Table 6. Performance of different segmentation methods, in terms of sensitivity (Se), specificity (Sp), accuracy (Acc) area under the curve (AUC), on the DRIVE and STARE datasets.
Method | DRIVE | STARE | ||||||
---|---|---|---|---|---|---|---|---|
Se | Sp | Acc | AUC | Se | Sp | Acc | AUC | |
Second observer | 0.776 | 0.972 | 0.947 | 0.874 | 0.895 | 0.938 | 0.934 | 0.917 |
Supervised methods | ||||||||
Staal et.al [7] | - | - | 0.946 | - | - | - | 0.951 | - |
Soares et.al [8]* | - | - | 0.946 | - | - | - | 0.948 | - |
Lupascu et.al [10] | 0.720 | - | 0.959 | - | - | - | - | - |
You et.al [13]* | 0.741 | 0.975 | 0.943 | 0.858 | 0.726 | 0.975 | 0.949 | 0.851 |
Marin et.al [11] | 0.706 | 0.980 | 0.945 | 0.843 | 0.694 | 0.981 | 0.952 | 0.838 |
Wang et.al [12]* | - | - | 0.946 | - | - | - | 0.952 | - |
Unsupervised methods | ||||||||
Mendonca et.al [15]* | 0.734 | 0.976 | 0.945 | 0.855 | 0.699 | 0.973 | 0.944 | 0.836 |
Palomera-Perez et.al [20] | 0.660 | 0.961 | 0.922 | 0.811 | 0.779 | 0.940 | 0.924 | 0.860 |
Matinez-Perez et.al [19] | 0.724 | 0.965 | 0.934 | 0.845 | 0.750 | 0.956 | 0.941 | 0.853 |
Al-Diri et.al [16] | 0.728 | 0.955 | - | 0.842 | 0.752 | 0.968 | - | 0.860 |
Fraz et.al [14]* | 0.715 | 0.976 | 0.943 | 0.846 | 0.731 | 0.968 | 0.944 | 0.850 |
Nguyen et.al [21] | - | - | 0.940 | - | - | - | 0.932 | - |
Bankhead et.al [17] | 0.703 | 0.971 | 0.9371 | 0.837 | 0.758 | 0.950 | 0.932 | 0.854 |
Orlando et.al [23] | 0.785 | 0.967 | - | - | - | - | - | - |
Azzopardi et.al [22] | 0.766 | 0.970 | 0.944 | 0.961 | 0.772 | 0.970 | 0.950 | 0.956 |
Proposed method* | 0.744 | 0.978 | 0.953 | 0.861 | 0.786 | 0.975 | 0.951 | 0.881 |