Skip to main content
. Author manuscript; available in PMC: 2015 Oct 1.
Published in final edited form as: Neuroimage. 2014 May 20;99:14–27. doi: 10.1016/j.neuroimage.2014.05.026

Table 6.

Results showing p-Eigen (AAL) with Graphical Lasso better than p-Eigen using Pearson’s correlation. For MCI vs. Normal we report mean classification error (e.g. 0.24 ↝ 24%), whereas for Delayed Recall we report Mean Absolute Prediction Error ( i=1nyi-y^in). All the classifiers also used Base Features in addition to the graph measurement features from ROIs. All other p-values for each column were 2.2 × 10−16.

# FeatureSet MCI vs. Normal (μ ± σ) Delayed Recall (All) (μ ± σ) Delayed Recall (Patients) (μ ± σ)

1. AAL (Pearson) 0.39 ± 0.05 2.51 ± 0.23 1.57 ± 0.28
2. PCA (Pearson) 0.38 ± 0.06 2.59 ± 0.37 1.46 ± 0.21
3. p-Eigen (Pearson) 0.31 ± 0.04 2.09 ± 0.31 1.11 ± 0.11
4. p-Eigen (GLasso) 0.24 ± 0.06 1.83 ± 0.29 0.97 ± 0.18

p-value (3. vs 4.) 1.3 × 10−4 (3. vs 4.) 2.1 × 10−3 (3. vs. 4) 3.3 × 10−4