Skip to main content
. 2015 Mar 23;8(1):123–150. doi: 10.3390/ph8010123

Figure 1.

Figure 1

Mechanisms of action of antimicrobial peptides in 2014. Membrane channel formation (A) is proposed for dermicidin [76] and transmembrane pore formation for C-type lectin RegIIIα [77]. While human LL-37 [78] may form a toroidal pore (B), it started with a carpet model [79] (C) where antimicrobial peptides such as piscidins [72] are located on the membrane surface. Receptor mediated binding was observed for Lactococcin G and Enterocin 1071, which bind to UppP, an enzyme involved in cell wall synthesis (D) [80]. In addition, Gravicin ML binds to maltose ABC receptors (E) [81]. Further, RTD2, as well as lantibiotic Pep5, interacts with membranes causing the release of autolysin (F) [82]. Beyond membranes, bacterial MccJ25 could inhibit RNA polymerase (G) [83], while apidaecins, oncocins [84] and Bac7 [85] inhibit protein synthesis by binding to ribosomal proteins (H). Abbreviations used in the figures are OM, outer membrane; IM, inner membrane; PGN, peptidoglycan; LTA, lipoteichoic acid; MLT, maltose transporter. In addition, refer to the text.