Figure 1. The gut connectome: built for sensing food.
Top left: A sensory enteroendocrine cell (EEC) in the gut epithelium can be seen extending a neuropod to connect with an underlying nerve. Bottom left: Enteric glia underneath the epithelium extend processes to contact the neuropod of an enteroendocrine cell. Right: The innervation of enteroendocrine cells brings the possibility of afferent (gut-to-brain) signaling and possible efferent (brain-to-gut; not shown) signaling, which would allow the gut to compute sensory information from food to modulate whole-body metabolism and behaviors such as hunger and satiety. Figures adapted from PLoS One (14) and J Clin Invest (15).