Skip to main content
. Author manuscript; available in PMC: 2015 Oct 1.
Published in final edited form as: Neuroimage. 2014 May 20;99:14–27. doi: 10.1016/j.neuroimage.2014.05.026

Table 5.

Results comparing 1). p-Eigen with Ward Clustering based ROIs and 2). p-Eigen with AAL ROIs vs p-Eigen with Ward Clustering based ROIs. For MCI vs. Normal we report mean classification error (e.g. 0.24 ↝ 24%), whereas for Delayed Recall we report Mean Absolute Prediction Error ( i=1nyi-y^in). All the classifiers also used Base Features in addition to the graph measurement features from ROIs. Note: The reported p-values are from a two sample t-test.

# FeatureSet MCI vs. Normal (μ ± σ) Delayed Recall (All) (μ ± σ) Delayed Recall (Patients) (μ ± σ)

1. Ward Clustering 0.33 ± 0.08 2.24 ± 0.23 1.21 ± 0.24
2. p-Eigen (Ward) 0.28 ± 0.05 2.07 ± 0.26 1.10 ± 0.22
3. p-Eigen (AAL) 0.24 ± 0.06 1.83 ± 0.29 0.97 ± 0.18

p-value (2. vs 3.) 0.045
(1. vs 3.) 2.7 × 10−6
(2. vs 3.) 0.041
(1. vs 3.) 1.4 × 10−7
(2. vs. 3) 0.066
(1. vs. 3) 3.4 × 10−5