed in Supplementary Tables S3 and S4. To
compare the individual profiles and to identify any pat-
terns associated with particular parameters we then used
the Hellinger distance to contrast the error and quality pro-
files of the different data sets. Subsequently we studied the
overall error rates across all library preparation methods
and identified associated biases and motifs. We conclude
this section by testing the efficiency of several currently
available error removal techniques.

Detailed error and quality profiles for data set DS 35

For data set DS 35 the V4 region of the balanced mock com-
munity was amplified and the nested DI library prepara-
tion method was used. Figure 1 displays the position and
nucleotide-specific substitution rates for the R1 and R2
reads, respectively. A small number of errors can result in
a high error rate if a nucleotide has very few occurrences at
a certain position. In order to avoid overemphasis of these
rare errors we smoothed the error profiles for the visualiza-
tion as follows: for the substitutions we computed the ex-
pected minimum number of errors, averaging over all posi-
tions. In the case of DS 35, T shows the smallest average
error rate (0.000262). There are 593,868 R1 reads, so as-
suming a uniform distribution over nucleotides we would
expect ∼148,467 occurrences of each nucleotide at each po-
sition and thus ∼38 errors (rounded down). Analogously,
we set the minimum threshold for the R2 reads to 144
(smallest nucleotide-specific error rate: 0.000967). The in-
sertion and deletion rates as well as the rates of unknown
nucleotides (Ns) were calculated relative to the total cover-
age of each position. This avoids the problem of overempha-
sis and hence we do not need to apply a minimum threshold.

Substitution error profiles. For all types of substitutions we
observed an accumulation of errors across the first 10 bp of
the reads. The error rates also increased towards the end of
the read in particular for the R2 reads and we can see a clear
preference for the substituting nucleotide for some types of
substitutions. We compared the substitution preference for
each original nucleotide across the last 50 bp. For the R1
reads we detected the following rates: in 66% of the cases
A got substituted by C. For C we observed a substitution
with A in 58% of the cases. G got substituted by T in 45%
of all cases and T got substituted by C in 45% of all cases.
For the R2 reads we detected a similar bias: we observed A
to C substitutions in 85% of all cases, C to A in 61%, G to
T in 40% and T to C in 40% of all cases. We also found that
the overall error rate is significantly higher in the R2 reads
with ≈0.0107 compared to only ≈0.0064 for the R1 reads.

Other noticeable characteristics were the spikes occur-
ring at certain positions across the reads with error rates
much higher than the average error rate. There are several
possible underlying reasons for the accumulation of errors
at those positions. We first checked if the spikes are likely
to be caused by errors in the database. We compared the
R2 substitution profiles for three different data sets (see
Supplementary Figure S2). In all three cases the organism
B. thetaiotaomicron VPI-5482 was sequenced. For the first
data set (column 1) the V4 region of the sample was ampli-
fied and prepared with the nested SI, for the second data
set (column 2) the V3/V4 region was amplified and the li-
brary was constructed with the Nextera XT kit and for the
third data set (column 3) the V4 region was amplified and
the nested DI was used. For the visualization we smoothed
the error profiles accordingly. As all R2 reads cover the V4
region, any issues with the reference database should be vis-
ible in all three error profiles. The graphs clearly illustrate
that the spikes are not concurrent and thus indicate that
it is unlikely that the cause of the spikes are errors in the
database. Another indication that the spikes are not a prob-
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Figure 1. Nucleotide-specific substitution error profiles for data set DS 35: each graph shows the substitution rates for a specific original nucleotide and
the colours indicate the substituting nucleotide. The first four graphs show the R1 profiles and the last four graphs show the R2 profiles.

lem with the reference sequences is the rate at which those
substitutions occurred. Table 1 gives a selection of spikes
that were encountered in DS 35 specifying the type of sub-
stitution, the position and the rate at which the substitution
was observed. The organisms in this mock community were
initially uniformly distributed. However, PCR amplification
introduces a bias as not all sequences are amplified in equal
measure. Therefore, we re-calculated the abundance distri-
bution of the 16S rRNA reference genes based on the read
alignments. On average each reference sequence accounted
for 0.86% of the population with a maximum of 2.8%. Thus
the frequency of each 16S rRNA sequence is in most cases
significantly lower than the error rate of the respective spike

and errors would need to occur simultaneously in multiple
sequences to account for the observed rates.

