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Abstract

To extract from an image of a single nanoscale object maximum physical information about its 

position, we propose and demonstrate a framework for pupil-plane modulation for 3D imaging 

applications requiring precise localization, including single-particle tracking and super-resolution 

microscopy. The method is based on maximizing the information content of the system, by 

formulating and solving the appropriate optimization problem – finding the pupil-plane phase 

pattern that would yield a PSF with optimal Fisher information properties. We use our method to 

generate and experimentally demonstrate two example PSFs: one optimized for 3D localization 

precision over a 3 μm depth of field, and another with an unprecedented 5 μm depth of field, both 

designed to perform under physically common conditions of high background signals.

Optical imaging of single nanoscale objects such as a quantum dot, metallic nanoparticle, or 

a single molecule provides a powerful window into a variety of biological or material 

systems, and the physical problem of extracting maximum information from single emitters 

is an important goal. One application is single-particle tracking (SPT [1]), which relies upon 

extracting the spatial trajectory of a single moving molecular label, quantum dot, or metallic 

nanoparticle from a series of images. For example, a single mRNA particle can be localized 

and followed in a living cell in real-time [2]. Another application of single-molecule 

localization is “super-resolution” (SR) microscopy, [3–5] which works by ensuring that only 

a sparse subset of labels on an extended object (e.g. a cellular structure) are emitting in each 

imaging frame. One localizes the single emitters just as in SPT; the multitude of 

localizations are then reconstructed into a single, high-resolution image. This enables the 

spatial resolving power of SR microscopy to surpass the classical diffraction resolution limit 

by 5- to 10-fold.

Historically, single-particle localization was used for 2D imaging, namely, inferring the x,y 

coordinates of each emitter, e.g. by centroid-fitting of by fitting to a 2D Gaussian [6]. 

However, the third spatial dimension, z, or the depth of an emitter, can also be inferred from 

its measured 2D image. This can be done by considering how the shape of the microscope’s 

point spread function (PSF) varies with emitter position. The PSF of a microscope is the 
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image that is detected when observing a point source. For a standard microscope, to a good 

approximation, the PSF in focus (i.e. z=0) resembles a circular Airy pattern, and its shape is 

invariant to lateral shifts (x,y) of the emitter – however it will change upon defocus (z). 

Unfortunately, the standard PSF spreads out (defocuses) quickly with z which limits the 

range over which z can be determined.

Importantly, to obtain much more useful 3D position information, the PSF of the microscope 

can be altered – for example by pupil (Fourier) plane processing [7,8]. Phase modulating the 

electromagnetic field in the Fourier plane is a low-loss method to encode z-information in 

the shape of the image on the camera. Examples of this include astigmatic PSFs [9,10], 

double-helix (DH-PSF) microscopy [11–13] or segmented phase ramps [14].

The precision to which a single emitter can be localized depends on several factors. These 

include the emitter’s brightness (detected photon flux), background fluorescence, detector 

pixel size, and detection noise [15,16]. Another key factor is the shape of the PSF itself. For 

example, in astigmatism-based 3D imaging, the PSF is altered to have an elliptical shape, 

and the z position of the emitter can be determined by the relative widths of the PSF along 

the two principal axes [9,10]. The double-helix PSF [12,13] is composed of two spots, with 

the angle between a line connecting them and the camera axis encoding the z position of the 

emitter. Among existing PSFs for 3D imaging, the double-helix PSF has been shown to 

allow a larger depth of field than astigmatism (~2–3 μm vs ~0.5–0.7 μm) [17], and a recently 

suggested PSF based on accelerating beams [18] demonstrates high, uniform precision over 

a 3 μm range. The purpose of this paper is to fundamentally improve upon these previous 

schemes.

Here, we address the problem of finding a feasible and optimally informative PSF. Namely, 

we ask the question – given an imaging scenario with certain characteristics (e.g. 

magnification, noise level, pixel size, emitter signal) – what is the pupil plane pattern that 

would yield maximal physical information about the 3D position of an emitter, and what is 

the resulting optimal PSF? In other words – since localization precision depends on the PSF 

of the system – can we design the system to have a PSF that would yield the best possible 

precision in determining x, y, and z, compared to any other PSF? We regard such a PSF as 

optimally informative.