Later in this section we will discuss the possibility of
motifs causing the accumulation of errors at certain posi-
tions as previously reported by Nakamura et al. (7) for the
Genome Analyzer (GAII).

Insertion and deletion error profiles. Figure 2 displays the
position-specific insertion and deletion profiles as well as
the distribution of unknown nucleotides (Ns) across all
reads. As previously reported the insertion and deletions
(indel) rates are ≈100× lower than the substitution rates.
We also observed that insertions with rates of 0.000040 and
0.000043 for R1 and R2 reads, respectively, are twice as
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Table 1. A selection of substitutions that occurred at a very high rate in data set DS 35

R1 R2

A −> G pos 226 Rate 0.25 A −> G pos 57 Rate 0.03
T −> G pos 162 Rate 0.02 T −> C pos 136 Rate 0.02
T −> G pos 179 Rate 0.01 G −> A pos 57 Rate 0.03
C −> G pos 118 Rate 0.18 G −> C pos 174 Rate 0.14

Columns 1–3 specify the type of substitution, its position and the substitution rate for the R1 reads. Columns 4–6 detail the respective information for the
R2 reads.

R1 Profiles for Insertions, Deletions and Ns:
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R2 Profiles for Insertions, Deletions and Ns:
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Figure 2. Error profiles for insertions, deletions and unknown nucleotides (Ns): the first three graphs show the R1 error profiles. For insertions the colour
identifies the inserted nucleotide and for deletions the colour refers to the type of nucleotide that was deleted. The lower three graphs display the error
profiles for the R2 reads, respectively.

likely as deletions for which we observed rates of 0.000017
and 0.000027 for R1 and R2 reads, respectively. Again, the
majority of indels seem to concentrate around certain po-
sitions with rates up to 225× higher than the average in-
del rate (see Table 2). The non-uniform distributions of un-
known nucleotides (N) indicate that Ns as well do not occur
randomly.

Correlation of quality scores and errors. The first column
of Figure 3 displays the observed quality scores for all reads.
For this data set we generally encountered very high qual-
ity scores for the R1 reads and only slightly lower values
for the R2 reads. In the second column of Figure 3 we con-
strained the boxplot to quality scores associated with substi-
tution errors. Most noticeable is the range of quality scores

for substitutions of As and Cs. The average quality score
for those types of errors was only slightly lower than the av-
erage quality score observed for the respective base in gen-
eral. Furthermore almost all of the quality scores associ-
ated with substitutions of C are between 32 and 35 and 75%
of the quality scores associated with substitutions of A are
above 32 for the R1 reads (see Figure 3a). The R2 reads
showed a larger range for those error types, though a signif-
icant number of errors were also associated with very high
quality scores. Erroneous Gs and Ts show on average much
lower quality values (see Figure 3b). G and T are read by
the same laser (green channel). Erroneous bases sequenced
on the red channel have on average very high quality values
and cannot be detected based on the reported quality score.
We observed the same issue for insertions and deletions. In
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Table 2. Examples of indels occurring at rates considerably higher than the average insertion and deletion rates

Insertions Deletions

R1 pos 97 Rate 0.009 R1 pos 221 Rate 0.0003
R2 pos 72 Rate 0.00007 R2 pos 32 Rate 0.0002
R2 pos 195 Rate 0.008 R2 pos 70 Rate 0.0004

Figure 3. Quality profiles for R1 and R2 reads: the boxplots in the first column display the distribution of quality scores for all reads. The second column
shows the distribution of quality scores associated with errors and the last column shows the average quality score of substitution errors for each position
across the read.

R1 reads 75% of the indels showed quality scores of 35 and
above. In R2 reads the same was true for deletions, whereas
for insertions the average quality score dropped just below
35. The last column of Figure 3 shows the position-specific
substitution quality profiles and suggests that there is a cor-
relation between position of the error and its quality value.
Errors occurring at the start and middle of the read had in
general much higher quality scores and the quality value de-
creased towards the end of the reads.

In order to evaluate the suitability of quality scores to
identify errors, we compared the theoretical accuracy to
the actual accuracy in Figure 4. A quality score q is gen-
erated for each sequenced base and is designed to pre-

dict the probability p of an error in the base calling where
q = −10 · log10(p). The theoretical accuracy a is then defined
as a = 1 − p. The actual accuracy is computed by dividing
the number erroneous bases which were observed in con-
nection with a certain quality score by the number of times
the quality score was observed overall. All displayed qual-
ity values of the actual accuracy were observed at least 2000
times. We can see that the theoretical accuracy was higher
than the actual accuracy for many of the high quality scores
(in particular for the R1 reads), whereas the actual accuracy
of the lower quality scores was much higher than the theo-
retical accuracy.
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Figure 4. The figure compares the theoretical accuracy (blue) of the quality scores to the actual accuracy (red) observed for data set DS 35.

Overall comparison of error and quality profiles

We tested a range of factors across 73 data sets includ-
ing five different library preparation methods, amount of
input DNA, number of PCR cycles, two different Taqs,
sample/template impact, region (V3 versus V3/V4 and
16S), machine (two different MiSeqs were used), different
forward and reverse primers as well as run specificity of
the errors. We analysed each data set as described above
and computed the corresponding error and quality distri-
butions. We then compared those distributions using the
Hellinger distance in order to identify patterns and to de-
termine the experimental factors associated with those pat-
terns. As the Hellinger distance places less emphasis on
spikes, there was no need to smooth the distributions prior
to computing the distance matrices.

Error profiles. We visualized the level of similarity of the
position-specific error distributions by means of multidi-
mensional scaling (MDS) (see Figure 5). A distance matrix
was computed based on the pairwise comparison of the er-
ror distributions for each data set using the Hellinger dis-
tance. MDS is a technique that visualizes the information
in the distance matrix by computing the relative position
of the objects in a two-dimensional space whilst aiming to
preserve the original distances. Therefore the closer objects
are in the MDS plot, the more similar they are. In order to
derive meaningful error distributions for a data set, we re-
quired at least 1000 aligned reads per data set. (Note that
none of the SI data sets held ≥1000 aligned R1 reads. The
SI data sets were thus not included in the R1 figures.) Across
all types of errors there was a distinct tendency to cluster ac-
cording to library preparation (indicated by colour) and run
(indicated by shape). The R1 substitution profiles for the
FG data sets, for example, formed a distinct cluster. This
cluster consists, in turn, of two subclusters reflecting that
the samples were sequencing on two different runs. The DI
and 5NDI data sets clustered as well though we observed
a higher degree of variability between different sequencing
runs. The XT data sets clustered tightly aside from two data

points representing the full-length 16S samples. The PhiX
data sets from each run formed their own distinct cluster.

For both R1 and R2 substitutions the permutation
ANOVA identified the library preparation method as the
major factor, explaining 37% of the variability and 44%, re-
spectively. (For further details see Supplementary Tables S7
and S8.)

Quality profiles. We repeated the analysis for the quality
profiles and the corresponding MDS plots can be found in
the Supplementary material (see Supplementary Figure S3).
We observed a similar tendency for the substitution profiles
to cluster with regard to the library preparation method.
The quality scores for the insertions and deletions showed
less of a pattern.