A powerful measure of the effectiveness of a PSF for encoding an emitter’s position is based 

on Fisher information [17,19,20], a concept from statistical information theory. Fisher 

information is a mathematical measure of the sensitivity of an observable quantity (the PSF) 

to changes in its underlying parameters (emitter position). Using the Fisher information 

function, one may compute the Cramér-Rao lower bound (CRLB), which is the theoretical 

best-case x,y,z precision that can be attained (with any unbiased estimator) given a PSF and 

a noise model. With the right estimator, the best-case localization precision represented by 

the CRLB can be approached in practice [21–23]. Traditionally, the CRLB has been used as 

an analysis tool, i.e. to evaluate the performance of an existing PSF design, which is often 

conceived using physical intuition and reasonable requirements (e.g. a significant change of 

the PSF over the z-range of interest, and concentration of emitted light into small spots). The 

CRLB has also been used to fine-tune an existing PSF [24].
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To find the optimal pupil plane pattern, and thereby the optimal PSF, we propose a new 

approach to PSF design –we treat the PSF as a free design parameter of the imaging system, 

and generate PSFs with optimal photon-efficient 3D position encoding, with no prior 

constraints on the shape of the PSF. This is achieved by CRLB optimization – that is, we 

directly solve the mathematical optimization problem of minimizing the CRLB (and hence 

improving the precision bound) of the system, and use the resulting PSF. Such a PSF will 

provide optimal precision by definition. Physically reasonable requirements are accounted 

for by using realistic imaging and noise models, including pixelation, photon shot-noise 

Poisson statistics, and background fluorescence. This enables us to demonstrate, for typical 

experimental conditions and without scanning, the highest theoretical precision to date over 

a 3 μm axial range, as well as <50 nm experimental precision for an unprecedented ~5 μm 

range.

Fisher Information and CRLB

Single-emitter localization is in essence an estimation problem: Given a noisy and pixelated 

measurement of a PSF, the goal is to estimate the 3D position of the emitter. The Fisher 

information matrix [17,20] describes the sensitivity of a measurement (in our case – the 

PSF) to the parameters being estimated (emitter position). It is defined as:

(1)

where θ represents the vector of parameters being estimated, f(s;θ) is the probability density, 

i.e. the probability of measuring a signal s given the underlying parameter vector θ and E 

stands for the expected value.

In our case, the signal s corresponds to the measured PSF. This measurement is assumed to 

be corrupted by noise, and further pixelated by the integration of intensity over the finite 

size of each detector pixel. The vector of underlying parameters in our case is given by θ = 

(x, y, z, Nph, β), corresponding to the 3D position of the emitter, the total signal photons, and 

the mean background level per pixel, respectively. The probability density f(s;θ) is derived 

from the imaging and noise model, as follows: Each pixel in the measured image represents 

detected photons; theoretically this is modeled by a Poisson distributed variable, with its 

expected value equal to the model PSF in that pixel, as well as additive Poisson noise with a 

mean of β photons per pixel, due to background fluorescence. In this case, the Fisher 

information is a 5×5 matrix, given explicitly by [25]:

(2)

where μθ(k) is the value of the model PSF in pixel k, and Np is the number of pixels in the 

measurement. The diagonal of the inverse of the Fisher information matrix yields the CRLB 

vector, which bounds the variance of any unbiased estimator θ̂ [20] by:
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(3)

The calculated CRLB can be compared to simulated or experimentally measured quantities 

as follows. For example, one can simulate or measure many images of a small static emitter, 

estimate its position (x/y/z) from each image, and calculate the variance of the estimations. 

This variance is theoretically bounded from below by (CRLB1/CRLB2/CRLB3).

The Imaging Model

The 3D shape of a system’s PSF is defined by pupil-plane alteration of the optical 

electromagnetic field [8,12,13,26]. Concretely, a regular microscope is augmented by a 4f 

system [7], with a phase mask placed in the Fourier plane (Fig. 1). In the electromagnetic 

scalar approximation, the resulting PSF in the detector plane I(u,v) satisfies [7]:

(4)

where E(x′,y′) is the electric field in the pupil plane, caused by a point source at x,y,z, which 

is the 3D position relative to the focal plane and the optical axis. The complex function P(x

′,y′) is the modulation function, or pattern, imposed in the pupil plane, by a specifically 

designed transmissive mask or a controllable spatial light modulator (SLM). We denote by 

 the 2D spatial Fourier transform. The coordinate scaling is such that camera coordinates 

(u,v) correspond to Fourier plane frequencies (u/λf, v/λf), where λ is the wavelength, and f is 

the focal distance of the 4f lens. For details see [27].