Comparison of error rates for different library preparation
methods

In Figure 6 we compared the overall error rates of the data
sets grouped by library preparation method. Note that we
only considered aligned reads here. An overview of the per-
centage of aligned reads is given in Figure 11 (rates for raw
reads are marked in grey). For all of the data sets the error
rates increased for the R2 reads. We noted the most dra-
matic increase for some of the XT data sets where the error
rate for the R2 reads was more than double the rate of the
R1 reads. We also noticed a certain amount of variation for
each library preparation method. In the case of the FG data
sets, for example, DS39-DS47 were on the same sequencing
run and showed a lower rate compared to the other FG data
sets that were sequenced on a different run. For the DI data
sets four different forward primers were used. The first two
data sets, the following 17 data sets, the following nine data
sets and the last six data sets have the same forward primer,
respectively. There was also a clear bias of A and C which,
in particular for the R2 reads, accounted for a large fraction
of the overall error rate. Note that A and C are both read
by the same laser (red channel).

Indel rates are in general almost two orders of magnitude
smaller than the substitution rates. Though for 17 of the DI
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Figure 5. Comparison of error distributions for all data sets. We used the Hellinger distance to construct similarity matrices for the error distributions and
summed over all types of substitutions, insertions and deletions, respectively. The colour indicates the library preparation method (see the legend) and the
shape indicates different runs.
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Figure 6. We compared the overall error rates for each data set. The lower x-axis indicates the name of the data set and the upper x-axis specifies the library
preparation method. The error bars show the extent that each original nucleotide contributed to the overall error rate. Data sets are grouped by library
preparation (solid lines) and primers (dashed lines).
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data sets and the two 5NDI data sets we recorded a huge in-
crease in insertions and deletions on the R1 reads. For all of
these data sets the 515 or F515A forward primer was used.
For the data sets where the same forward primer was used in
connection with the FG we did not record the same build-
up of indels. The majority of those errors occurred at the
start of the reads. By trimming the first 10 bp of the reads
we were able to remove 95–100% of all insertion errors for
those data sets and 96–100% of all deletion errors (see Sup-
plementary Figure S4).

We also detected a preference for the substituting nu-
cleotide for the different library preparation methods. (For
more details see Supplementary Figures S5 and S6.) This
bias seems to be mostly run specific, though we recorded a
high preference for G as the substituting nucleotide in R1
reads and T in R2 reads for the Fusion Golay. For DS82,
for example, G was the substituting nucleotide in 68% of all
substitutions that occurred on R1 reads and T in 65% of all
substitutions that occurred on R2 reads.

Motifs

We recorded all 3mers preceding errors (in the following re-
ferred to as ‘motifs’) for substitutions, insertions and dele-
tions and measured the percentage of errors that is ex-
plained by the top three motifs. Figure 7 shows the results
for the R1 reads. (The analogous results for the R2 reads
can be found in Supplementary Figure S7.)

In particular for the substitutions, Figure 7a and Sup-
plementary Figure S7a show that the three most common
motifs are very similar for data sets with the same library
preparation (separated by the solid lines) with additional
subclusters based on the forward and reverse primers (in-
dicated by the dashed lines), respectively. The plots on the
right side show in each case the percentage of substitution
errors that follow motif1, motif2 and motif3, respectively.
In the case of DS35 more than 80% of all errors succeed
‘GTG’ (motif1) or ‘AGC’ (motif2). And for half of the FG
data sets only three motifs (out of 64 possible ones) account
for more than 50% of all substitution errors. On average the
three most common motifs accounted for 34% of all sub-
stitution errors. This bias is even more pronounced for in-
sertions, where more than 95% of all errors are preceded by
the motif ‘AAT’ for all FG data sets. And on average 72%
of all insertion errors follow the three most common motifs.
For deletions we were able to connect on average 48% of all
errors to three motifs. For the R2 reads the motifs account
for an even larger fraction of errors in the case of substi-
tutions and insertions: on average 44% of all substitution
errors, 78% of all insertion errors and 46% of all deletion er-
rors can be connected to three motifs. And more than 95%
of all insertion errors in the FG data sets were related to a
single motif.