The Optimization Problem

The optimization problem at hand is finding a pupil plane function P(x′,y′) that yields a PSF 

with optimal CRLB characteristics. Because the square root of the CRLB of a PSF 

corresponds to the limit of attainable precision (Eq. 3), we require that the optimization 

produce minimal mean  (over x, y and z) over a z-range of 3 μm; this defines our 

objective or cost function. We use realistic parameters for noisy biological cellular imaging 

data as encountered in SPT or SR imaging (2000 detected signal photons per molecule per 

frame, mean of β=28 background photons per pixel). Mathematically, the optimization 

problem is formulated as:

(5)

with the range Z ≡ [−1.5μm, 1.5μm]. Practically, we optimize over a discrete set of z 

positions, consisting of 250 nm increments within the range Z (a finer sampling grid did not 

change the results significantly). We further consider the practical constraint that P(x′,y′) is 

obtained using a phase-only SLM, imposing the constraint |P(x′, y′)| = 1 ∀x′, y′. This is 

necessary to conserve photons – a single-molecule emitter, for example, generates a finite 

number of photons before irreversible photobleaching.
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Although it is possible in principle to optimize the phase at each one of the SLM’s 512×512 

pixels separately, for practical reasons we optimize over a much more compact set of design 

parameters, consisting of the first 55 Zernike modes [28]. The optimization problem in Eq. 

(5) is non-convex, and a global minimum is not guaranteed to be found. We therefore 

initiate the optimization routine several times, starting from random initial values, and pick 

the final outcome with the minimal objective value. The optimization problem is solved 

using the interior-point method of Matlab’s fmincon function.

Results

The optimal solution, generated automatically by our optimization routine and shown in Fig. 

2a, is the resulting pupil plane phase pattern, termed the Saddle-point (SP) mask due to its 

Fourier-plane shape. Figure 2b shows the numerically calculated SP-PSF corresponding to 

the saddle-point mask in the simulated imaging system. The dominant features of the SP-

PSF are two strong lobes with varying distance and angle as a function of emitter depth (z). 

Figure 2c shows calculated x, y, and z  for the SP mask, compared to two commonly 

used PSFs – the double-helix PSF [12,13,29] and astigmatism [9,10]. The calculation is 

based on the Poisson-noise corrupted model with constant background [27], with 3500 

signal photons, and β = 50. In order to account for excess electron-multiplying CCD 

(EMCCD) noise, the quantum efficiency is adjusted as in [30] to 0.55, to match our setup’s 

measured noise characteristics. This would be equivalent to ~2000 detected signal photons 

and ~28 background photons per pixel. The SP mask, designed exactly for the purpose of 

having minimal mean CRLB, outperforms the existing masks in this parameter.

To experimentally demonstrate localization performance for subwavelength-sized emitters 

under typical biological fluorescence imaging conditions, we imaged 100 nm diameter 

fluorescent nanospheres on a standard microscope cover glass, using an inverted NA 1.4 oil 

immersion microscope system with custom widefield laser excitation and equipped with an 

EMCCD image sensor. Phase masks were loaded onto an SLM placed in the Fourier plane 

as described in [13] and schematically shown in Fig. 1. Fluorescence was excited using a 

514-nm argon ion laser filtered by a dichroic and band pass filter (578/105). A controllable 

background level β at the sample was produced by the microscope stand’s white light 

illuminator [27].

The localization procedure consists of the following steps: First, a set of calibration 

measurements is taken. A nanosphere is scanned at defined z positions by stepping with an 

axial objective positioner (Δz = 50 nm), and a calibration dictionary of the PSF at these 

increments is thus experimentally created. Then, given a measured image of an emitter, 

localization is performed using a maximum-likelihood estimator (MLE) [25]. The MLE 

approach is increasingly used in super-resolution single-molecule imaging to estimate an 

emitter’s position (x,y,z) as well as possibly the number of signal and background photons (a 

total of 5 parameters), given a measured noisy image frame and an imaging model. MLE 

finds the set of parameters that yield the best (most likely) correspondence of experimental 

image and model given the measured data, along with image formation and noise models. 

We create a continuous image formation model, necessary for the MLE, by using locally 
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phase-retrieved masks calculated from the measured dictionary [31]. See [27] for the 

detailed estimation method.