To determine the driving factors for the formation of
these motifs, we used a permutation ANOVA with the Bray–
Curtis distance analogously to the analysis of the error pro-
files. For the R1 and R2 substitutions the forward and re-
verse primer combination explains the largest fraction of
the variance with 60 and 55%, respectively. The library
preparation method explains an additional 16 and 26%, re-
spectively. For insertions a total variance of 78 and 80%, re-

spectively for R1 and R2 reads, can be explained by primers
together with the library design and 78% for R1 deletions.
The significant factors for R2 deletions are the run and the
library design explaining a total of 25% of the variance.

Quality scores. We investigated the quality scores associ-
ated with errors across all data sets. Figure 8a and b display
the 50th and the 75th quartile for all data sets, meaning 50
and 25%, respectively, of all quality scores associated with
errors were above these values. The data sets are grouped by
library preparation and the quality scores associated with
substitutions, insertions and deletions are displayed sepa-
rately. For the DI data sets a large fraction of errors showed
high quality scores. In particular, 50% of all R1 and R2 in-
sertions were connected with quality scores of 32 and above
for all data sets. For the FG data sets substitutions and dele-
tions were well characterized by their quality scores but in-
sertions showed very high quality scores. For the XT data
sets we recorded high quality scores for ≥25% of all errors.
However, the 50th quartile was overall lower than for the
DI data sets and errors on R2 reads were well characterized.
The SI data sets showed very high quality scores across all
types of errors.

Error correction

We compared different error removal techniques including
trimming the start and end of the reads, trimming based
on quality scores with Sickle (https://github.com/najoshi/
sickle), error correction with BayesHammer (13) and over-
lapping reads with PEAR (v0.9.1) (14) or PandaSeq (Ver-
sion 2.4, with a minimum overlap of 50 bp for V4 data sets
and 10 bp for V3/V4 data sets) (15) and combinations of
the different strategies.

Insertions and deletions. Trimming the start and/or end of
the reads proved to be an important step in removing indel
errors for data sets prepared with certain library prepara-
tion methods. The average error rates for the different li-
brary preparation methods are shown in Figure 9. Here, we
compare the indel error rates of the raw reads to the rates
after trimming up to 10 bp off the read start and after addi-
tionally trimming up to 10 bp off the read end. For XT on
average 61% of the insertion and 29% of the deletions can
be removed from the R1 reads by trimming the last 10 bp
and 64 and 44%, respectively, for the R2 reads. Trimming
the start of the read had no significant effect on the indel
error rates for this library preparation method (see the solid
green line in Figure 9). For the DI data sets trimming the
start of the read removed most indel errors. On average 97%
of the R1 insertion in DI data sets and 96% in the 5NDI
data sets could be removed by trimming the first 5 bp of the
read. Additional trimming at the end showed no further im-
provements. R1 deletion rates could on average be reduced
by 97 and 99% for the DI and 5NDI data sets, respectively,
by trimming the first 6 bp of the reads.

Substitutions. By overlapping the reads we were able to
achieve further significant improvements with regard to the
error rates. The best results in terms of error removal were
achieved with a combination of quality trimming the reads

https://github.com/najoshi/sickle
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Figure 7. We recorded all 3 mers preceding substitution, insertion or deletion errors, respectively. The first column displays the three most common motifs
for each data set and the second column illustrates the percentage of errors that were associated with the respective motif. The solid lines separate the data
sets according to library preparation methods and the dashed lines further divide them according to the different forward primers that were used.
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Figure 8. Overview of 50th and 75th quartile of quality scores associated
with errors across all data sets. The results for the R1 reads are displayed
on the left and the results for the R2 reads are on the right. Data sets were
grouped by library preparation method (DI = dual index; SI = single in-
dex; FG = Fusion Golay; XT = NexteraXT) and substitution, insertion
and deletion errors are displayed separately. Note, that for none of the sin-
gle index data sets enough R1 reads aligned to construct meaningful qual-
ity profiles (threshold = 1000 reads).

Figure 9. Insertion and deletion rates of raw reads, after trimming up to
10 bp off the read start and after additionally trimming up to 10 bp off the
read end. (Note: none of the R1 single index data sets contained ≥1000
reads after alignment.)

Figure 10. The figure compares the error rates of the raw reads
(R1+R2 rates) to different error corrections approaches including Trim-
ming+BayesHammer, overlapping reads with PANDAseq and overlapping
reads with PEAR. We only included data sets for which at least 1000 reads
aligned for all methods. Data sets not included: 19–26, 52+53 (not enough
raw R1 reads aligned), 39–45+47 (not enough raw R2 reads aligned).

with Sickle, then applying BayesHammer for error correc-
tion and then overlapping the reads with PANDAseq (see
Supplementary Figure S11 for details on PANDAseq). For
the data sets displayed in Figure 10 the substitution error
rates were reduced by 77–98% with an average of 93.2%.
Figure 11 compares the percentage of aligned reads for the
most successful approaches. PANDAseq was able to align
between 12 and 95% of the reads with an average of 69%
across all data sets.

PEAR was able to reduce error rates by about 60%
on average (range 18–97%). The number of aligned reads
ranged from 4 to 96% and on average 61% of the read-
pairs could be aligned after overlapping. PEAR encoun-
tered problems with the alignment of the DI and 5NDI
data sets with high indel rates. For the FG data sets PAN-
DAseq and PEAR produced similar results in terms of
aligned reads with lower rates for DS 39-47 where the frac-
tion of substitutions linked to the top three motifs was
about 20% lower. It is also noticeable that for these data
sets quality trimming combined with error correction low-
ered the number of aligned reads by ∼15% on average.
PANDAseq also encountered problems with the SI data set
with lower rates than trimming+BayesHammer and trim-
ming+BayesHammer+PEAR. The XT data sets produced
very mixed results with regard to the percentage of aligned
reads. The best results for the XT amplicon data sets were
achieved by PEAR which aligned between 31 and 88%.
Note that DS 50 and 51 were the full-length 16S data sets
(displayed in the last two columns of Figure 11). For DS
50 fragments between 500 and 1000 bp were selected (aver-
age 590 bp) and for DS 51 fragment size selection included
sequences between 600 and 1500 bp (average 767 bp). Al-
though smaller fragments will preferentially be sequenced,
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Figure 11. The figure compares the number of aligned reads relative to the initial number of raw reads. For the raw reads and for reads that were processed
with Sickle plus BayesHammer, we summed the R1 and R2 rates. We also included trimming plus BayesHammer and overlapping with PANDAseq and
PEAR, respectively, as those combination of approaches returned the lowest error rates. Data sets are grouped by library preparation (solid line) and
primers (dashed line).

Figure 12. The figure shows the range of average error rates for the different library preparation methods (indicated on the upper x-axis). The grey bar plots
show the error rates for the raw reads, in red are the error rates after trimming and error correction, in blue and yellow are the error rates after additionally
overlapping reads with PANDAseq and PEAR, respectively.
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we would expect (in particular for DS 51) that only a small
fraction of the reads can be overlapped.

If read-overlapping is not a possibility (i.e. if the average
fragment size was larger than two times the read length),
the best strategy for error removal was quality trimming fol-
lowed by error correction with BayesHammer (see Supple-
mentary Figures S8 and S9). We recorded the most substan-
tial improvement for the R2 reads of the XT data sets. The
error rates slightly increased for some of the data sets af-
ter quality trimming. This is due to an increase in the num-
ber of aligned reads. When restricting the data sets to the
reads that aligned prior to trimming/correcting the reads,
the rates very slightly decreased.