Figure 3 shows experimental localization results. After creating a measured dictionary 

(examples at different z positions in Fig. 3a), a nanosphere was placed in various z positions, 

and imaged for 500 frames under typical super-resolution conditions (mean detected signal 

photons per frame was ~3470, and mean background photons per pixel β ≈ 43). Each frame 

was then localized with MLE, using the locally-phase-retrieved masks, calculated from the 

dictionary measurements in the 300 nm range surrounding the initial estimate of the emitter 

position. The standard deviation of the 500 measurements at each z position defines the 

localization precision.

The localization process was repeated using the double-helix mask as well, and the entire 

measurement procedure was performed on four different nanospheres. The precision results 

are shown in Fig. 3b. The saddle-point mask exhibits superior performance to the DH-PSF 

in all three dimensions throughout almost the entire tested 3μm depth range. Figure 3c 

shows example precision histograms of all 2000 detected positions for both PSFs, at z = −1 

μm.

To further demonstrate the generality and one of the new possibilities opened by our 

method, we use it to optimize a PSF for a challenging very large imaging depth for a single 

PSF of 6 μm. This is done by minimizing the 3D CRLB with the same parameters as before, 

but this time over a 6 μm z-range. The resulting mask and its experimental validation are 

described in [27].

Discussion

While the behavior of the experimentally tested phase masks is qualitatively similar to the 

theoretical CRLB calculations, there are apparent discrepancies between theory and 

experiment (comparing Fig. 2c with 3b). This stems from several possibilities, such as noise 

model mismatch, non-constant background, and variations in actual photon number. 

However, the most crucial contribution to this discrepancy is imaging model mismatch: The 

experimentally produced PSF is somewhat different from the computed one (compare Fig. 

2b to 3a). This is due to polarization effects, broadband fluorescence detection, and 

additional aberrations that are unaccounted for in our imaging model. However, the 

experimental precision matches the CRLB calculated from the experimentally measured 

dictionary very well (see [27] for this result). This means that the CRLB is not only a 

mathematical limit, but indeed an experimentally valid criterion for optimization, which 

yields a measureable performance benefit.

In this work we have demonstrated a new, general method for PSF design that produces 

information-optimal PSFs subject to system conditions. The optimal PSFs have no prior 

constraints on their shape. We have applied our method to produce optimal PSFs for 3D 

high-precision spatial localization over large z-ranges. These PSFs can immediately be used 

for SPT and SR microscopy; see [27] for an experimental tracking demonstration using our 

PSF with a 6 μm range. The PSFs can be also used for other applications such as bead 
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location monitoring in magnetic tweezer experiments. The optimization design routine may 

draw on other sets of basis functions for propagating electromagnetic fields than were used 

in this first illustration, and may even include aspects of anisotropic dipolar emission [8,26]. 

In addition to future technical improvements (e.g. brighter emitters, better detectors, etc.), 

treating the PSF as a free design parameter, as suggested in this Letter, is a powerful way to 

enhance the performance of a variety of challenging imaging scenarios.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG 1. 
(Color online): Experimental pupil plane modulation setup with a phase mask in the Fourier 

plane of a 4f optical processing unit.
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FIG 2. 
(Color online): (a) Saddle-Point (SP) PSF, optimized for high background, low signal 3D 

precision over a 3 μm depth range. (b) Calculated PSF for various z positions (stated). Scale 

bar: 1 μm (in sample space). (c) Calculated CRLB of the SP PSF for x, y, z vs. astigmatic 

(Astigm.) and DH PSF as a function of z. 3500 detected signal photons per frame and β = 50 

were considered. Astigmatic axes are at 450 relative to camera axes, hence the similar x and 

y behavior.
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FIG 3. 
(Color online): (a) Experimental realizations of the Saddle-Point (SP) PSF for various z 

positions (stated). Scale bar: 1 μm (in sample space). Images were re-scaled to min/max 

intensity on an individual basis. (b) Experimental measurements of statistical localization 

precisions as the standard deviations σx, σy, σz of localization outcomes from 500 camera 

frames. Bars show standard deviations derived from n = 4 independent experiments. (c) 

Experimental histograms of localization outcomes along the x, y and z dimensions, recorded 

at z = −1 μm (dotted lines in (b), data from 4 measurements). Extracted σx, σy, σz are stated.
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