DISCUSSION

We have shown that the experimental design has a major
impact on the error patterns of the sequencing data. To our
knowledge, this was the first study on error profiles for the
MiSeq and also the first time that a large range of experi-
mental factors was tested in connection with error patterns.
We used a complex mock community, to reflect the condi-
tions encountered in real samples, as well as single species.
A total of 73 data sets were used to show that the library
preparation method together with the choice of primers
causes an extensive bias towards certain motifs causing sub-
stitutions, insertions and deletions, respectively. This pro-
vides strong evidence that Illumina errors do not occur ran-
domly.

The increased error rates that we observed towards the
end of the reads are assumed to be due to accumulation of
phasing and pre-phasing events throughout the sequencing
process. Every time a molecule fails to elongate properly or
advances too fast, the overall signal for the cluster suffers
from interference. So as the read length increases, the clus-
ter signal can get weaker due to an accumulation of these
events resulting in higher error rates towards the end of the
read (16). This explains the gradual increase of errors that
we observed in the position and nucleotide-specific distri-
butions in addition to the spikes caused by the motifs.

We demonstrated that A and C are more prone to substi-
tution errors compared to G and T. Both A and C are identi-
fied through the red channel. This indicates a problem with
either the red laser or the filter that is used to distinguish
between the two nucleotides. Also, the fluorescence emitted
by A and C have the highest intensities. So any interference
with the signal would result in an erroneous base call. G on
the other side shows the lowest initial emission intensity. In
particular for the Fusion Golay, the most common substi-
tuting nucleotide was a G which could also indicate signal
disturbances.

Another possible explanation for the spikes that were ob-
served in the individual position and nucleotide-specific er-
ror profiles are PCR errors. Again, we believe that this is
unlikely to be the cause for the majority of the spikes as the
error rates representing the spikes (see Table 1) exceed the
abundance level of the individual 16S sequences in the mock
community. PCR errors would need to occur in multiple 16S
sequences at the same position.

Our quality score analysis showed that quality scores are
of limited use for the identification of errors in amplicon

sequencing data. Results differed for the various library
preparation methods. Only substitutions and deletions in
the FG data sets and errors in the R2 reads for the XT li-
brary preparation method were well characterized, whilst
the majority of errors for all other library preparation meth-
ods was associated with high quality scores. Kozich et al.
(17) had previously reported that errors were rarely asso-
ciated with quality scores above 21. However, a significant
fraction of the errors is expected to arise during the PCR
amplification step and would therefore not necessarily be
associated with low quality scores. We were not able to con-
firm their results in our study. This is in accordance with
the results by Eren et al. (18) who studied Escherichia coli
V6 amplicons in connection with the use of fusion primers.

We have shown that the theoretical accuracy indicated by
the quality scores was higher than the actual accuracy ob-
served for data set DS 35. It is possible that some of the
high quality scores associated with errors refer to PCR er-
rors introduced before the actual sequencing step. Neverthe-
less these results indicate that quality scores are of limited
use for the identification of errors in this amplicon data set
as low quality values do not reliably reflect the error poten-
tial of the respective base.

Since the study presented by Nakamura et al. (7) on the
Illumina Genome Analyzer (GAII) in 2011 there have been
major developments with another four Illumina platforms
entering the market and improvements regarding the chem-
istry providing much longer reads with lower error rates.
Nakamura’s findings are based on a single library prepa-
ration method and the read length was limited to 36 bp.
We tested if a similar bias prevails for the MiSeq platform
with read lengths of 2 × 250 bp testing five different li-
brary preparation methods. We additionally assessed the
impact of different environmental factors. Besides the li-
brary preparation method, we identified the forward and
reverse primers as one of the major driving factors for the
error profiles. The sources of errors described above (i.e.
phasing and pre-phasing, problems with red laser/filter) can
be attributed to the actual sequencing process. In contrast
to this, the library preparation method and the choice of
primers are biases introduced prior to the sequencing pro-
cess.

Figure 5 showed that the error profiles of the PhiX data
sets formed their own distinct cluster and therefore signifi-
cantly differ from the other data sets. This is in accordance
with the assumption that the library preparation has a ma-
jor impact on the error distribution as the adapters used
for PhiX are the same as for the TruSeq library preparation
method and would thus show a distinct pattern. This also
implies that PhiX is not suitable to identify error rates or
patterns if the actual sample was prepared with a different
library preparation method.

Figure 12 summarizes the error rates for each library
preparation method with regard to different error removal
techniques. For none of the SI data sets could we align
enough of the raw R1 reads. Overall the highest error rates
were encountered for the XT data sets. However, trimming
plus error correction achieved very good results on these
data sets as well as additionally overlapping reads resulting
in error rates comparable to the other library preparation
methods. PANDAseq achieved the best results across all li-
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brary preparation methods. Overall the figure shows that
error rates can be significantly reduced by combining vari-
ous strategies for error removal.

The large fraction of errors that are not sufficiently char-
acterized by quality scores pose the main limitation for ap-
proaches such as quality trimming and error correction.
This has been previously reported for the V6 region of E.
coli amplicon sequencing data (18). Much better rates were
achieved through read overlapping as these approaches not
only rely on the quality score but also utilize information
from both read directions. Also, this approach particularly
addresses errors at the end of the reads where error rates
are significantly higher compared to the start of the read.
Motif-based errors are not addressed directly. However,
as different motifs were recorded for forward and reverse
reads, any systematic error is likely to be observed only on
one read direction and can therefore be addressed indirectly.

Choosing the most appropriate approach for a particular
data sets depends on the individual hypothesis. We need to
balance error rate reduction with maximization of aligned
reads. For this we need to take the experimental factors into
account. The number of aligned reads increased after trim-
ming plus error correction for most data sets. Error rates
were slightly reduced for the R1 reads and significantly re-
duced for the R2 reads. Thus quality trimming and error
correcting reads is sensible for any kind of data sets. Indel
errors for the DI (DI and 5NDI) data sets accumulated over
the first 6 bp of the reads. Trimming of the start of the reads
removed on average 97% of all indel errors for these data
sets. Overlapping reads with PANDAseq has proven most
effective in removing errors but might reduce the number of
aligned reads depending on the library preparation method
and primers that were used. PEAR achieved higher num-
bers of aligned reads for some data sets but was not able to
reduce errors to the same extent.

We observed similar results in terms of errors, mo-
tifs, read alignment and error removal potential for data
sets with similar experimental design, i.e. the same library
preparation method, forward and reverse primers and se-
quenced on the same run. Including a small mock commu-
nity in a sequencing run could thus be used to determine
the best strategy for removing errors from the sequencing
data. We showed that PhiX is not suitable for this as the
adapters used for PhiX represent a specific library prepara-
tion method that can differ from the one used for the ac-
tual sample. The purpose of PhiX is often to increase the
data quality of low diversity samples and to optimize the
cluster map generation (http://res.illumina.com/documents/
products/technotes/technote phixcontrolv3.pdf). The same
can be achieved by including a mock community with the
added benefit of detailed information on the error patterns.

Sequencing errors caused by motifs are more noticeable
in amplicon data sets because of a higher degree of similar-
ity between the sequences. They are represented by spikes
in the position-specific error distributions. We will subse-
quently extend our study to metagenomic data sets. This
will allow us to separate sequencing errors from PCR er-
rors and give further insight into the sources for different
types of miscalls.

Systematic errors can cause major problems during the
analysis of the sequencing data if programs assume that er-

rors occur randomly. In particular for the identification of
single nucleotide polymorphisms (SNPs) systematic errors
will result in a high false positive rate and for diversity es-
timates systematic errors might result in a significant over-
estimation of the diversity in the sample. In order to iden-
tify these systematic errors, it is important to infer individ-
ual error profiles for different sequencers, library prepara-
tion methods and sequencing types to handle miscalls. Illu-
mina error rates are currently based on errors detected for
the PhiX genome during the sequencing process. We showed
that these error rates can greatly differ from the actual sam-
ple. Our approach offers the possibility to infer detailed er-
ror profiles for individual sequencing runs.
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